The Statistics of the Number of Minima in a Random Energy Landscape

Satya N. Majumdar 1, Olivier C. Martin 1

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 74 (2006) 061112

We consider random energy landscapes constructed from d-dimensional lattices or trees. The distribution of the number of local minima in such landscapes follows a large deviation principle and we derive the associated law exactly for dimension 1. Also of interest is the probability of the maximum possible number of minima; this probability scales exponentially with the number of sites. We calculate analytically the corresponding exponent for the Cayley tree and the two-leg ladder; for 2 to 5 dimensional hypercubic lattices, we compute the exponent numerically and compare to the Cayley tree case.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud