Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models II. Extended Results for Square-Lattice Chromatic Polynomial

Jesper-Lykke Jacobsen 1, Jesus Salas 2

Journal of Statistical Physics 104 (2001) 701-723

We study the chromatic polynomials for m \times n square-lattice strips, of width 9 <= m <= 13 (with periodic boundary conditions) and arbitrary length n (with free boundary conditions). We have used a transfer matrix approach that allowed us also to extract the limiting curves when n \to \infty. In this limit we have also obtained the isolated limiting points for these square-lattice strips and checked some conjectures related to the Beraha numbers.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud
  • 2. Departamento de Física Teórica, Facultad de Ciencias,
    Universidad de Zaragoza