Universal Record Statistics of Random Walks

GGI Workshop in Advances in Non-Equilibrium Statistical Mechanics

Grégory Schehr, LPTMS (Orsay)
Universal Record Statistics of Random Walks

GGI Workshop in Advances in Non-Equilibrium Statistical Mechanics

Grégory Schehr, LPTMS (Orsay)

Collaborators:
- C. Godrèche (IPhT, Saclay)
- S. N. Majumdar (LPTMS, Orsay)
- G. Wergen (Uni. of Cologne)
Statement of the problem

$x_1, x_2, \cdots, x_n : n$ random variables (e.g. time series)
Statement of the problem

$x_1, x_2, \cdots, x_n : n$ random variables (e.g. time series)

x_k is a record iff

$x_k \geq \max(x_1, x_2, \cdots, x_{k-1})$
Statement of the problem

$x_1, x_2, \cdots, x_n : n$ random variables (e.g. time series)

x_k is a record iff

$$x_k \geq \max(x_1, x_2, \cdots, x_{k-1})$$

Questions: Statistics of the number of records R_n ?
Statement of the problem

$x_1, x_2, \cdots, x_n : n$ random variables (e.g. time series)

x_k is a record iff

$$x_k \geq \max(x_1, x_2, \cdots, x_{k-1})$$

Questions: ☀ Statistics of the number of records R_n ?
☀ Statistics of the ages of records $\tau_1, \tau_2, \cdots, A_n$?
Some recent applications of records in physics

- **Domain wall dynamics**
 Alessandro et al. '90

- **Evolutionary biology**
 Jain & Krug '05

- **Global warming**
 Redner & Petersen '06, Wergen & Krug '10

- **Spin-glasses**
 Sibani '07

- **Random walks**
 Majumdar & Ziff '08, Wergen, Majumdar, G. S. '12

- **Growing networks**
 Godrèche & Luck '08

- **Avalanches**
 Le Doussal & Wiese '09

- **Financial data**
 Wergen, Bogner & Krug '11, Wergen '13
Some recent applications of records in physics

- Domain wall dynamics Alessandro et al. ‘90
- Evolutionary biology Jain & Krug ‘05
- Global warming Redner & Petersen ‘06, Wergen & Krug ‘10
- Spin-glasses Sibani ‘07
- Random walks Majumdar & Ziff ‘08, Wergen, Majumdar, G. S. ‘12
- Growing networks Godrèche & Luck ‘08
- Avalanches Le Doussal & Wiese ‘09
- Financial data Wergen, Bogner & Krug ‘11, Wergen ‘13
Record statistics of i.i.d. random variables

\[x_1, x_2, \cdots, x_n : n \] i.i.d. random variables with PDF \(p(x) \)

Number of records \(R_n \)

\[
R_n = \sum_{k=1}^{n} \sigma_k
\]

\[
\sigma_k = \begin{cases}
1, & \text{if } x_k \text{ is a record} \\
0, & \text{if } x_k \text{ is NOT a record}
\end{cases}
\]
Record statistics of i.i.d. random variables

\[x_1, x_2, \cdots, x_n : n \]
i.i.d. random variables with PDF \(p(x) \)

\[\langle R_n \rangle = \sum_{k=1}^{n} r_k \]
\[r_k = \langle \sigma_k \rangle \]
is the proba. that a record is broken at step \(k \)

Nber of records \(R_n \)

\[R_n = \sum_{k=1}^{n} \sigma_k \]

\[\sigma_k = \begin{cases} 1, & \text{if } x_k \text{ is a record} \\ 0, & \text{if } x_k \text{ is NOT a record} \end{cases} \]
Record statistics of i.i.d. random variables

\[x_1, x_2, \cdots, x_n : n \quad \text{i.i.d. random variables with PDF } p(x) \]

Number of records \(R_n \)

\[R_n = \sum_{k=1}^{n} \sigma_k \]

\[\sigma_k = \begin{cases} 1, & \text{if } x_k \text{ is a record} \\ 0, & \text{if } x_k \text{ is NOT a record} \end{cases} \]

\[\langle R_n \rangle = \sum_{k=1}^{n} r_k , \quad r_k = \langle \sigma_k \rangle \quad \text{is the proba. that a record is broken at step } k \]

\[r_k = \int_{-\infty}^{\infty} p(y) \left[\int_{-\infty}^{y} p(x) \, dx \right]^{k-1} \, dy \]
Record statistics of i.i.d. random variables

\[x_1, x_2, \ldots, x_n : n \text{ i.i.d. random variables with PDF } p(x) \]

Number of records \(R_n \)

\[
R_n = \sum_{k=1}^{n} \sigma_k
\]

\[
\sigma_k = \begin{cases}
1, & \text{if } x_k \text{ is a record} \\
0, & \text{if } x_k \text{ is NOT a record}
\end{cases}
\]

\[
\langle R_n \rangle = \sum_{k=1}^{n} r_k, \quad r_k = \langle \sigma_k \rangle \text{ is the proba. that a record is broken at step } k
\]

\[
r_k = \int_{-\infty}^{\infty} p(y) \left[\int_{-\infty}^{y} p(x) dx \right]^{k-1} dy = \frac{1}{k}
\]
Record statistics of i.i.d. random variables

\[x_1, x_2, \cdots, x_n : n \text{ i.i.d. random variables with PDF } p(x) \]

Number of records \(R_n \)

\[R_n = \sum_{k=1}^{n} \sigma_k \]

\[\sigma_k = \begin{cases} 1, & \text{if } x_k \text{ is a record} \\ 0, & \text{if } x_k \text{ is NOT a record} \end{cases} \]

\[\langle R_n \rangle = \sum_{k=1}^{n} r_k, \quad r_k = \langle \sigma_k \rangle \text{ is the proba. that a record is broken at step } k \]

Universal!

\[r_k = \int_{-\infty}^{\infty} p(y) \left[\int_{-\infty}^{y} p(x) \, dx \right]^{k-1} \, dy = \frac{1}{k} \]
Record statistics of i.i.d. random variables

\[x_1, x_2, \cdots, x_n : n \text{ i.i.d. random variables with PDF} \]
Record statistics of i.i.d. random variables

\[x_1, x_2, \ldots, x_n : n \text{ i.i.d. random variables with PDF} \]

Average number of records

\[\langle R_n \rangle = \sum_{k=1}^{n} \frac{1}{k} \sim \log n \]
Record statistics of i.i.d. random variables

\[x_1, x_2, \cdots, x_n : n \text{ i.i.d. random variables with PDF} \]

Average number of records

\[\langle R_n \rangle = \sum_{k=1}^{n} \frac{1}{k} \sim \log n \]

Variance

\[\langle R_n^2 \rangle - \langle R_n \rangle^2 \sim \log n \]
Record statistics of i.i.d. random variables

\[x_1, x_2, \ldots, x_n : n \text{ i.i.d. random variables with PDF} \]

Average number of records

\[\langle R_n \rangle = \sum_{k=1}^{n} \frac{1}{k} \sim \log n \]

Variance

\[\langle R_n^2 \rangle - \langle R_n \rangle^2 \sim \log n \]

Universal probability distribution

\[P(R_n = M) = \frac{\left[\binom{n}{M} \right]}{n!} \]
Record statistics of i.i.d. random variables

\[x_1, x_2, \cdots, x_n : n \text{ i.i.d. random variables with PDF} \]

Average number of records

\[\langle R_n \rangle = \sum_{k=1}^{n} \frac{1}{k} \sim \log n \]

Variance

\[\langle R_n^2 \rangle - \langle R_n \rangle^2 \sim \log n \]

Universal probability distribution

\[P(R_n = M) = \frac{\left[\begin{array}{c} n \\ M \end{array} \right]}{n!} \]

Stirling numbers:
number of permutations of \(n \) elements with \(M \) disjoint cycles
Record statistics of i.i.d. random variables

\[x_1, x_2, \cdots, x_n : n \text{ i.i.d. random variables with PDF} \]

Average number of records

\[\langle R_n \rangle = \sum_{k=1}^{n} \frac{1}{k} \sim \log n \]

Variance

\[\langle R_n^2 \rangle - \langle R_n \rangle^2 \sim \log n \]

Universal probability distribution

\[P(R_n = M) = \frac{\left[\begin{array}{c} n \\ M \end{array} \right]}{n!} \]

Gaussian for large \(n \)

\[\sim \frac{1}{\sqrt{2\pi \log n}} \exp \left(-\frac{(M - \log n)^2}{2 \log n} \right) \]

Stirling numbers:
number of permutations of \(n \) elements with \(M \) disjoint cycles
Record statistics of random walks

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i \quad \text{where the jumps } \eta_i \text{s are i.i.d. with PDF } p(\eta) \quad \text{continuous & symmetric} \]
Record statistics of random walks

\[x_0 = 0 \]

\[x_i = x_{i-1} + \eta_i \quad \text{where the jumps } \eta_i \text{ are i.i.d. with PDF } p(\eta) \]

Including

- **Ordinary random walks**
 \[\sigma^2 = \int_{-\infty}^{\infty} \eta^2 \, p(\eta) \, d\eta < \infty \]
 \[x_n \sim \sigma \sqrt{n} \]

- **Lévy flights**
 \[p(\eta) \propto a^\mu |\eta|^{-1-\mu}, \quad |\eta| \to \infty \]
 \[0 < \mu < 2 \]
 \[x_n \sim a \, n^{1/\mu} \quad \mu \text{ is the Lévy index} \]
Record statistics of random walks

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i \] where the jumps \(\eta_i \)s are i.i.d. with PDF \(p(\eta) \)

Including

- Ordinary random walks
 \[\sigma^2 = \int_{-\infty}^{\infty} \eta^2 p(\eta) \, d\eta < \infty \]
 \[x_n \sim \sigma \sqrt{n} \]

- Lévy flights
 \[p(\eta) \propto a^\mu |\eta|^{-1-\mu}, \quad |\eta| \to \infty \]
 \[0 < \mu < 2 \]
 \[x_n \sim a \, n^{1/\mu} \quad \mu \text{ is the Lévy index} \]

Q: Dependence of records on the jump distribution?
Mean record number of random walks

\[\langle R_n \rangle = \sum_{k=0}^{n} r_k, \quad r_k = \langle \sigma_k \rangle \]

\(r_k \) is the probability that a record is broken at step \(k \)
Mean record number of random walks

\[\langle R_n \rangle = \sum_{k=0}^{n} r_k , \quad r_k = \langle \sigma_k \rangle \]

\(r_k \) is the probability that a record is broken at step \(k \).
Mean record number of random walks

$$\langle R_n \rangle = \sum_{k=0}^{n} r_k , \quad r_k = \langle \sigma_k \rangle$$

r_k is the proba. that a record is broken at step k

$$\Rightarrow r_k = q_-(k)$$

= Proba. that the walker stays negative up to step k

starting from the origin
Mean record number of random walks

\[\langle R_n \rangle = \sum_{k=0}^{n} r_k , \quad r_k = \langle \sigma_k \rangle \]

\(r_k \) is the proba. that a record is broken at step \(k \)

\[\implies r_k = q_-(k) \]

\(= \) Proba. that the walker stays negative up to step \(k \)

starting from the origin

\(q_-(k) \) is given by the Sparre Andersen Theorem
Mean record number of random walks

\[\langle R_n \rangle = \sum_{k=0}^{n} r_k = \sum_{k=0}^{n} q_-(k) \]

\(q_-(k) \) is given by the Sparre Andersen Theorem
Mean record number of random walks

$$\langle R_n \rangle = \sum_{k=0}^{n} r_k = \sum_{k=0}^{n} q_{-}(k)$$

$q_{-}(k)$ is given by the Sparre Andersen Theorem

For symmetric RW

$$\sum_{k=0}^{\infty} q_{-}(k) z^k = \frac{1}{\sqrt{1-z}} \implies q_{-}(k) = \frac{1}{2^{2k}} \binom{2k}{k} \sim \frac{1}{\sqrt{\pi k}}$$
Mean record number of random walks

\[\langle R_n \rangle = \sum_{k=0}^{n} r_k = \sum_{k=0}^{n} q_-(k) \]

\(q_-(k) \) is given by the Sparre Andersen Theorem

For symmetric RW

\[\sum_{k=0}^{\infty} q_-(k) z^k = \frac{1}{\sqrt{1 - z}} \implies q_-(k) = \frac{1}{2^{2k}} \binom{2k}{k} \sim \frac{1}{\sqrt{\pi k}} \]

Universal, i.e. independent of the jump distribution!
Mean record number of random walks

\[\langle R_n \rangle = \sum_{k=0}^{n} r_k = \sum_{k=0}^{n} q_-(k) \]

\(q_-(k) \) is given by the Sparre Andersen Theorem

For symmetric RW

\[\sum_{k=0}^{\infty} q_-(k) z^k = \frac{1}{\sqrt{1 - z}} \quad \Rightarrow \quad q_-(k) = \frac{1}{2^{2k}} \binom{2k}{k} \sim \frac{1}{\sqrt{\pi k}} \]

Universal, i.e. independent of the jump distribution!

\[\langle R_n \rangle = \frac{2 \Gamma(3/2 + n)}{\sqrt{\pi} n!} \sim \frac{2}{\sqrt{\pi}} \sqrt{n} \quad \text{Majumdar, Ziff `08} \]
Record statistics of random walks with a drift

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i \quad \text{where the jumps } \eta_i \text{s are i.i.d. with PDF } p(\eta) \]

\[\text{RW with a drift} \quad y_n = x_n + c n \]
Record statistics of random walks with a drift

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i \] where the jumps \(\eta_i \)'s are i.i.d. with PDF \(p(\eta) \) continuous & symmetric

RW with a drift \(y_n = x_n + cn \)

Mean number of records of \(y_n \): \[\langle R_n \rangle = \sum_{k=0}^{n} r_k = \sum_{k=0}^{n} q_-(k) \]

\[q_-(k) = \Pr(y_1 < 0, y_2 < 0, \cdots, y_k < 0) \]
Record statistics of random walks with a drift

\[x_0 = 0 \]

\[x_i = x_{i-1} + \eta_i \quad \text{where the jumps } \eta_i \text{s are i.i.d. with PDF } p(\eta) \quad \text{continuous & symmetric} \]

RW with a drift \(y_n = x_n + cn \)

Mean number of records of \(y_n \):
\[
\langle R_n \rangle = \sum_{k=0}^{n} r_k = \sum_{k=0}^{n} q_-(k)
\]

\[q_-(k) = \Pr(y_1 < 0, y_2 < 0, \cdots, y_k < 0) \]

(Generalized) Sparre Andersen theorem

\[
\sum_{k=0}^{\infty} q_-(k)z^k = \exp \left(\sum_{k=1}^{\infty} \frac{z^k}{k} \Pr(y_k < 0) \right)
\]
Record statistics of random walks with a drift

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i, \quad \hat{p}(k) = \int_{-\infty}^{+\infty} p(\eta)e^{ik\eta} d\eta = 1 - |ak|^\mu + \ldots \]

\[y_n = x_n + cn \]

RW with a drift

Majumdar, G. S., Wergen `12
Record statistics of random walks with a drift

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i, \quad \hat{p}(k) = \int_{-\infty}^{+\infty} p(\eta) e^{ik\eta} \, d\eta = 1 - |ak|^\mu + \cdots \]
\[y_n = x_n + cn \]

RW with a drift

Majumdar, G. S., Wergen `12
Record statistics of random walks with a drift

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i, \quad \hat{p}(k) = \int_{-\infty}^{+\infty} p(\eta) e^{i k \eta} \, d\eta = 1 - |ak|^\mu + \cdots \]

\[y_n = x_n + c n \]

RW with a drift

Majumdar, G. S., Wergen ʿ12
Record statistics of random walks with a drift

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i, \quad \hat{p}(k) = \int_{-\infty}^{+\infty} p(\eta) e^{ik\eta} d\eta = 1 - |ak|^\mu + \cdots \]
\[y_n = x_n + cn \]

Majumdar, G. S., Wergen `12

\[\langle R_n \rangle \sim A_1 \sqrt{n} \]
\[\langle R_n \rangle \sim a_\mu(c)n \]
\[\langle R_n \rangle \propto n^{\theta(c)} \]
Record statistics of random walks with a drift

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i, \hspace{1cm} \hat{p}(k) = \int_{-\infty}^{+\infty} p(\eta) e^{ik\eta} \, d\eta = 1 - |ak|^\mu + \cdots \]
\[y_n = x_n + c \, n \]

RW with a drift

Majumdar, G. S., Wergen `12

\[\langle R_n \rangle \sim a_2(c)n \]
\[\langle R_n \rangle \sim a_\mu(c)n \]
\[\langle R_n \rangle \propto n^{\theta(c)} \]

\[\langle R_n \rangle \sim A_1 \sqrt{n} \]
Record statistics of random walks with a drift

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i, \quad \hat{p}(k) = \int_{-\infty}^{+\infty} p(\eta)e^{i kn} \, d\eta = 1 - |ak|^\mu + \cdots \]
\[y_n = x_n + cn \]

\textbf{RW with a drift} \hspace{1cm} \textbf{Majumdar, G. S., Wergen \textasciitilde 12}
Record statistics of random walks with a drift

\[x_0 = 0 \]
\[x_i = x_{i-1} + \eta_i, \quad \hat{p}(k) = \int_{-\infty}^{+\infty} p(\eta) e^{ik\eta} d\eta = 1 - |ak|^{\mu} + \cdots \]
\[y_n = x_n + cn \]

RW with a drift

Majumdar, G. S., Wergen `12

What about the full distribution of \(R_n \)?
Renewal approach to records of RW

Joint distribution of $R_n, \tau_1, \tau_2, \ldots, \tau_{R_n-1}, A_n$?
Renewal approach to records of RW

Joint distribution of \(R_n, \tau_1, \tau_2, \cdots, \tau_{R_n-1}, A_n \)

RW is a Markov process \(\iff \tau_1, \tau_2, \cdots, \tau_{R_n-1}, A_n \) are independent except for the global constraint

\[
\sum_{i=1}^{R_n-1} \tau_i + A_n = n
\]
Renewal approach to records of RW

Joint distribution of $R_n, \tau_1, \tau_2, \cdots, \tau_{R_n-1}, A_n$?

- RW is a Markov process $\iff \tau_1, \tau_2, \cdots, \tau_{R_n-1}, A_n$ are independent except for the global constraint

$$\sum_{i=1}^{R_n-1} \tau_i + A_n = n$$

- RW is translationally invariant $\iff \tau_i$s are identical while A_n has different statistics
Renewal approach to records of RW

Joint distribution of $R_n, \tau_1, \tau_2, \cdots, \tau_{R_n-1}, A_n$?

Two main objects:

- **Persistence (or survival) probability**
 \[q_-(k) = \Pr(y_1 < y_0, y_2 < y_0, \cdots, y_k < y_0) \text{ indep. of } y_0 \]

- **Distribution of first-passage time (from below)**
 \[f_-(k) = \Pr(y_1 < y_0, y_2 < y_0, \cdots, y_{k-1} < y_0, y_k > y_0) = q_-(k) - q_-(k - 1) \text{ indep. of } y_0 \]
Renewal approach to records of RW

Joint distribution of $R_n, \tau_1, \tau_2, \cdots, \tau_{R_n-1}, A_n$

$$\Pr(R_n = m, \tau_1 = \ell_1, \cdots, \tau_{m-1} = \ell_{m-1}, A_n = a) = P(\vec{\ell}, m, n)$$

$$P(\vec{\ell}, m, n) = f_-(\ell_1)f_-(\ell_2)\cdots f_-(\ell_{m-1})q_-(a)\delta\left(\sum_{k=1}^{m-1} \ell_k + a, n\right)$$

first passage proba.

survival proba.
Proba. distribution of the number of records

\[P(m, n) = \Pr(R_n = m) = \sum_{\ell_1=1}^{\infty} \sum_{\ell_2=1}^{\infty} \cdots \sum_{\ell_{m-1}=1}^{\infty} \sum_{a=0}^{\infty} P(\vec{\ell}, m, n) \]

with

\[P(\vec{\ell}, m, n) = f_-(\ell_1)f_-(\ell_2) \cdots f_-(\ell_{m-1})q_-(a)\delta \left(\sum_{k=1}^{m-1} \ell_k + a, n \right) \]
Proba. distribution of the number of records

\[P(m, n) = \Pr(R_n = m) = \sum_{\ell_1=1}^{\infty} \sum_{\ell_2=1}^{\infty} \cdots \sum_{\ell_{m-1}=1}^{\infty} \sum_{a=0}^{\infty} P(\bar{l}, m, n) \]

with

\[P(\bar{l}, m, n) = f_-(\ell_1) f_-(\ell_2) \cdots f_-(\ell_{m-1}) q_-(a) \delta \left(\sum_{k=1}^{m-1} \ell_k + a, n \right) \]

Generating function w.r.t. the number of steps

\[\sum_{n=0}^{\infty} P(m, n) z^n = \left(\sum_{\ell \geq 1} z^\ell f_-(\ell) \right)^{m-1} \sum_{a \geq 0} z^a q_-(a) \]

\[= \left[\tilde{f}_-(z) \right]^{m-1} \tilde{q}_-(z) \]
Proba. distribution of the number of records

\[P(m, n) = \Pr(R_n = m) = \sum_{\ell_1=1}^{\infty} \sum_{\ell_2=1}^{\infty} \cdots \sum_{\ell_{m-1}=1}^{\infty} \sum_{a=0}^{\infty} P(\bar{\ell}, m, n) \]

with

\[P(\bar{\ell}, m, n) = f_-(\ell_1)f_-(\ell_2) \cdots f_-(\ell_{m-1})q_-(a)\delta\left(\sum_{k=1}^{m-1} \ell_k + a, n\right) \]

Generating function w.r.t. the number of steps

\[\sum_{n=0}^{\infty} P(m, n)z^n = \left(\sum_{\ell \geq 1} z^{\ell}f_-(\ell)\right)^{m-1} \sum_{a \geq 0} z^{a}q_-(a) \]

\[= \left[\tilde{f}_-(z)\right]^{m-1} \tilde{q}_-(z) \]

(for symmetric jumps)

\[= \left[1 - \sqrt{1 - z}\right]^{m-1} \frac{1}{\sqrt{1 - z}} \]
Proba. distribution of the number of records

By "inverting" the GF (for symmetric jumps):

\[P(m, n) = \binom{2n - m + 1}{n} 2^{-2n+m-1}, \quad m \leq n + 1 \]

Majumdar, Ziff `08
Proba. distribution of the number of records

By "inverting" the GF (for symmetric jumps):

\[P(m, n) = \binom{2n - m + 1}{n} 2^{-2n+m-1}, \quad m \leq n + 1 \]

For \(n \gg 1 \): \(P(m, n) \sim \frac{1}{\sqrt{n}} g_0 \left(\frac{m}{\sqrt{n}} \right), \quad g_0(x) = \frac{1}{\sqrt{\pi}} e^{-\frac{x^2}{4}}, \quad x > 0 \)
Proba. distribution of the number of records

By "inverting" the GF (for symmetric jumps):

\[P(m, n) = \binom{2n - m + 1}{n} 2^{-2n+m-1}, \quad m \leq n + 1 \]

For \(n \gg 1 \):

\[P(m, n) \sim \frac{1}{\sqrt{n}} g_0 \left(\frac{m}{\sqrt{n}} \right), \quad g_0(x) = \frac{1}{\sqrt{\pi}} e^{-\frac{x^2}{4}}, \quad x > 0 \]

RW with a drift

Majumdar, Ziff `08
Majumdar, G. S., Wergen `12
Proba. distribution of the number of records

By “inverting” the GF (for symmetric jumps):

\[P(m, n) = \binom{2n - m + 1}{n} 2^{-2n+m-1}, \quad m \leq n + 1 \]

For \(n \gg 1 \):

\[P(m, n) \sim \frac{1}{\sqrt{n}} g_0 \left(\frac{m}{\sqrt{n}} \right), \quad g_0(x) = \frac{1}{\sqrt{\pi}} e^{-\frac{x^2}{4}}, \quad x > 0 \]

RW with a drift

Majumdar, G. S., Wergen `12
Proba. distribution of the number of records

By “inverting” the GF (for symmetric jumps):

\[P(m, n) = \binom{2n - m + 1}{n} 2^{-2n+m-1}, \quad m \leq n + 1 \]

For \(n \gg 1 \):

\[P(m, n) \sim \frac{1}{\sqrt{n}} g_0 \left(\frac{m}{\sqrt{n}} \right), \quad g_0(x) = \frac{1}{\sqrt{\pi}} e^{-\frac{x^2}{4}}, \quad x > 0 \]

RW with a drift

\[P(m, n) = \frac{1}{n^{\theta(c)}} g_c \left(\frac{m}{n^{\theta(c)}} \right) \]

e.g. for \(\mu = 1, \quad \theta(c) = 1/3 \)

\[g_c(x) = 3^{2/3} \text{Ai} \left(\frac{x}{3^{1/3}} \right) \]
Statistics of the ages of records

\[A_n = 3 \]

\[n = 3 \]

\[\tau_1 = 4 \]

\[\tau_2 = 3 \]

\[\tau_3 = 2 \]

\[\tau_4 = 5 \]

\[\tau_5 = 6 \]

sym. RW
Statistics of the ages of records

Typical age of a record: \(\ell_{\text{typ}} \sim \frac{n}{\langle R_n \rangle} \sim \sqrt{n} \)
Statistics of the ages of records

Typical age of a record: \(\ell_{\text{typ}} \sim \frac{n}{\langle R_n \rangle} \sim \sqrt{n} \)

What about the longest or shortest age of a record?
Statistics of the ages of records

Typical age of a record: \(\ell_{\text{typ}} \sim \frac{n}{\langle R_n \rangle} \sim \sqrt{n} \)

What about the longest or shortest age of a record?

What is the proba. that the current record is the oldest one?

Godrèche, Majumdar, G. S., '14
Statistics of the ages of records

Typical age of a record: \(\ell_{\text{typ}} \sim \frac{n}{\langle R_n \rangle} \sim \sqrt{n} \)

What about the longest or shortest age of a record?

What is the proba. that the current record is the oldest one?

Godrèche, Majumdar, G. S., '14
Statistics of the ages of records

\[Q(n) = \Pr[A_n \geq \max(\tau_1, \tau_2, \ldots, \tau_{m-1})] = ? \]
Statistics of the ages of records

\[Q(n) = \Pr [A_n \geq \max(\tau_1, \tau_2, \cdots, \tau_{m-1})] \quad ? \]

\[Q(n) = \sum_{m \geq 1} \Pr [A_n \geq \max(\tau_1, \tau_2, \cdots, \tau_{m-1}, R_n = m)] \]
Statistics of the ages of records

\[Q(n) = \Pr [A_n \geq \max(\tau_1, \tau_2, \ldots, \tau_{m-1})] = ? \]

\[Q(n) = \sum_{m \geq 1} \Pr [A_n \geq \max(\tau_1, \tau_2, \ldots, \tau_{m-1}, R_n = m)] \quad Q(m, n) \]
Statistics of the ages of records

\[Q(n) = \sum_{m \geq 1} \Pr [A_n \geq \max(\tau_1, \tau_2, \cdots, \tau_{m-1}, R_n = m)] \]

\(Q(m, n) \)
Statistics of the ages of records

\[Q(n) = \sum_{m \geq 1} \Pr [A_n \geq \max(\tau_1, \tau_2, \ldots, \tau_{m-1}, R_n = m)] \]

\[Q(m, n) = \sum_{a \geq 0} \sum_{\ell_1 = 1}^{a} \cdots \sum_{\ell_{m-1} = 1}^{a} \Pr(R_n = m, \tau_1 = \ell_1, \ldots, \tau_{m-1} = \ell_{m-1}, A_n = a) \]
Statistics of the ages of records

\[Q(n) = \sum_{m \geq 1} \Pr [A_n \geq \max(\tau_1, \tau_2, \cdots, \tau_{m-1}, R_n = m)] \]

\[Q(m, n) = \sum_{a \geq 0} \sum_{\ell_1 = 1}^{a} \cdots \sum_{\ell_{m-1} = 1}^{a} \Pr(R_n = m, \tau_1 = \ell_1, \cdots, \tau_{m-1} = \ell_{m-1}, A_n = a) \]

\[P(\ell, m, n) \]
Statistics of the ages of records

\[Q(n) = \sum_{m \geq 1} \Pr \left[A_n \geq \max(\tau_1, \tau_2, \ldots, \tau_{m-1}, R_n = m) \right] \]

\[Q(m, n) = \sum_{a \geq 0} \sum_{\ell_1 = 1}^{a} \cdots \sum_{\ell_{m-1} = 1}^{a} \Pr(R_n = m, \tau_1 = \ell_1, \ldots, \tau_{m-1} = \ell_{m-1}, A_n = a) \]

with \[P(\vec{l}, m, n) = f_-(l_1)f_-(l_2)\cdots f_-(l_{m-1})q_-(a)\delta\left(\sum_{k=1}^{m-1} l_k + a, n\right) \]
Statistics of the ages of records

\[Q(n) = \sum_{m \geq 1} \Pr[A_n \geq \max(\tau_1, \tau_2, \ldots, \tau_{m-1}, R_n = m)] \]

\[Q(m, n) = \sum_{a \geq 0} \sum_{\ell_1 = 1}^{a} \cdots \sum_{\ell_{m-1} = 1}^{a} \Pr(R_n = m, \tau_1 = \ell_1, \ldots, \tau_{m-1} = \ell_{m-1}, A_n = a) \]

with \[P(\overrightarrow{\ell}, m, n) = f_-(\ell_1)f_-(\ell_2)\cdots f_-(\ell_{m-1})q_-(a)\delta \left(\sum_{k=1}^{m-1} \ell_k + a, n \right) \]

\[\sum_{n \geq 0} z^n Q(m, n) = \sum_{a \geq 0} \left(\sum_{\ell = 1}^{a} f_-(\ell)z^{\ell} \right)^{m-1} q_-(a)z^{a} \]
Statistics of the ages of records

\[Q(n) = \sum_{m \geq 1} \Pr [A_n \geq \max(\tau_1, \tau_2, \cdots, \tau_{m-1}, R_n = m)] \]

\[Q(m, n) = \sum_{a \geq 0} \sum_{\ell_1 = 1}^{a} \cdots \sum_{\ell_{m-1} = 1}^{a} \Pr(R_n = m, \tau_1 = \ell_1, \cdots, \tau_{m-1} = \ell_{m-1}, A_n = a) \]

\[Q(m, n) = \sum_{a \geq 0} \sum_{\ell_1 = 1}^{a} \cdots \sum_{\ell_{m-1} = 1}^{a} \Pr(R_n = m, \tau_1 = \ell_1, \cdots, \tau_{m-1} = \ell_{m-1}, A_n = a) \]

with \[P(\ell, m, n) = f_-(\ell_1)f_-(\ell_2) \cdots f_-(\ell_{m-1})q_-(a)\delta \left(\sum_{k=1}^{m-1} \ell_k + a, n \right) \]

Generating function

\[\sum_{n \geq 0} z^n Q(m, n) = \sum_{a \geq 0} \left(\sum_{\ell=1}^{a} f_-(\ell)z^\ell \right)^{m-1} q_-(a)z^a \]

\[\sum_{n \geq 0} z^n Q(n) = \sum_{n \geq 1} z^n \sum_{m \geq 1} Q(m, n) = \sum_{a \geq 0} \sum_{m \geq 1} \left(\sum_{\ell=1}^{a} f_-(\ell)z^\ell \right)^{m-1} q_-(a)z^a \]
Statistics of the ages of records

\[Q(n) = \Pr[A_n \geq \max(\tau_1, \tau_2, \ldots, \tau_{m-1})] \]

\[\sum_{n \geq 0} z^n Q(n) = \sum_{a \geq 0} \frac{z^a q_-(a)}{1 - \sum_{\ell=1}^a f_-(\ell) z^\ell} \]
Statistics of the ages of records

\[Q(n) = \Pr \left[A_n \geq \max(\tau_1, \tau_2, \cdots, \tau_{m-1}) \right] \]

\[\sum_{n \geq 0} z^n Q(n) = \sum_{a \geq 0} \frac{z^a q_-(a)}{1 - \sum_{\ell=1}^a f_-(\ell) z^\ell} \]

For symmetric RW

\[q_-(k) = \frac{1}{2^{2k}} \binom{2k}{k}, \quad f_-(k) = q_-(k) - q_-(k - 1) \]
Statistics of the ages of records

\[Q(n) = \Pr \left[A_n \geq \max(\tau_1, \tau_2, \ldots, \tau_{m-1}) \right] \]

\[
\sum_{n \geq 0} z^n Q(n) = \sum_{a \geq 0} \frac{z^a q_-(a)}{1 - \sum_{\ell=1}^a f_- (\ell) z^\ell}
\]

For symmetric RW

\[q_-(k) = \frac{1}{2^{2k}} \binom{2k}{k}, \quad f_-(k) = q_-(k) - q_-(k - 1) \]

One finds

\[
\sum_{n \geq 0} z^n Q(n) = 1 + \frac{1}{2}z + \frac{5}{8}z^2 + \frac{5}{8}z^3 + \frac{81}{128}z^4 + \frac{5}{8}z^5 + \frac{161}{256}z^6 + \cdots
\]
Statistics of the ages of records

\[Q(n) = \Pr [A_n \geq \max(\tau_1, \tau_2, \cdots, \tau_{m-1})] \]

\[\lim_{n \to \infty} Q(n) = Q_\infty \]

Godrèche, Majumdar, G. S., `14
Statistics of the ages of records

\[Q(n) = \Pr \left[A_n \geq \max(\tau_1, \tau_2, \cdots, \tau_{m-1}) \right] \]

\[
Q_\infty = \int_0^\infty dx \frac{1}{1 + \sqrt{\pi x} e^x \text{erf} \sqrt{x}} = 0.626508 \ldots
\]

Godrèche, Majumdar, G. S., ’14
Statistics of the ages of records

\[Q(n) = \Pr [A_n \geq \max(\tau_1, \tau_2, \cdots, \tau_{m-1})] \]

\[\lim_{n \to \infty} Q(n) = Q_\infty \]

\[Q_\infty = \int_0^\infty dx \frac{1}{1 + \sqrt{\pi x} e^x \text{erf}\sqrt{x}} = 0.626508 \ldots \]
New observable... new universal constant

\[n = 3 \]

\[x_i \]

\[\tau_1 = 4 \]
\[\tau_2 = 3 \]
\[\tau_3 = 2 \]
\[\tau_4 = 5 \]
\[\tau_5 = 6 \]

\[A_n = 3 \]
New observable...new universal constant

\[Q_1(n) = \Pr[\tau_1 \geq \max(\tau_2, \cdots, \tau_{m-1}, A_n)] \]
New observable...new universal constant

\[x_i \]

\[\tau_1 = 4 \]
\[\tau_2 = 3 \]
\[\tau_3 = 2 \]
\[\tau_4 = 5 \]
\[\tau_5 = 6 \]
\[A_n = 3 \]

\[Q_1(n) = \Pr[\tau_1 \geq \max(\tau_2, \cdots, \tau_{m-1}, A_n)] \]

\[\sim \frac{C_1}{\sqrt{n}} \]
New observable...new universal constant

\[Q_1(n) = \Pr[\tau_1 \geq \max(\tau_2, \cdots, \tau_{m-1}, A_n)] \]

\[\sim \frac{C_1}{\sqrt{n}} \]

\[C_1 = \frac{1}{\sqrt{\pi}} \left(1 + \frac{1}{2} \int_0^\infty \frac{dx}{x} \frac{\text{erf}(\sqrt{x})}{1 + \sqrt{\pi x} e^x \text{erf}(\sqrt{x})} \right) = 0.962641 \ldots \]

Godrèche, Majumdar, G. S., '14
Conclusions

- Exact results for records of strongly correlated time series
 see arXiv:1305.0639 for a short review

- Universal records statistics for (symmetric) RWs

- Extension to multiparticle systems Wergen, Majumdar, G. S. `12

- Extension to Continuous Time Random Walks (CTRWs)
 S. Sabhapandit `12
Conclusions

- Exact results for records of strongly correlated time series
 see arXiv:1305.0639 for a short review

- Universal records statistics for (symmetric) RWs

- Extension to multiparticle systems Wergen, Majumdar, G. S. `12

- Extension to Continuous Time Random Walks (CTRWs) S. Sabhapandit `12

- High sensitivity to the definition of the age of the last record
Sensitivity to the definition of the age of the last record

Godrèche, Majumdar, G. S., ´14
Sensitivity to the definition of the age of the last record

Godrèche, Majumdar, G. S., `14

\[Q^{\Pi}(n) = \Pr[\tau_m \geq \max(\tau_1, \cdots, \tau_{m-1})] \]
Sensitivity to the definition of the age of the last record

Godrèche, Majumdar, G. S., '14

\[Q^\Pi(n) = \Pr[\tau_m \geq \max(\tau_1, \cdots, \tau_{m-1})] \]

\[\lim_{n \to \infty} Q^\Pi(n) = Q^\Pi(\infty) \]
Sensitivity to the definition of the age of the last record

Godrèche, Majumdar, G. S., ´14

\[Q^\Pi(n) = \Pr[\tau_m \geq \max(\tau_1, \cdots, \tau_{m-1})] \]

\[
\lim_{n \to \infty} Q^\Pi(n) = Q^\Pi(\infty)
\]

\[
Q^\Pi(\infty) = \frac{1}{2} \int_0^\infty dx \frac{e^x - 1}{x + \sqrt{\pi} x^{3/2} e^x \text{erf}(\sqrt{x})} = 0.800310 \ldots \neq 0.626508 \ldots
\]