Near-extremal points of a random walk and variations around Odlyzko’s algorithm for the search of its maximum

Grégory Schehr
Labo. de Physique Théorique et Modèles Statistiques (LPTMS)
CNRS–Université Paris–Sud

Séminaire Philippe Flajolet, December 4, 2014

Anthony Perret (LPTMS, Orsay)
Alain Comtet (LPTMS, Orsay)
Satya N. Majumdar (LPTMS, Orsay)

Near-extremal points of random walks

\[X_0 = 0 , \]

\[X_i = X_{i-1} + \epsilon_i , \quad \epsilon_i = \begin{cases} + & 1 , \text{ w. proba. } 1/2 \\ - & 1 , \text{ w. proba. } 1/2 \end{cases} \]

Number of near-extremal points

\[M_n = \max_{0 \leq k \leq n} X_k \]

\[D(q, n) = \# \{ 0 \leq k \leq n \mid X_k = M_n - q \} \]
Related questions in the literature on random walks

\[D(q, n) = \# \{ 0 \leq k \leq n \mid X_k = M_n - q \} \]

- Local time of RW (and Brownian motion)
- Frequently and rarely visited sites: Erdös, Revesz, ..., Toth
- Number of times a random walk is at its maximum: Csaki, Odlyzko
Motivations

``Crowding'' near the maximum: is the maximum lonely at the top?

Sabhapandit, Majumdar ’07

Plays an important role in the analysis of the optimal algorithm to find the maximum of a random walk

Odlyzko ’95
Hwang ’97, Chassaing ’99
Chassaing, Marckert, Yor ’99

Functionals of the maximum of RW and Brownian motion
Local time of Brownian motion close to its maximum

\[D(q, n) = \# \{0 \leq k \leq n \mid X_k = M_n - q \} \]

Asymptotic limit \(n \to \infty \)

\[
\frac{1}{\sqrt{n}} D(q = [r \sqrt{n}], n) \xrightarrow{\text{law}} \rho(r) = \int_0^1 \delta(x_{\max} - x(\tau) - r) \, d\tau
\]

\[x(\tau) : \text{Brownian motion} \]

\[x_{\max} = \max_{0 \leq \tau \leq 1} x(\tau) \]

Q: full statistics of the density of near-extremes \(\rho(r) \)?

\[
E[\rho^k(r)] = 8k! \sum_{l=0}^{k-1} (-1)^l \binom{k-1}{l} (2l + 1) \Phi^{(k+1)}((2l + 1)r) + (k - 2(l + 1)) \Phi^{(k+1)}(2(l + 1)r)
\]

\[
\Phi^{(0)}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \Phi^{(j+1)}(x) = \int_x^\infty \Phi^{(j)}(u) \, du
\]

A. Perret, A. Comtet, S. N. Majumdar, G. S. '13
Motivations

``Crowding'' near the maximum: is the maximum lonely at the top?

Sabhapandit, Majumdar ‘07

- Plays an important role in the analysis of the optimal algorithm to find the maximum of a random walk
 - Odlyzko ‘95
 - Hwang ‘97, Chassaing ‘99
 - Chassaing, Marckert, Yor ‘99

- Applications to “functionals” of the RW and Brownian motion
Search algorithm for the maximum of a RW

- $a \in A_n$: algorithm that finds M_n
- Cost of the algorithm: $C(a) = \text{number of probes needed}$
- Q: what is the optimal algorithm?

- The simplest algo. probes all the positions: its cost is n
- Because of the correlations between the positions of the random walker, one can usually do much better
Searching for the maximum of a RW: exploiting correlations

The maximum is found in 4 probes ($4 < 14$)!

$n = 14$

M_{14}
Searching for the maximum of a RW: optimal algorithm

- **Average case optimality**

\[
\min_{a \in A_n} \mathbb{E}(C(a)) = c_0 \sqrt{n} + o(\sqrt{n})
\]

Odlyzko ’95

“In particular we need to prove that random walks do not spend much time close to their maxima.”

\[
c_0 = \lim_{n \to \infty} \frac{1}{2\sqrt{n}} \sum_{q=0}^{n} \frac{\mathbb{E}[D(q, n)]}{q + 1}
\]

\[
D(q, n) = \# \{0 \leq k \leq n \mid X_k = M_n - q\}
\]
Motivations

``Crowding'' near the maximum: *is the maximum lonely at the top?*

Sabhapandit, Majumdar ‘07

☑ Plays an important role in the analysis of the *optimal* algorithm to find the maximum of a random walk

Odlyzko ‘95
Hwang ‘97, Chassaing ‘99
Chassaing, Marckert, Yor ‘99

Applications to “functionals” of the RW and Brownian motion
Searching for the maximum of a RW: optimal algorithm

- **Average case optimality**

\[
\min_{a \in A_n} \mathbb{E}(C(a)) = c_0 \sqrt{n} + o(\sqrt{n})
\]

\[
c_0 = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} \frac{dy}{y} \int_0^1 \frac{1}{\sqrt{w}} \exp \left(-\frac{y^2}{2w}\right) \text{erf}\left(\frac{y}{\sqrt{2(1-w)}}\right)dw
\]

after some manipulations...

\[
c_0 = \sqrt{\frac{8}{\pi}} \log 2
\]

- **Connection with a functional of the maximum of Brownian motion**

\[
x(\tau): \text{Brownian motion}
\]

\[
x_{\max} = \max_{0 \leq \tau \leq 1} x(\tau)
\]

\[
c_0 = \mathbb{E}(I), \quad I = \frac{1}{2} \int_0^1 \frac{d\tau}{x_{\max} - x(\tau)}
\]

Chassaing ‘99
Chassaing, Marckert, Yor ‘99

Odlyzko ‘95
Hwang ‘97, Chassaing ‘99
Searching for the maximum of a RW: optimal algorithm

\[
\min_{a \in A_n} \mathbb{E}(C(a)) = c_0 \sqrt{n} + o(\sqrt{n}) \quad \text{Odlyzko '95}
\]

\[
c_0 = \mathbb{E}(I), \quad I = \frac{1}{2} \int_0^1 \frac{d\tau}{x_{\text{max}} - x(\tau)}
\]

\[
c_0 = \sqrt{\frac{8}{\pi}} \log 2
\]

- Odlyzko described an algorithm \(\text{Od}(n) \) which is quasi-optimal

\[
\mathbb{E}[C(\text{Od}(n))] = c_0 \sqrt{n} + o(\sqrt{n})
\]

- \(\text{Od}(n) \) is quasi-optimal in distribution (not only on average)

and it was shown that

\[
\lim_{n \to \infty} \Pr \left(\frac{C(\text{Od}(n))}{\sqrt{n}} \geq x \right) = \Pr(I \geq x)
\]

relevance of a functional of the maximum of Brownian motion

\[
I = \int_0^1 V(x_{\text{max}} - x(\tau)) d\tau, \quad V(x) = \frac{1}{2x}
\]

Chassaing, Marckert, Yor '99
Functionals of the maximum of BM in physics

- Largest exit time of classical particles moving ballistically through a disordered **Brownian** potential

![Graph](image)

$$x(y) : \text{Brownian motion}$$

$$x_{\text{max}} = \max_{0 \leq y \leq 1} x(y)$$

- The **slowest particle** that crosses the sample is such that

 $$\frac{1}{2} \left(\frac{dy}{dt} \right)^2 + x(y) = x_{\text{max}}$$

- And the **largest time** to cross the sample is

 $$T_{\text{max}} = \frac{1}{\sqrt{2}} \int_0^1 \frac{dy}{\sqrt{x_{\text{max}} - x(y)}}$$
An interesting family of functionals of the maximum of BM

\[T_\alpha(t) = \int_0^t (x_{\text{max}} - x(\tau))^\alpha \, d\tau \]

- For \(\alpha = -1 \) it describes the cost of Odlyzko's algorithm.
- For \(\alpha = -\frac{1}{2} \) it describes the largest time to cross a Brownian barrier.
- For \(\alpha = +1 \) it describes an area or "Airy" type of random variable.

In this work we develop tools to study the statistics of such functionals of the maximum of BM.

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013 & 2014
Outline

- Path counting method (based on propagators of BM)
- Feynman-Kac approach
- Applications of the Feynman-Kac approach
- Conclusion
Average number of near-extremal points for RW

\[D(q, n) = \# \{ 0 \leq k \leq n \mid X_k = M_n - q \} \]

\textbf{Odlyzko obtained an exact formula for } \mathbb{E}(D(q, n)) \textbf{ \quad Odlyzko '95}

\[\mathbb{E}(D(q, n)) = \sum_{m=0}^{n} (A(n, m, q) + B(n, m, q)) \]

\[A(n, m, q) = 2^{-n} \left(\left\lfloor \frac{m}{m+q+1} \right\rfloor \right)^q \sum_{j=0}^{\left\lfloor \frac{n-m}{2} \right\rfloor} \left(\left\lfloor \frac{n-m+j}{2} \right\rfloor \right) \]

\[B(b, m, q) = 2^{-n} \left(\left\lfloor \frac{m}{n-m-q} \right\rfloor \right)^{q-1} \sum_{j=0}^{\left\lfloor \frac{m-q+1}{2} \right\rfloor + j} \left(\left\lfloor \frac{m}{2} \right\rfloor \right) \]

\textbf{What about the asymptotic limit } n \to \infty \textbf{ ?}
Density of near-extremes for Brownian motion

- Asymptotic limit $n \to \infty$

$$\frac{1}{\sqrt{n}} D(q = [r \sqrt{n}], n) \xrightarrow{\text{law}} \rho(r) = \int_0^1 \delta(x_{\max} - x(\tau) - r) d\tau$$

$x(\tau):$ Brownian motion

$$x_{\max} = \max_{0 \leq \tau \leq 1} x(\tau)$

$\rho(r) dr :$ time spent by the BM in $[x_{\max} - r - dr, x_{\max} - r]$

$$\int_0^\infty \rho(r) dr = 1$$

$\mathbb{E}[\rho(r)] = ?$
Average density of near-extremes for Brownian motion

- Propagator of Brownian motion

\[G_M(\alpha|\beta, t)d\beta = \Pr. [x(t) \in [\beta, \beta + d\beta] \mid x(0) = \alpha \& x(\tau) < M \ \forall \tau \in [0, t]] \]

\[G_M(\alpha|\beta, t) = \frac{1}{\sqrt{2\pi t}} \left(e^{-\frac{(\beta-\alpha)^2}{2t}} - e^{-\frac{(2M-\beta-\alpha)^2}{2t}} \right) \]

- Average density of near-extremes: counting paths method

\[\mathbb{E}[\rho(r, t)] = \int_0^t \mathbb{E}[\delta(x_{\text{max}} - x(\tau) - r)]d\tau \]
Average density of near-extreme: counting paths

\[\mathbb{E}[\rho(r, t)] = \int_0^t \mathbb{E}[\delta(x_{\text{max}} - x(\tau) - r)] d\tau \]

\[\mathbb{E}[\rho(r, t)] = \lim_{\epsilon \to 0} \frac{2}{Z(\epsilon)} \int_0^\infty dM \int_0^t d\tau \int_{-\infty}^{t_{\text{max}}} dx_F \int_0^{t_{\text{max}}} d\tau \ G_M(0|\tau M - r) G_M(M - r|\tau M - \epsilon, t_{\text{max}} - \tau) \times G_M(\tau M - \epsilon | x_F, t - t_{\text{max}}), \]

\[Z(\epsilon) = \int_0^\infty dM \int_0^t d\tau \int_{-\infty}^{t_{\text{max}}} dx_F G_M(0|\tau M - \epsilon, t_{\text{max}}) G_M(\tau M - \epsilon | x_F, t - t_{\text{max}}) \]
Average density of near-extremes: counting paths

\[\mathbb{E}[\rho(r, t)] = \int_0^t \mathbb{E}[\delta(x_{\text{max}} - x(\tau) - r)]d\tau \]

- Use of Laplace transform with respect to time \(t \)

\[\int_0^\infty dt e^{-st} \mathbb{E}[\rho(r, t)] = 8 \frac{e^{-\sqrt{2}sr} - e^{-2\sqrt{2}sr}}{(2s)^{3/2}} \]

- And finally...

\[\mathbb{E}[\rho(r, t)] = \sqrt{t} \mathbb{E} \left[\rho \left(\frac{r}{\sqrt{t}}, 1 \right) \right], \quad \mathbb{E}[\rho(r, t = 1)] = 8 \left(\Phi^{(2)}(r) - \Phi^{(2)}(2r) \right), \]

\[\Phi^{(2)}(r) = \frac{e^{-\frac{r^2}{2}}}{\sqrt{2\pi}} - \frac{r}{2} \text{erfc} \left(\frac{r}{\sqrt{2}} \right) \]
Application to the average cost of Odlyzko’s algorithm

- Average cost of the optimal algorithm for the search of the maximum of RW
 \[\mathbb{E}[C(\text{Od}(n))] = c_0 \sqrt{n} + o(\sqrt{n}) \]
 \[c_0 = \mathbb{E}(I) \], \[I = \frac{1}{2} \int_0^1 \frac{d\tau}{x_{\max} - x(\tau)} \]

- Using the average density of near-extremes of Brownian motion
 \[\mathbb{E}[\rho(r)] = \int_0^1 \mathbb{E}[\delta(x_{\max} - x(\tau) - r)] d\tau \]

- For more general functionals of the maximum of BM
 \[T_\alpha = \int_0^1 (x_{\max} - x(\tau))^\alpha d\tau , \mathbb{E}[T_\alpha] = \int_0^\infty r^\alpha \rho(r) dr = \frac{(2 - 2^{-\alpha})\Gamma(\frac{1+\alpha}{2})}{(2 + \alpha)\sqrt{\pi}} \]

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013 & 2014
Average density of near-extremes of constrained BM

For instance, for the Brownian meander:

\[
\mathbb{E}[\rho_{Me}(r)] = \sqrt{2\pi} \left(\sum_{n=1}^{\infty} \frac{4n(-1)^n}{2n^2 + 3(-1)^n - 5} \text{erfc} (nr) - \text{erfc} (2r) \right)
\]

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013 & 2014
Average density of near-extremes of constrained BM

What about higher moments of such functionals?
Outline

- Path counting method (based on propagators of BM)
 - Feynman-Kac approach
 - Applications of the Feynman-Kac approach
- Conclusion
Exponential functionals of the maximum of BM

- **Functional of the maximum of Brownian motion:**
 \[O_{\text{max}}(t) = \int_0^t V(x_{\text{max}} - x(\tau))d\tau \]

- **Goal:** compute the Laplace transform of the PDF of \(O_{\text{max}}(t) \):
 \[\mathbb{E} \left[\exp \left(-\lambda \int_0^t V(x_{\text{max}} - x(\tau))d\tau \right) \right] \]

- **Decompose the path into two independent meanders**

BM Two independent meanders

\[Pr. \left(t_{\text{max}} \leq T \right) = \int_0^T \frac{dx}{\pi \sqrt{x(t - x)}} \]

Lévy's arcsine law
Reducing to functionals of the Brownian meander

- Decompose the path into **two independent meanders**

\[\Pr. \left(t_{\text{max}} \leq T \right) = \int_0^T \frac{dx}{\pi \sqrt{x(t-x)}} \]

Lévy’s arcsine law

\[\mathbb{E} \left[e^{-\lambda \int_0^t d\tau V(x_{\text{max}} - x(\tau))} \right] = \int_0^t dt_{\text{max}} \varphi(t_{\text{max}}) \varphi(t - t_{\text{max}}) \]

\[\varphi(\tau) = \frac{1}{\sqrt{\pi \tau}} \mathbb{E}_+ \left[\exp \left(-\lambda \int_0^\tau du V(x_{\text{Me}}(u)) \right) \right] \]

Back to functionals of the Brownian meander
\[\mathbb{E}[e^{-\lambda \int_0^t d\tau V(x_{\text{max}}-x(\tau))}] = \int_0^t dt_{\text{max}} \varphi(t_{\text{max}}) \varphi(t - t_{\text{max}}) \]

\[\varphi(\tau) = \frac{1}{\sqrt{\pi \tau}} \mathbb{E}_+ \left[\exp \left(-\lambda \int_0^\tau du V(x_{\text{Me}}(u)) \right) \right] \]

Laplace transform with respect to time \(t \)

\[
\int_0^\infty e^{-st} \mathbb{E} \left(e^{-\lambda \int_0^t V(x_{\text{max}}-x(\tau)) d\tau} \right) dt = [\tilde{\varphi}(s)]^2,
\]

\[
\tilde{\varphi}(s) = \int_0^\infty e^{-st} \varphi(t) dt
\]

which can be computed as

\[
\tilde{\varphi}(s) = \frac{\sqrt{2}}{W} \int_0^\infty dy_F u'_s(0)v_s(y_F)
\]

where \(u_s(x), v_s(x) \) are two independent solutions of

\[
\left(-\frac{1}{2} \frac{d^2}{dx^2} + \lambda V(x) + s \right) \psi(x) = 0
\]

such that

\[
\lim_{x \to 0} u_s(x) = 0 \quad \text{and} \quad W = u'_s(x)v_s(x) - u_s(x)v'_s(x)
\]

\[
\lim_{x \to +\infty} v_s(x) = 0
\]

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2014
Outline

- Path counting method (based on propagators of BM)
- Feynman-Kac approach
 - Applications of the Feynman-Kac approach
- Conclusion
Feynman-Kac formula: application to the density of near-extremes

\[O_{\text{max}}(t) = \int_0^t V(x_{\text{max}} - x(\tau))d\tau \]

The density of near-extremes \(\rho(r, t) = \int_0^t \delta(x_{\text{max}} - x(\tau) - r)d\tau \)

corresponds to \(V(x) = \delta(x - r) \)

Applying the general formalism to this specific case
Feynman-Kac formula

\[\mathbb{E}[e^{-\lambda \int_0^t d\tau V(x_{\text{max}} - x(\tau))}] = \int_0^t dt_{\text{max}} \varphi(t_{\text{max}}) \varphi(t - t_{\text{max}}) \]

\[\varphi(\tau) = \frac{1}{\sqrt{\pi \tau}} \mathbb{E}_+ \left[\exp \left(-\lambda \int_0^\tau du V(x_{\text{Me}}(u)) \right) \right] \]

Laplace transform with respect to time \(t \)

\[\int_0^\infty e^{-st} \mathbb{E} \left(e^{-\lambda \int_0^t V(x_{\text{max}} - x(\tau)) d\tau} \right) dt = [\tilde{\varphi}(s)]^2, \]

\[\tilde{\varphi}(s) = \int_0^\infty e^{-st} \varphi(t) dt \]

which can be computed as

\[\tilde{\varphi}(s) = \frac{\sqrt{2}}{W} \int_0^\infty dy_F u'_s(0) v_s(y_F) \]

where \(u_s(x), v_s(x) \) are two independent solutions of

\[\left(-\frac{1}{2} \frac{d^2}{dx^2} + \lambda V(x) + s \right) \psi(x) = 0 \]

such that \(\lim_{x \to 0} u_s(x) = 0 \) and \(W = u'_s(x)v_s(x) - u_s(x)v'_s(x) \)

\[\lim_{x \to +\infty} v_s(x) = 0 \]

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2014
Feynman-Kac formula: application to the density of near-extremes

\[\mathcal{O}_{\text{max}}(t) = \int_{0}^{t} V(x_{\text{max}} - x(\tau)) d\tau \]

The density of near-extremes

\[\rho(r, t) = \int_{0}^{t} \delta(x_{\text{max}} - x(\tau) - r) d\tau \]

corresponds to \(V(x) = \delta(x - r) \)

Applying the general formalism to this specific case

\[\int_{0}^{\infty} e^{-st} \mathbb{E} \left(e^{-\lambda \rho(r,t)} \right) dt = \frac{1}{s} \left(\frac{\sqrt{2s} + \lambda (1 - e^{-\sqrt{2sr}})^2}{\sqrt{2s} + \lambda (1 - e^{-2\sqrt{2sr}})} \right)^2 \]

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013
From
\[
\int_0^\infty e^{-st} \mathbb{E} \left(e^{-\lambda \rho(r,t)} \right) dt = \frac{1}{s} \left(\frac{\sqrt{2s} + \lambda(1 - e^{-\sqrt{2s}r})^2}{\sqrt{2s} + \lambda(1 - e^{-2\sqrt{2s}r})} \right)^2
\]
we obtain the moments of arbitrary order
\[
\mathbb{E}(\rho^k(r, t = 1)) = 8k! \sum_{l=0}^{k-1} (-1)^l \binom{k-1}{l} [(2l + 1)\Phi^{(k+1)}((2l + 1)r) + (k - 2(l + 1))\Phi^{(k+1)}(2(l + 1)r)]
\]
where
\[
\frac{e^{-\sqrt{2su}}}{(\sqrt{2s})^{j+1}} = \int_0^\infty t^{\frac{j-1}{2}} \Phi(j) \left(\frac{u}{\sqrt{t}} \right) e^{-st} dt
\]
These functions were studied in detail in Chassaing & Louchard ’02
Feynman-Kac formula: applications to the cost of Odlyzko's algorithm

\[O_{\text{max}}(t) = \int_{0}^{t} V(x_{\text{max}} - x(\tau)) d\tau \]

The cost of Odlyzko's algorithm is given by

\[I = \frac{1}{2} \int_{0}^{t} \frac{d\tau}{x_{\text{max}} - x(\tau)} \]

which corresponds to \(V(x) = \frac{1}{2x} \)

Applying the general formalism to this specific case

\[
\begin{align*}
\int_{0}^{\infty} e^{-st} \mathbb{E} \left[e^{-\frac{\lambda}{2} \int_{0}^{t} \frac{d\tau}{x_{\text{max}} - x(\tau)}} \right] dt &= \frac{4}{s} \sum_{n=0}^{\infty} (-1)^{n} \frac{\lambda^{n}}{2^{n} (\sqrt{2s})^{n}} \sum_{k=0}^{n} \tilde{\zeta}(k) \tilde{\zeta}(n - k) \\
\tilde{\zeta}(k) &= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{k}}
\end{align*}
\]

recovering, in a quite different way, the result of Chassaing, Marckert, Yor '99
Feynman-Kac formula: applications to more general functionals

\[T_\alpha(t) = \int_0^t (x_{\text{max}} - x(\tau))^\alpha d\tau \]

corresponding to \(V(x) = x^\alpha \)

- Exact results for the second moment

\[\mathbb{E}(T_{\alpha}^2(t)) = \frac{t^{2+\alpha}}{2^{3\alpha} \Gamma(3+\alpha)} \left(\Gamma(\alpha+1)^2 (2^\alpha - 1)(2^{\alpha+1} - 1) + \frac{\Gamma(3+2\alpha)(4^{\alpha+1} - 1)}{4(1+\alpha)^2} + \sum_{n=1}^{\infty} \frac{\Gamma(2+2\alpha+n)}{n!2^{1+n}(1+\alpha+n)} \right) \]

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013
Outline

- Path counting method (based on propagators of BM)
- Feynman-Kac approach
- Applications of the Feynman-Kac approach

Conclusion
Conclusion and perspectives

- Various tools to study the statistics of functionals of the maximum of Brownian motion
- Application to the full statistics of near-extremal points of long random walks
- Alternative method to study the cost of Odlyzko’s optimal algorithm to find the maximum of long random walks
- Extension of these techniques to system with several random walkers?
- What about more general stable processes?