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Excursion #2
We shall meet the chiral anomalies as they appear already in 
simplest - MF or BCS types – models, particularly 
at finite temperatures and 
out-of-equilibrium when normal excitations are present. 
The resulting effective Ginzburg-Landau theory will prove to be quite 
different from what is commonly expected  –
non analytical with respect to the order parameter. 

After collaboration with Natasha Kirova
Inspired by experimental studies in Grenoble, Cornell, etc.
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Symmetry breaking and multiple fluids

𝜕𝜂𝜕𝑡 = − 𝛿𝐹 𝛿𝜂Kinetics of classical phase transitions:
Landau-Khalatnikov, etc. phenomenology
PLUS ultimately (Halperin, Hohenberg, Ma)
hydrodynamic modes

Thermodynamics of classical phase transitions
Landau-Ginzburg free energy functional for the order parameter

𝐹(𝜂)

Kinetics of phase transitions in quantum systems:
Bose condensates, Superconductors, Charge Density Waves, etc. 
for an order parameter 𝜼 plus noncondensed particles
From microscopics (Green Functions, Gorkov and Keldysh technics, etc)
to Gross-Pitaevskii – for bosons or 
TDGL (time dependent Ginzburg Landau) for fermions
phenomenology for 𝜼 alone – the follow-up carriers are integrated.
PLUS kinetics or simpler hydrodynamics of normal fermions.
- Beyond the hardly treatable microscopics, all steps are badly questionable !



Dynamics of topological defects in charge and spin density 
waves and the role of the chiral anomaly.

REVISION OF THE TIME DEPENDENT GINZBURG-LANDAU  APPROACH TO 
EVOLUTION OF INHOMOGENEOUS STATES IN 

SLIDING CHARGE DENSITY WAVES.

Graphical abstract: modeling of a sequence of phase slips –
space-time vortices. Left – amplitude nodes, right – phase vorticity



CDW
wave
fronts

chains

Scanning Tunneling 
Microscopy STM shows 
the CDW modulation in 
atomic displacements 
and the electronic density.
C. Brun et al

Incommensurate, 3D ordered Charge Density Waves - CDW

ARPES gives electrons’ 
spectral density, hence E(k) 
with the gap Δ
formed by the CDW



Common features of incommensurate CDWs and the superconductors
CDW: <ψ♣

+ψ- >≠0 SC: <ψ+ψ- >≠0
 complex order parameters Ocdw,sc ~ A exp[iϕcdw,sc ] 
hence vortices dislocations, phase slips  phase solitons
Similar microscopic theories: Peierls-Frohlich vs BCS
Pair-breaking gaps 2Δ - hence tunneling, FFLO  solitonic lattices
Tighter links at D=1: 
phases ϕcdw , ϕsc are in conjugation: [ϕi, ∂xϕj]~δ(x) δij

pairbreaking goes via common spinons as amplitude solitons
2Δ becomes the common spin gap; broken pair becomes 2 free spinons

A universal link: the same current is j=- ∂tϕcdw /π∼ ∂xϕsc
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Differences in currents and densities of condensates  

SC, explicit gradient invariance: 
conservation of the condensate is contained in the eq. for the SC phase.

CDW, chiral = translational invariance: conservation of the condensate 
is preserved as for conventional crystal displacements.                                                    𝜕𝑡(𝜕𝑥)𝜑 + 𝜕𝑥(−𝜕𝑡𝜑)≡0



Collective motion of CDWs (Frohlich 1950’s; Lee, Rice, PWA 1970’e):
• nonlinear conduction by the collective sliding.
• Topological defects: solitons, dislocations (electronic vortices). 
• Phase slips as space-time vorticity.
• Current conversion among normal and condensed electrons.
While the phase evolution or deformation are the principle ingredients,
no collective effects can be set in without perturbations of the 
amplitude A(x,t), particularly with A passing though zero. 
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Intuitive Ginzburg-Landau – like model for CDW

[ ] Φ∇−+Φ+∂Φ= πεςπϕ 8/)()(/ 223
int nFnArdH x

)exp( ϕψ iA=
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Only extrinsic (other bands) carriers n are taken explicitly.
In the GL spirit, the intrinsic carriers (in the gap region)  are integrated out, 
their effect is hidden in Aeq and coefficients  (not all are shown).

A is normalized to its equilibrium value Aeq at a given T



Many vortices appear temporarily in the course of the evolution.
For that run, only one will be left in the steady state.

traces of A=0 nodes at cores of 
nucleating and moving vortices

Rectangle.avi

Nonstationary processes in CDWs within the TDGL phenomenology.
Numerical solution of coupled PDE for the order parameter phase 
and amplitude, the electric potential and carriers concentration.

T. Yi, A. Rojo, N. Kirova and S.B.

The result is as spectacular as it is wrong!
The TDGL approach is principally deficient here.
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Well established  and works for stationary state and as a tool to reach it. 
Takes explicitly the extrinsic fermions (not interacting with the CDW)
Restrictions, inherent to the GL spirit:
Intrinsic fermions have been integrated out and come into the model 
only via the equilibrium value of the amplitude A and related parameters.
Major problem: Violation of the local charge conservation for the 
condensate density if the amplitude is variable.

But with 
A(x,y,t)≠cnst 0
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Deadly problems with  the TDGL model for CDW

Way of resolution: keep carriers in hand and decompose n,j

WRONG
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More general scheme :
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Decomposition in right and left moving fermions with the spectrum 
linearization – most fruitful and exploited tool in theory of 1D fermions
ψ=(ψ+,ψ- ) - electronic wave function components near ±pF
Δeiϕ _ order parameter
Φ and Ax  - scalar and vector potential,
vF – Fermi velocity
The fermionic  Lagrangian: 

Inconvenience: the gap Δ is loaded with the essentially variable 
x,t dependent factor exp(±iϕ)
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Chiral transformation: / 2ie φψ ψ ±
± ±→

/ 2F xe e v φΦ → Φ + ∂ / / / 2x x F te cA e cA v φ→ + ∂

𝑥 𝑡 𝑥 + 𝑡2 𝑥2 

The the phase factor is unloaded from the gap Δ, 
we arrive at a semiconductor model,
but in expense of elongating the applied potentials:

actually puts the electrons to the breathing frame of shifted 
Fermi momentum and Fermi energy: δPF= 𝝏𝒙/𝟐 → δEF=ℏ vF/2𝝏𝒙

F – chiral invariant effective electric field 
experienced by the floating fermions.
Resulting energy, collective charge and current, etc. 
Seem (sic !) to be functions of entire F only. 
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( / 2 )F xW W e v φ= Φ + ∂ / 2 0F xe v φΦ + ∂ =can choose 

False local “gauge” invariance – the potential can be excluded at no cost

PROBLEM 1
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In absence of normal carriers we definitely expect:

- Not a full square of the chiral-invariant combination:
∼Φ2 looks to be an anomaly - and not only

Action = free energy W after integration over fermions:
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Where the electrical permittivity:

By definition (in lowest quadratic approximation)  :

2

2
0

*

28
1









∂
∂+Φ−=

x
ve

r
W Fn

e
ϕ

π
ρ 

T

We

Tc

2

2
0 28

1








∂
∂+Φ=

x
ve

r
W Fc

e
ϕ

π
ρ 

T

We

Tc
Obtained:

Expected:

PROBLEM 2
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Not important, 
higher order in k

𝜖 = 𝜖∆ + 𝜖e

λ - length of screening by unpaired fermions, r0 = microscopic TF scale

Right order in k  
but ridiculous
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Resolution:  the whole expression has been lost
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Chiral anomaly

The contribution of normal carriers bites from the T=0 anomalous 
action erasing it down to zero at Tc when A∼Δ→0, ρc∼A2

On top of perturbational part
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Expect A2 –
actually 1.
Non analytic in Ψ

Both terms come from
the chiral anomaly.
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Expressions for total density and current conserve number of particles
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That will come implicitly from counter-charges, counter-currents 
which react to CDW bringing compensating contributions  -ρn ∂φ/π
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Former G-L like equationsTrue equations are not analytical in Ψ:
phase gradients are not multiplied by A2
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F=F(A) only
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F=F(A,n) in principle, the minimal form:
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Possible simplifications and explicitness
Infinite conductivity: - a bridge to the naive GL eqs.

LHS  resembles  the static effective charge 
nc=A2∂xϕ/π - identifying  ρc and  A2

But instead:   ∂xnc= ρc ∂x
2ϕ /π

Never a closed expression for j

screening of Ex with a 
standard local screening 
length  l2=r0

2/ ρn

Poisson eq.

Phase eq.( ) 0)( 22 =∂−∂∂+∂+− ϕγαρρ ϕ tyyxcxc AE
Resembles GL with ρc as A2 but 
with no differentiation of the amplitude :

ρc∂xΦ instead  of ∂x(A2Φ)
ρc ∂x

2ϕ instead of ∂x(A2∂x ϕ)
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Not like variational eqs.
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The limit of the local electro-neutrality r0→0
together with the infinite normal conductivity.

Curiously, no commonly assumed longitudinal phase rigidity 
It is hidden in the term ∂xΦ implicitly, via  relations 

Coulomb hardening looks intuitive, but where is the driving force? 
The drive comes only from the boundary conditions for Φ transferred to
the phase via the local relations of Φ and  ∂φ mediated by n.
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Examples of numerical solution of the anomolouse TDGL


