Two-Dimensional Coulomb Systems: a Larger Class of Solvable Models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 Europhys. Lett. 5 125

(http://iopscience.iop.org/0295-5075/5/2/006)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 132.166.62.44
The article was downloaded on 22/12/2010 at 16:06

Please note that terms and conditions apply.

F. CORNU and B. JANCOVICI

Laboratoire de Physique Théorique et Hautes Energies, Université de Paris-Sud
Bât. 211 - 91405 Orsay, France

(received 9 October 1987; accepted 28 October 1987)

PACS. 05.20. - Statistical mechanics.

Abstract. - Using new methods, we find that a larger class of two-dimensional Coulomb systems are solvable models, in the framework of equilibrium classical statistical mechanics, for the special value \(\Gamma = 2 \) of the coupling constant. One-component plasmas with adsorption sites, one-component plasmas in a periodic background, and plasmas made of two components plus a background are discussed.

Matter is made of electrons and nuclei interacting through Coulomb’s law; therefore, it is obviously of interest to obtain exact theoretical results about Coulomb systems, and even “toy models” of them. The equilibrium statistical mechanics of several models of classical two-dimensional Coulomb systems has already been exactly worked out [1-5], at the special value \(\Gamma = 2 \) of the coupling constant \(\Gamma = \beta e^2 \), where \(\pm e \) is the charge of a particle and \(\beta \) is the inverse temperature (the Coulomb interaction potential between two particles of charge \(e \) at a distance \(r \) from one another is \(-\frac{e^2}{\ln(r/L)} \), where \(L \) is an arbitrary length scale). In this letter, we describe new methods which allow us to compute explicitly the \(n \)-body densities for a larger class of models, besides retrieving known results in a simpler and more systematic way.

For the one-component plasma OCP (a system of particles of charge \(e \) embedded in a continuous background of opposite charge), we are now able to deal with a variety of nonuniform backgrounds, and especially a background density having the periodicity of a two-dimensional crystal. At \(\Gamma = 2 \), the Boltzmann factor for \(N \) interacting particles with coordinates \(\mathbf{r}_i = (x_i, y_i) \) has the same structure in terms of a Slater determinant as the squared wave function of a system of noninteracting fermions, i.e.

\[
C|\det \{ \exp \left[-V(\mathbf{r}_i) \right] z_{i,j}^{(N-1)} \}|_{i,j=1,...,N}^2,
\]

where \(C \) is a constant, \(e^2 V(\mathbf{r}_i) \) is the background potential acting on the \(i \)-th particle and \(z_i = x_i + iy_i \). For a constant background density \(\rho_b \), \(V(\mathbf{r}) \) can be chosen as \((1/2)\pi\rho_b r^2\), the functions \(\exp \left[-V(\mathbf{r}) \right] z_i \) are mutually orthogonal; to deal with the Slater determinant is a standard problem, and it is easy to perform the integrals which define the \(n \)-particle densities and to take their thermodynamic limits [1]. In the general case of a nonuniform
background, the functions \(\exp[-V(r)]z^j \) are no longer orthogonal. However, we can follow the same steps as above in terms of a new basis \(\varphi_k(z) \) for the entire functions, chosen in such a way that the functions \(\varphi_k(r) = \exp[-V(r)]\varphi_k(z) \) are orthogonal, since the Slater determinant is invariant under such a change of basis. In terms of the projector

\[
\langle r_1 | P | r_2 \rangle = \sum_p \varphi_k(r_1)\bar{\varphi}_k(r_2)/\int \exp[\varphi_k(r)]^2,
\]

the \(n \)-particle-truncated densities are

\[
\begin{aligned}
\varphi(r) &= \langle r | P | r \rangle, \\
\varphi^2(r_1, r_2) &= -\langle r_1 | P | r_2 \rangle^2, \\
\varphi^{(n)}(r_1, r_2, \ldots, r_n) &= (-1)^n \sum_{i_1 \ldots i_n} \langle r_{i_1} | P | r_{i_2} \rangle \cdots \langle r_{i_n} | P | r_{i_1} \rangle,
\end{aligned}
\]

where the summation runs over all cycles \((i_1 i_2 \ldots i_n) \) built with \(\{1, 2, \ldots, n\} \). Thus, the problem is reduced to computing the projector \(P \) on that subspace of Hilbert space which is spanned by the entire functions times \(\exp[-V(r)] \); this amounts to diagonalizing the matrix formed by the scalar products \(\int \exp[-2V(r)]z^j \).

As a first application, we can quickly retrieve all the known results [2] about the case where the background potential depends only on one coordinate: \(V(r) = V(x) \). Since \(V \) is translationally invariant along \(y \), it is convenient to choose the functions \(\varphi_k \) as \(\exp[-V(x) + k(x + iy)] \), with \(k \in \mathbb{R} \); they are indeed orthogonal because of the plane-wave factor \(\exp[iky] \). When the particles are confined to the half-space \(x > 0 \) by an impenetrable wall, the range of \(k \) must be restricted to \(k > 0 \), as it can be seen by reaching this case through a suitable limiting procedure.

When the background potential is periodic along \(y \), with a period \(b \), we can start with the same \(\varphi \)-functions \(\exp[k(x + iy)] \), writing \(k = 2\pi(\zeta + n)/b \), \(\zeta \in [0, 1] \), \(n \) integer; the scalar-product matrix is of the form

\[
\int dr \exp[2\pi(\zeta + n)(z/b) - 2V(r) + 2\pi(\zeta' + n)(z/b)] = \delta(\zeta - \zeta')A\zeta(n, n').
\]

Thus, as a second application, we are able to revisit a model for localized adsorption, which has been previously studied [3] by a tour de force of expansion resummations; we now obtain more general results in an easier way. The model is a line of equidistant adsorption sites located along the \(y \)-axis, creating a potential \(V_{\text{ads}} \) of the Baxter type, i.e. such that \(\exp[-\beta V_{\text{ads}}] = 1 + \lambda \delta(x) \sum_m \delta(y - mb) \). The continuous background density \(\rho_b(x) \) is assumed to depend only on \(x \), creating a potential chosen as \(V_0(x) \). Thus \(e^2V(r) = e^2V_0(x) + V_{\text{ads}} \). This is, for instance, a model for an electrode with adsorption sites. The matrix \(A\zeta(n, n') \) is found to be, up to a multiplicative constant, of the form \(\delta_{nn'} + f_\zeta(n)f_\zeta(n') \); thus, the diagonalization can be easily completed. We find

\[
\langle r_1 | P | r_2 \rangle = \exp[-V(r_1) - V(r_2)] \int d\zeta \sum_{nm} S(\zeta + n) \exp[2\pi(\zeta + n)z_\delta/b] \cdot \left\{ \frac{\delta_{nm} - \lambda \exp[-2V_0(0)]S(\zeta + m)}{1 + \lambda \exp[2V_0(0)]S(\zeta + l)} \right\} \exp[2\pi(\zeta + m)z_\delta/b],
\]
where S is a normalization factor:

$$S(\zeta + n) = \left\{ b \int dx \exp \left[4\pi (\zeta + n) x/b \right] \exp \left[-2V_0(x) \right] \right\}^{-1}.$$

The summations on n, m, are on \mathbb{Z} if the system occupies the whole plane, on \mathbb{N} if the system is confined to the half-plane $x > 0$.

Lastly, we can deal with a background density having the double periodicity of a two-dimensional crystal. This model can be understood as made of mobile electrons interacting between themselves and with a lattice of extended fixed ions; this classical caricature of a metal (or perhaps of a ionic superconductor) has already been studied by computer simulation [6]. The background potential is of the form $e^2V(r) = e^2[V_0(x) + \phi(x, y)]$, where the potential $e^2V_0(x)$ created by the average background density ρ_0 can be taken such that $V_0(x) = \pi \rho_0 x^2$ and $e^2\phi(x, y)$ is a doubly periodical potential: $\phi(x + na, y + mb) = \phi(x, y)$; since there is one ion per lattice cell, $\rho_0 = (ab)^{-1}$. As a consequence of the symmetries of $V(r)$, an orthogonal basis is formed by the Bloch-type functions

$$\psi_\zeta (r) = \sum_n \exp [2\pi i \zeta n] [S(\zeta + n)]^{1/2} \exp [-V(r) + 2\pi (\zeta + n) z/b],$$

with $\zeta, \gamma \in [0, 1]$. The two-body correlation function is found to obey the Stillinger-Lovett sum rule [7] which characterizes a conducting phase. The detail will be published elsewhere; triangular lattices are also tractable. Here, we only quote a result for the simplest choice: a square lattice with $a = b = 1$, and $\exp [-2\phi] = 1 + \lambda \cos 2\pi x + \cos 2\pi y$. Then, the one-particle density is

$$\rho (r) = \rho_0 \sqrt{2} \exp [-2\phi] \int_0^1 d\zeta \int_0^1 d\gamma \frac{\exp [-\pi (x-\zeta)^2 - \pi (y-\gamma)^2 - 2i\pi (x-\zeta)(y-\gamma)]}{1 + \lambda \exp [-\pi/2] (\cos 2\pi x + \cos 2\pi y)}.$$

We are also able to generalize known results [5, 8-10] about the two-component plasma TCP (a system of positive and negative particles of charges $\pm e$). At $\Gamma = 2$, the TCP is equivalent to a free-fermion field. The system is unstable against collapse, unless some short-distance cut-off is introduced; however, if the cut-off is removed at constant fugacity, although the one-particle densities diverge, the n-particle–truncated densities ($n \geq 2$) have well-defined limits. We are able to consider a generalized TCP, made of positive particles, negative particles and a charged positive background. The background potential can be taken into account by introducing position-dependent fugacities $m_s(r) = m_s \exp [2\pi V(r)]$, where $s = +1(-1)$ if the particle at r is positive (negative). The n-particle densities are again of the form (1), where now $\langle r_1 | P(r_2) \rangle$ is a 2×2 matrix in charge space (its $s_1 s_2$ element corresponds to a particle of charge $s_1 e\langle s_2 e \rangle$ at r_1(r_2)); this matrix is no longer a projector but the Green function

$$\langle r_1 | P(r_2)_{s_1 s_2} = [m_{s_1}(r_1)]^{1/2} \langle r_1 \left[\tau_x \partial_x + \tau_y \partial_y + \sum_{s = \pm 1} m_s(r) \frac{1 + s \tau_s}{2} \right]^{-1} r_2 \rangle_{s_1 s_2} [m_{s_2}(r_2)]^{1/2},$$

where τ_x, τ_y, τ_z are the Pauli matrices. These matrix elements can be re-expressed in terms of the isoscalar operators $A = \partial_x + i\partial_y + \partial_x V + i\partial_y V$ and $A^+ = -\partial_x + i\partial_y + \partial_x V - i\partial_y V$ as

$$\left\{ \begin{array}{l}
\langle r_1 | P(r_2) \rangle_{--} = \langle r_1 \left| m_+^2 [m^2 + A^+ A]^{-1} \right| r_2 \rangle, \\
\langle r_1 | P(r_2) \rangle_{++} = \langle r_1 \left| m_-^2 [m^2 + AA^+]^{-1} \right| r_2 \rangle, \\
\langle r_1 | P(r_2) \rangle_{+-} = -\langle r_2 \left| P(r_1) \right|_{-+} = -\langle r_1 \left| mA [m^2 + A^+ A]^{-1} \right| r_2 \rangle,
\end{array} \right.$$

where $m^2 = m_+ m_-$.

F. CORNU et al.: TWO-DIMENSIONAL COULOMB SYSTEMS ETC.
In the case of a uniform background of charge density \(\varepsilon \), we can choose \(V(r) = (1/2) \pi \varepsilon r^2 \). The inversion of \(m^2 + A^+ A \) and \(m^2 + AA^- \) is easily done by solving a simple differential equation if we take \(r_2 \) at the origin; this is enough for computing \(\rho^{(2)}_T \) which depends only on \(r = |r_1 - r_2| \). We find

\[
\langle r | P | 0 \rangle_{-+} = \rho \Gamma (\alpha + 1) (\pi \varepsilon r^2)^{-1/2} W_{(1/2) - \alpha, 0} (\pi \varepsilon r^2),
\]

\[
\langle r | P | 0 \rangle_{+-} = \rho x \Gamma (\alpha + 1) (\pi \varepsilon r^2)^{-1/2} W_{-(1/2) - \alpha, 0} (\pi \varepsilon r^2),
\]

where \(\alpha = m^2/4\pi \varepsilon \) and \(W \) is a Whittaker function; the \((+-)\) and \((-+)\) matrix elements can be obtained by acting with the operator \(A \).

In the limit \(\varepsilon \to 0 \), we recover the usual TCP without a background. In the limit \(m_+ \to 0 \), the positive particles disappear and we are left with an OCP of negative particles in a positive background. In this limit, (2) becomes the projector on the solutions \(\phi \) of \(A \phi = 0 \), and these solutions are indeed of the form of an entire function of \(z = x + iy \) times \(\exp[-V] \). Thus, the OCP appears as a limiting case of our generalized TCP.

* * *

We are indebted to A. ALASTUEY and L. BLUM for stimulating discussions. The Laboratoire de Physique Théorique et Hautes Energies is a Laboratoire Associé au Centre National de la Recherche Scientifique.

REFERENCES