
Master Physics of Complex Systems Year 2018-2019

Exam on Mathematical tools

3 hours

Wednesday January 9th

You are allowed to use only your notes and documents distributed during the lectures.
Do not mind about not doing everything, the exam is too long and the marking will take that into account.
An estimate of points [n] for each question gives you an estimate of the length and difficulty of the answer. In
no case it will correspond to the final grading, it is just here as a guide for you.
Many parts and many of the questions are actually independent and can be done without solving the previous
ones (but using intermediate results). Try to read and understand carefully the whole problem.
This exam uses the following topics: Gaussian integrals, steepest descend method, linear algebra, Green func-
tions.

Ising model with infinite range interactions

We consider the Ising model where all spins interact with each others

H = − 1

2N

N∑
i,j=1

σiσj − h
N∑
i=1

σi (1)

with variables σi = ±1 and N the number of spins, h the external field.

1. [1] Rewrite H using the variable s =
∑N
i=1 σi.

2. [2] Show that

e−βH(s) =

√
Nβ

2π

∫ ∞
−∞

dt exp(−Nβ t
2

2
+ β(t+ h)s) (2)

3. [2] We introduce the partition function Z =
∑
{σi=±1} e

−βH(s). Show that

Z =

√
Nβ

2π

∫ ∞
−∞

dt e−Nf(t) ; with f(t) = βt2/2− ln(2 cosh(β(t+ h))). (3)

4. [3] Perform a saddle point approximation on Z when N → ∞. In particular determine the equation
giving the position of the minimum (do not forget to discuss the sign of the second derivative). Interpret
physically the meaning of the position of the saddle point and exhibit the solutions for h = 0.



Functional determinant

We consider the following one-dimensional linear differential operator of the form

Ĥ = − d2

dx2
+ V (x) (4)

with V (x) an arbitrary potential function (Ĥ is hermitian). We consider the following boundary value
problem: for x ∈ [0, 1] with Dirichlet boundary conditions, the spectral problem for Ĥ reads

Ĥy(x) = Ey(x) , with y(0) = y(1) = 0 and E > 0 , (5)

in which E (energy) is the eigenvalue and y(x) the corresponding eigenfunction.
The goal of this problem is to give a meaning to the function of the energy E corresponding to det(Ĥ −E)

which roots are clearly the eigenvalues of Ĥ. In this case, it provides a way to give a meaning to the determinant
of a differential operator. More precisely, we are going to discuss the Gel’fand-Yaglom formula (1960)

det(Ĥ − EI)
det(Ĥ)

=
φ(1, E)

φ(1, 0)
(6)

in which I is the identity operator and φ(x,E) is the solution, parametrized by E, of the following initial
value problem (the prime stands for the first derivative with respect to x):

Ĥφ(x) = Eφ(x) , with φ(0) = 0 , φ′(0) = 1 and E > 0 . (7)

The discrete case
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Figure 1: Discrete approach: N free variables yj for j = 1, . . . , N while fixed ends means y0 = yN+1 = 0.

In order to make a connection with linear algebra, we start with the discrete version of the problem. One
can have in mind a chain of coupled oscillators. We divide the [0, 1] interval into N − 1 elementary intervals
of width ε = 1/(N − 1) and such that yj = y(xj) with xj = (j − 1)ε such that x1 = 0, xN = 1 (see figure 1).
The boundary value problem corresponds to fixing the ends of the chain, i.e.

y0 = yN+1 = 0 . (8)

We write H the matrix corresponding to the operator Ĥ and use the notations Vj = ε2V (xj), λ = ε2E.

1. [2] Why do we have the relation, for j = 1, . . . , N : yj+1 = (2 + Vj − λ)yj − yj−1?

2. [1] Write down the structure of the M matrix such that H = M/ε2 (of size N ×N).

Recurrence relation for the initial value problem

We introduce the solution φj(λ) of the following discrete initial value problem for an arbitrary energy λ

M~φ(λ) = λ~φ(λ) , with φ0(λ) = 0 , φ1(λ) = 1 . (9)

3. [2] Show that φN+1(λ) is a polynomial of order N in λ with leading term (−λ)N .

4. [2] By invoking the uniqueness of the characteristic polynomial, show that one gets

det(M− λI) = φN+1(λ) (10)

i.e. one can compute the determinant function associated to the eigenvalue problem with an arbitrary Vj
by solving the corresponding initial value problem.
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Example in the free case V (x) = 0

We introduce the M matrix, of eigenvalues λn and eigenvectors ~yn

M =


2 −1

−1 2
. . .

. . .
. . . −1
−1 2

 (11)

5. Spectrum by brute force calculation

a) [2] By looking for solutions of the form yj = crj with c and r two constants, show that r can take
two distinct values r± such that r+ = 1/r−.

b) [3] Therefore, the general form for an eigenvector is yj = arj+ + brj− with a, b two constants. Show
that

λn = 2(1− cos qn) , yn,j ∝ sin(qnj) where qn =
nπ

N + 1
, n = 1, . . . , N (12)

6. Spectrum using the recurrence approach

a) [3] By trying φj = aeiqj + be−iqj , show that the solution of the initial value problem is

φj(λ) =
sin(qj)

sin q
(13)

provided q is related to λ. Recover the spectrum {λn}. Remember sin(a+b) = sin a cos b+sin b cos a.

b) [2] Infer the following (not so trivial) formula

N∏
n=1

(
cos q − cos

( nπ

N + 1

))
=

sin(q(N + 1))

2N sin q
(14)

The continuous case

The free case

We now admit that the relation (6) is valid and we apply this result in the free case in which Ĥ0 = − d2

dx2 :

7. [2] What are the eigenvalues and eigenvectors (up to a normalization constant) of Ĥ0 for the boundary
value problem (5)?

8. [2] Give the explicit solution for the initial value problem (7).

9. [2] Infer the relation

sin q

q
=

∞∏
n=1

(
1−

( q

nπ

)2)
(15)

Thouless’ approach via Green function (1972)

We here present a way of deriving (6) from a Green function approach.

Green function of the problem: We consider the boundary value problem (5) with E as a parameter.

10. [1] Write the corresponding equation and boundary conditions satisfied by the Green function GE(x, x′).

11. [1] Following the tutorial and lecture, recall the two continuity equations satisfied by GE(x, x′) when
x→ x′.
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12. [3] Let φL(x) and φR(x) be two independent solutions of the two initial value problems Ĥφ(x) = Eφ(x)
with φL(0) = 0, φ′L(0) = 1 and φR(1) = 0, φ′R(1) = −1. Show that the Green function is equal to

GE(x, x′) =

{
φL(x)φR(x′)

W (x′) if x ≤ x′
φR(x)φL(x′)

W (x′) if x ≥ x′
(16)

with W (x′) = φ′L(x′)φR(x′)− φ′R(x′)φL(x′) (Wronskian).

13. [2] Show that W (x) = φL(1) = φR(0) is actually just a constant.

14. [2] In the free case, give the explicit expression of φL/R(x) and of the Green function.

Obtaining the determinant

15. [2] We notice that the solutions φL/R(x) actually depend on E but this was made implicit before for
clarity. Considering this dependence, show that

(Ĥ − EI)
∂φL(x)

∂E
= φL(x) with initial values

∂φL(0)

∂E
=
∂φ′L(0)

∂E
= 0 (17)

16. [3] Check that the following expression is solution of Eq. (17):

∂φL(x)

∂E
= −φL(x)

φL(1)

∫ x

0

φL(y)φR(y)dy +
φR(x)

φR(0)

∫ x

0

φ2L(y)dy (18)

17. [2] Deduce the following relation in which the dependence of φL is restored explicitly∫ 1

0

GE(x, x)dx = − 1

φL(1, E)

∂φL(1, E)

∂E
(19)

18. [2] We recall that in the linear algebra tutorials, we obtained the formula d
dx det(A) = det(A) Tr

(
A−1 dA

dx

)
for A an Hermitian matrix. Motivate the following definition for the functional determinant

1

det(Ĥ − EI)
d

dE
det(Ĥ − EI) ≡ −Tr ĜE (20)

in which ĜE is the operator form of the Green function.

19. [2] Finally show that we have the Gel’fand-Yaglom relation (6) by assuming for sake of simplicity that
the φL(1, E) and det(Ĥ − EI) functions are positive.

The end.
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