Ising model with infinite range interactions
1. H(s) = —s*/(2N) — hs.

2. One recognizes the result of a Gaussian integral with a = SN, b = Bs (notation of the lecture):
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3. We introduce the partition function Z = Z{W:il} e PH() We have the factorization
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with f(t) = Bt?/2 — In(2cosh(B(t + h))).

4. Tt is the standard form for the saddle point approximation. We have f'(t) = S(t — tanh(B8(t + h))), and f"(t) =
B(1—B(1—tanh?(B(t+h)))). The saddle point thus satisfies to t. = tanh(B(t.+h)) provided f(t.) = B(1—B(1—12)) >0
(minimum). This is physically the self-consistent equation for the magnetization of the mean-field theory. For h = 0, the
critical temperature corresponds here to 3 = 1. When 3 < 1, t. = 0, clearly f”(t.) > 0, f(t.) = —In2 and the saddle
point reads
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When 5 > 1, there are two degenerate minima with ¢. # 0 not easy to determine analytically. In this case, one can show
that f”(t.) > 0 and one has (the factor 2 sums up the minima contributions):
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Thus, in the thermodynamical limit, the free energy of this model is (up to logarithmic corrections) equal to the mean-field
result.

Functional determinant

1. Using y;j+1 = y(z; +¢e) ~ y(x;) ey (z;) + %y”(:ﬁ]% one gets the usual discrete approximation of the Laplacian operator
as ¥ (x;) =~ (yj41 + yj—1 — 2y;) /€. The differential equation maps on —(y;+1 + yj—1 — 2y;)/e> + (V;/e?)y; = (E/e*)y;
for j =1,..., N using the boundary conditions yo = yn+1 = 0.

2. One has
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3. We have ¢j11 = (24+V;—)A)¢; —¢;_1 from the discrete recurrence relation. Furthermore, ¢pg = 0, ¢1 =1, ¢p2 = (2+ V1 —N),
3 = (24+Va — A)(2+ Vi — A) — 1, etc... Clearly, the leading term in A will be ¢; = (=A)?~! + ... are polynomials of
order j — 1 in A and thus (—\)" is the leading term in ¢n1()).

4. Let A, be the N eigenvalues of M, we have det(M — AI) = Hf:/:l()\n — A), which is the characteristic polynomial of the
eigenvalue problem, with its leading term (f/\)N . Furthermore, solutions of the boundary value problem can be obtained
by tuning A such that ¢n1(A) = 0 (shooting method) so that ¢ satisfies to the boundary conditions. Thus, the roots of
¢n+1(N) are the eigenvalues A,. By invoking the uniqueness of the characteristic polynomial, we must have

det(M — M) = ¢n11(N) (7)

Remark: another proof can be simply done by brute force calculation of the determinant Dy = det M. After performing
a transformation against the diagonal from bottom left to top right and expand the determinant against the first column,
one gets the recursion relation Dy = (24 Vn — A)Dn—1 — Dn—2 which is the same as for the ¢;. It is initiated by Dy =1
and D1 = (2+ V4 — \) and we have finally ¢n+1 = Dn.
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a) The recurrence relation is y;4+1 = (2 — N)y; — yj—1. With the ansatz y; = cr’, it yields r> — (2= X\)r+1=0 =

(r—r-)(r —ry). We write the two roots has r+. If there are equal r— = r; = R # 0, as for differential equation,
the eigenvectors would take the form y; = aR? + bjR? with @ and b two constants. But, o = 0 = a = 0 and
yn+1 = 0 = b = 0, which is absurd. Consequently, the roots are distinct, in particular, since r4+r_ = 1 from the
last coefficient of the quadratic equation, we have r+ = R and r— = 1/R.

b) The general form of an eigenvector is thus y; = aR? + bR™7 with a and b two constants. 7o = 0 = a = —b and
yn+1 = 0 = R2WNHD — 1, By consequence, the possible values are R,, = €'t with ¢, = A’}—L with n =0, N +1
discarded since one cannot have |R| = 1 (r4 # r—) so n takes only N distinct values n = 1,..., N. The eigenvectors

are then y, ; = 2iasin(g,j) and from 2 — X\, = R, + R,;* = 2cos g, so

An=2(1—cosgn),  Yn; o sin(gnj) (8)
a) First if we take ¢; = ae'® + be™" | we must have ¢o = 0 = a + b and ¢; = 1 = 2iasing, which gives ¢; = %ﬂ‘{:).

Now, we must find ¢ such that this is a solution of the recurrence relation. By applying M on sin(gj), one gets
Msin(gj) = 2(1 — cos q) sin(gj) so that A = 2(1 — cosq). Clearly, ¢n41(q) = W =0 for ¢ = ¢, (notice that
én+1(q=0)=N+1%#0 and ¢pni1(q=7) = (=1)"' # 0 so we do recover n = 1,..., N).
b) We apply (7) with Ay = 2(1 — cosqn), A = 2(1 — cosq) so det(M — AI) = 2V [[>° (cosq — cosq,) and ¢ni1 =
sin(g(N+1))
sing
As in the lecture or basic quantum mechanics, we look for y(z) = asin(qz) + bcos(gz) solutions of the homogeneous
equation. Boundary conditions imply that the eigenvectors are yn(x) = ansin(gnz) with ¢, = nm, n = 1,2,...,00.
Energies are simply E,, = ¢2 = (nm)? which corresponds to the ¢ — 0 limit of 2(1 — cos ¢). Remark: the choice of sin/cos
basis comes from the fact that energies must be positive: by writing — [y"y = E [v* = [y"* + [~y'y]}, one gets E > 0
for Dirichlet boundary conditions.

The differential equation is —¢"(z) = E¢(z) of solutions ¢(x) = asin(gz) + bcos(qr) and we have ¢(0) = 0 = b and
¢'(0) = aq = 1 that yields ¢(z, E) = sin(qz)/q (¢ # 0). From the equation, the parametrization is simply E = ¢* > 0.

We observe that writing det(H — ET) = [[>2, (E» — E) leads to diverging infinite products (for instance det(Ho — ET) =
[12°,((nm)?* — E). A way to cope with this is to use the following ratio version of the formula
det(H — ET) #(1,E)

det(F)  S(LE=0) 9)

with ¢(1, E) = sing/q, ¢(1,E = 0) = 1 and %&?H) = [122,((nm)? — ¢*)/ TI22, (nm)?, we get (this relation can be

checked by other means)
- q \? sin q
0-Gr)) =" (10
oot nm q

One rewrites the boundary value problem

(H— E)Gg(z,2') =0(x —2'), withVe' Gg(0,2') = Gr(l,2') =0 (11)

As in the lecture, continuity and integrating the Dirac term provide the following two conditions (prime is the derivative
with respect to x, 2’ being a parameter): for ¢ — 0"

Gr(x' +6,2')=Gp(x’ —¢,2') and Gg(z' —¢,2") — G +¢6,2') =1 (12)

When z < 2’, a solution of the homogeneous condition satisfying to the left boundary condition is Gg(z,z") = A¢r(z)
with A a constant that has to be set by (12). When 2’ < z, the same applies with the right boundary conditions
Gg(x,x') = Bor(x). As in the tutorial, expliciting (12) provides the following linear system for A and B

$1.(2') —dr(=))\B) ~\1
This system has non-zero solution provided its determinant W(z") = ¢ (z')¢r(z") — ¢r(z")pr(x’) is non zero in which
case one gets
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and the proposed result for Gg(z,z
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We have W (z) = ¢L(x)¢r(x) — ¢r(z)dr(z) so that W' = ¢7¢r — ¢gor and using ¢, = (V — E)¢pr L, one gets
W’ =0 so W(x) is constant W (z) = W(0) = ¢r(0) or W(z) = W(1) = ¢r(1).
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We already found ¢ (x) = sin(gz)/q in question 8. The same analysis gives ¢r(x) = sin(q(1—z))/q. We have W = singq/q
and finally

, sin(gx) sir?(q(l—z’)) ifr < a2
Gp(z,2’) = sin(qr/gzssifxr:(z(lfz)) > 2 (15)
gsingq =
which is the result obtained in the tutorial.
As ¢r, is solution of the homogeneous equation (I:I — El)¢r(z) = 0 and that %(ﬁ — E]I) = —I, taking the partial
derivative of this equation with respect to E yields:
. 9L (x)
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In addition, the boundary conditions at x = 0 are always the same and independent of E so
Let f(z) = ¢L(1)8¢%}§I) (remember that ¢r(1) = ¢r(0)). Then, using ¢, = (V — E)dr/L
§@) = ~010) [ o1@on(dy +or(e) [ 6wy
0 0
£(@) = ~01(0) | on oy = bu(a) or(z) + Gr(o) | 03 )dy+ Gn(e)o (@)
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f(z) = —¢'L'($)/O o1 (y)or(y)dy — &1 (2)¢L(x)dr(x) + ¢3§<(~’0)/0 ¢1(y)dy + ¢r(x)$1 (x)

= (V(x) - B) {—qsL(x) [ ortontay+ onto) [ ¢2L(y)dy} (@)W ()
=V(z) - E)f(z) — ¢r(x)pr(1)
We check the boundary conditions
£(0) = —61,(0) / S1(W)orw)dy + 6r(0) / 62 (y)dy = 0
£/(0) = —1,(0) / o1 (1) or()dy + Fr(x) / 63 (y)dy = 0

It is thus clear that &%LiE(z) is the solution of the problem.

One just needs to take z = 1 in the formula, using ¢r(1) = 0 and recalling the result for the Green function, we get
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In the operator form, we know that the Green function obeys (H — EI)Gg =T or G = I/(H — EI). Therefore, for
matrices, the choice A = H — ET gives A~ 1'=Gg and % = —I so that

1 d
det(H = B1) ap etH — Bl = —TrGp (18)

which suggests the definition for the operator form Gr.

We notice two things: first Tr G = fol Ge(z,z)dr = —m% = -2 In|¢L(1, E)|. Second,
L O qet(fr — By = — 9 qey(mi — A1) = -4 I |det (i — BY) (19)

N p— d t = ~
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Assuming positivity of the arguments of the logs, we can integrate the relation
A det (@ — B = L mon(1, B) (20)
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from 0 to E to get the Gel’fand-Yaglom formula (more generally, the integration can actually be performed in the complex
plane by assuming that F is a complex variable). N.B.: det(H) may be singular is the spectrum of H has an eigenvalue
that is zero. Another way to regularize the formula is to introduce some reference Hamiltonian Hy (say the free particle)
and use

det(H — ET) _ ¢(1,E)
det(Ho — EI)  ¢o(1, E)

(21)



