Ising model with infinite range interactions

- 1. $H(s) = -s^2/(2N) hs$.
- 2. One recognizes the result of a Gaussian integral with $a = \beta N$, $b = \beta s$ (notation of the lecture):

$$\int_{-\infty}^{\infty} dt \ e^{-N\beta \frac{t^2}{2} + \beta(t+h)s} = e^{\beta hs} \int_{-\infty}^{\infty} dt \ e^{-(N\beta) \frac{t^2}{2} + (\beta s)t} = e^{\beta hs} \sqrt{\frac{2\pi}{N\beta}} e^{(\beta s)^2/(2N\beta)} = \sqrt{\frac{2\pi}{N\beta}} e^{-\beta H(s)} \tag{1}$$

3. We introduce the partition function $Z = \sum_{\{\sigma_i = \pm 1\}} e^{-\beta H(s)}$. We have the factorization

$$\sum_{\{\sigma_i = \pm 1\}} e^{\beta(t+h)\sum_i \sigma_i} = \prod_{i=1}^N \sum_{\sigma = \pm 1} e^{\beta(t+h)\sigma} = (2\cosh(\beta(t+h)))^N$$
(2)

so that

$$Z = \sqrt{\frac{N\beta}{2\pi}} \int_{-\infty}^{\infty} e^{-N\beta \frac{t^2}{2}} \sum_{\{\sigma_i = \pm 1\}} e^{-N\beta \frac{t^2}{2} + \beta(t+h)s} = \sqrt{\frac{N\beta}{2\pi}} \int_{-\infty}^{\infty} e^{-N\beta \frac{t^2}{2}} (2\cosh(\beta(t+h)))^N = \sqrt{\frac{N\beta}{2\pi}} \int_{-\infty}^{\infty} dt \ e^{-Nf(t)}$$
(3)

with $f(t) = \beta t^2 / 2 - \ln(2 \cosh(\beta(t+h))).$

4. It is the standard form for the saddle point approximation. We have $f'(t) = \beta(t - \tanh(\beta(t + h)))$, and $f''(t) = \beta(1 - \beta(1 - \tanh^2(\beta(t+h))))$. The saddle point thus satisfies to $t_c = \tanh(\beta(t_c+h))$ provided $f''(t_c) = \beta(1 - \beta(1 - t_c^2)) > 0$ (minimum). This is physically the self-consistent equation for the magnetization of the mean-field theory. For h = 0, the critical temperature corresponds here to $\beta = 1$. When $\beta < 1$, $t_c = 0$, clearly $f''(t_c) > 0$, $f(t_c) = -\ln 2$ and the saddle point reads

$$Z \simeq \sqrt{\frac{\beta}{f''(t_c)}} e^{-Nf(t_c)} = \sqrt{\frac{1}{1-\beta}} e^{N\ln 2}$$
(4)

When $\beta > 1$, there are two degenerate minima with $t_c \neq 0$ not easy to determine analytically. In this case, one can show that $f''(t_c) > 0$ and one has (the factor 2 sums up the minima contributions):

$$Z \simeq 2\sqrt{\frac{1}{1 - \beta(1 - t_c^2)}} e^{-N(\beta t_c^2/2 - \ln(2\cosh(\beta t_c)))}$$
(5)

Thus, in the thermodynamical limit, the free energy of this model is (up to logarithmic corrections) equal to the mean-field result.

Functional determinant

- 1. Using $y_{j\pm 1} = y(x_j \pm \varepsilon) \simeq y(x_j) \pm \varepsilon y'(x_j) + \frac{\varepsilon^2}{2} y''(x_j)$, one gets the usual discrete approximation of the Laplacian operator as $y''(x_j) \simeq (y_{j+1} + y_{j-1} 2y_j)/\varepsilon^2$. The differential equation maps on $-(y_{j+1} + y_{j-1} 2y_j)/\varepsilon^2 + (V_j/\varepsilon^2)y_j = (E/\varepsilon^2)y_j$ for $j = 1, \ldots, N$ using the boundary conditions $y_0 = y_{N+1} = 0$.
- 2. One has

$$\mathbf{M} = \begin{pmatrix} 2+V_1 & -1 & & \\ -1 & 2+V_2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & & -1 & 2+V_N \end{pmatrix}$$
(6)

- 3. We have $\phi_{j+1} = (2+V_j \lambda)\phi_j \phi_{j-1}$ from the discrete recurrence relation. Furthermore, $\phi_0 = 0$, $\phi_1 = 1$, $\phi_2 = (2+V_1 \lambda)$, $\phi_3 = (2+V_2 \lambda)(2+V_1 \lambda) 1$, etc... Clearly, the leading term in λ will be $\phi_j = (-\lambda)^{j-1} + \ldots$ are polynomials of order j-1 in λ and thus $(-\lambda)^N$ is the leading term in $\phi_{N+1}(\lambda)$.
- 4. Let λ_n be the *N* eigenvalues of **M**, we have $\det(\mathbf{M} \lambda \mathbb{I}) = \prod_{n=1}^{N} (\lambda_n \lambda)$, which is the characteristic polynomial of the eigenvalue problem, with its leading term $(-\lambda)^N$. Furthermore, solutions of the boundary value problem can be obtained by tuning λ such that $\phi_{N+1}(\lambda) = 0$ (shooting method) so that $\vec{\phi}$ satisfies to the boundary conditions. Thus, the roots of $\phi_{N+1}(\lambda)$ are the eigenvalues λ_n . By invoking the uniqueness of the characteristic polynomial, we must have

$$\det(\mathbf{M} - \lambda \mathbb{I}) = \phi_{N+1}(\lambda) \tag{7}$$

Remark: another proof can be simply done by brute force calculation of the determinant $D_N = \det M$. After performing a transformation against the diagonal from bottom left to top right and expand the determinant against the first column, one gets the recursion relation $D_N = (2 + V_N - \lambda)D_{N-1} - D_{N-2}$ which is the same as for the ϕ_j . It is initiated by $D_0 = 1$ and $D_1 = (2 + V_1 - \lambda)$ and we have finally $\phi_{N+1} = D_N$.

- 5. a) The recurrence relation is $y_{j+1} = (2 \lambda)y_j y_{j-1}$. With the ansatz $y_j = cr^j$, it yields $r^2 (2 \lambda)r + 1 = 0 = (r r_-)(r r_+)$. We write the two roots has r_{\pm} . If there are equal $r_- = r_+ = R \neq 0$, as for differential equation, the eigenvectors would take the form $y_j = aR^j + bjR^j$ with a and b two constants. But, $y_0 = 0 \Rightarrow a = 0$ and $y_{N+1} = 0 \Rightarrow b = 0$, which is absurd. Consequently, the roots are distinct, in particular, since $r_+r_- = 1$ from the last coefficient of the quadratic equation, we have $r_+ \equiv R$ and $r_- = 1/R$.
 - b) The general form of an eigenvector is thus $y_j = aR^j + bR^{-j}$ with a and b two constants. $y_0 = 0 \Rightarrow a = -b$ and $y_{N+1} = 0 \Rightarrow R^{2(N+1)} = 1$. By consequence, the possible values are $R_n = e^{iq_n}$ with $q_n = \frac{n\pi}{N+1}$ with n = 0, N+1 discarded since one cannot have |R| = 1 $(r_+ \neq r_-)$ so n takes only N distinct values $n = 1, \ldots, N$. The eigenvectors are then $y_{n,j} = 2ia \sin(q_n j)$ and from $2 \lambda_n = R_n + R_n^{-1} = 2 \cos q_n$ so

$$\lambda_n = 2(1 - \cos q_n) , \qquad y_{n,j} \propto \sin(q_n j) \tag{8}$$

- 6. a) First if we take $\phi_j = ae^{iqj} + be^{-iqj}$, we must have $\phi_0 = 0 = a + b$ and $\phi_1 = 1 = 2ia \sin q$, which gives $\phi_j = \frac{\sin(qj)}{\sin q}$. Now, we must find q such that this is a solution of the recurrence relation. By applying **M** on $\sin(qj)$, one gets $\mathbf{M}\sin(qj) = 2(1 - \cos q)\sin(qj)$ so that $\lambda = 2(1 - \cos q)$. Clearly, $\phi_{N+1}(q) = \frac{\sin(q(N+1))}{\sin q} = 0$ for $q = q_n$ (notice that $\phi_{N+1}(q = 0) = N + 1 \neq 0$ and $\phi_{N+1}(q = \pi) = (-1)^{N+1} \neq 0$ so we do recover $n = 1, \dots, N$).
 - b) We apply (7) with $\lambda_n = 2(1 \cos q_n)$, $\lambda = 2(1 \cos q)$ so $\det(\mathbf{M} \lambda \mathbb{I}) = 2^N \prod_{n=1}^{\infty} (\cos q \cos q_n)$ and $\phi_{N+1} = \frac{\sin(q(N+1))}{\sin q}$.
- 7. As in the lecture or basic quantum mechanics, we look for $y(x) = a\sin(qx) + b\cos(qx)$ solutions of the homogeneous equation. Boundary conditions imply that the eigenvectors are $y_n(x) = a_n \sin(q_n x)$ with $q_n = n\pi$, $n = 1, 2, ..., \infty$. Energies are simply $E_n = q_n^2 = (n\pi)^2$ which corresponds to the $q \to 0$ limit of $2(1 \cos q)$. Remark: the choice of $\sin/\cos p$ basis comes from the fact that energies must be positive: by writing $-\int y'' y = E \int y^2 = \int y'^2 + [-y'y]_0^1$, one gets E > 0 for Dirichlet boundary conditions.
- 8. The differential equation is $-\phi''(x) = E\phi(x)$ of solutions $\phi(x) = a\sin(qx) + b\cos(qx)$ and we have $\phi(0) = 0 = b$ and $\phi'(0) = aq = 1$ that yields $\phi(x, E) = \sin(qx)/q$ ($q \neq 0$). From the equation, the parametrization is simply $E = q^2 > 0$.
- 9. We observe that writing $\det(\hat{H} E\mathbb{I}) = \prod_{n=1}^{\infty} (E_n E)$ leads to diverging infinite products (for instance $\det(\hat{H}_0 E\mathbb{I}) = \prod_{n=1}^{\infty} ((n\pi)^2 E)$. A way to cope with this is to use the following ratio version of the formula

$$\frac{\det(\hat{H} - E\mathbb{I})}{\det(\hat{H})} = \frac{\phi(1, E)}{\phi(1, E = 0)}$$
(9)

with $\phi(1, E) = \sin q/q$, $\phi(1, E = 0) = 1$ and $\frac{\det(\hat{H} - E\mathbb{I})}{\det(\hat{H})} = \prod_{n=1}^{\infty} ((n\pi)^2 - q^2) / \prod_{n=1}^{\infty} (n\pi)^2$, we get (this relation can be checked by other means)

$$\prod_{n=1}^{\infty} \left(1 - \left(\frac{q}{n\pi}\right)^2 \right) = \frac{\sin q}{q} \tag{10}$$

10. One rewrites the boundary value problem

$$(\hat{H} - E)G_E(x, x') = \delta(x - x'), \quad \text{with } \forall x' \ G_E(0, x') = G_E(1, x') = 0$$
(11)

11. As in the lecture, continuity and integrating the Dirac term provide the following two conditions (prime is the derivative with respect to x, x' being a parameter): for $\varepsilon \to 0^+$

$$G_E(x'+\varepsilon,x') = G_E(x'-\varepsilon,x') \text{ and } G'_E(x'-\varepsilon,x') - G'_E(x'+\varepsilon,x') = 1$$
(12)

12. When x < x', a solution of the homogeneous condition satisfying to the left boundary condition is $G_E(x, x') = A\phi_L(x)$ with A a constant that has to be set by (12). When x' < x, the same applies with the right boundary conditions $G_E(x, x') = B\phi_R(x)$. As in the tutorial, expliciting (12) provides the following linear system for A and B

$$\begin{pmatrix} \phi_L(x') & -\phi_R(x') \\ \phi'_L(x') & -\phi'_R(x') \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
(13)

This system has non-zero solution provided its determinant $W(x') = \phi'_L(x')\phi_R(x') - \phi'_R(x')\phi_L(x')$ is non zero in which case one gets

$$\begin{pmatrix} A\\ B \end{pmatrix} = \frac{1}{W(x')} \begin{pmatrix} -\phi'_R(x') & \phi_R(x')\\ -\phi'_L(x') & \phi_L(x') \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} \Rightarrow A = \frac{\phi_R(x')}{W(x')}, \ B = \frac{\phi_L(x')}{W(x')}$$
(14)

and the proposed result for $G_E(x, x')$.

13. We have $W(x) = \phi'_L(x)\phi_R(x) - \phi'_R(x)\phi_L(x)$ so that $W' = \phi''_L\phi_R - \phi''_R\phi_L$ and using $\phi''_{R/L} = (V - E)\phi_{R/L}$, one gets W' = 0 so W(x) is constant $W(x) = W(0) = \phi_R(0)$ or $W(x) = W(1) = \phi_L(1)$.

14. We already found $\phi_L(x) = \sin(qx)/q$ in question 8. The same analysis gives $\phi_R(x) = \sin(q(1-x))/q$. We have $W = \sin q/q$ and finally

$$G_E(x,x') = \begin{cases} \frac{\sin(qx)\sin(q(1-x'))}{q\sin q} & \text{if } x \le x' \\ \frac{\sin(qx')\sin(q(1-x))}{q\sin q} & \text{if } x \ge x' \end{cases}$$
(15)

which is the result obtained in the tutorial.

15. As ϕ_L is solution of the homogeneous equation $(\hat{H} - E\mathbb{I})\phi_L(x) = 0$ and that $\frac{\partial}{\partial E}(\hat{H} - E\mathbb{I}) = -\mathbb{I}$, taking the partial derivative of this equation with respect to E yields:

$$(\hat{H} - E\mathbb{I})\frac{\partial\phi_L(x)}{\partial E} - \phi_L(x) = 0$$
(16)

In addition, the boundary conditions at x = 0 are always the same and independent of E so $\frac{\partial \phi_L(0)}{\partial E} = \frac{\partial \phi'_L(0)}{\partial E} = 0$.

16. Let $f(x) = \phi_L(1) \frac{\partial \phi_L(x)}{\partial E}$ (remember that $\phi_L(1) = \phi_R(0)$). Then, using $\phi_{R/L}'' = (V - E)\phi_{R/L}$

$$\begin{split} f(x) &= -\phi_L(x) \int_0^x \phi_L(y)\phi_R(y)dy + \phi_R(x) \int_0^x \phi_L^2(y)dy \\ f'(x) &= -\phi'_L(x) \int_0^x \phi_L(y)\phi_R(y)dy - \phi_L(x)^2\phi_R(x) + \phi'_R(x) \int_0^x \phi_L^2(y)dy + \phi_R(x)\phi_L^2(x) \\ &= -\phi'_L(x) \int_0^x \phi_L(y)\phi_R(y)dy + \phi'_R(x) \int_0^x \phi_L^2(y)dy \\ f''(x) &= -\phi''_L(x) \int_0^x \phi_L(y)\phi_R(y)dy - \phi'_L(x)\phi_L(x)\phi_R(x) + \phi''_R(x) \int_0^x \phi_L^2(y)dy + \phi'_R(x)\phi_L^2(x) \\ &= (V(x) - E) \left\{ -\phi_L(x) \int_0^x \phi_L(y)\phi_R(y)dy + \phi_R(x) \int_0^x \phi_L^2(y)dy \right\} - \phi_L(x)W(x) \\ &= (V(x) - E)f(x) - \phi_L(x)\phi_L(1) \end{split}$$

We check the boundary conditions

$$f(0) = -\phi_L(0) \int_0^0 \phi_L(y)\phi_R(y)dy + \phi_R(0) \int_0^0 \phi_L^2(y)dy = 0$$

$$f'(0) = -\phi'_L(0) \int_0^0 \phi_L(y)\phi_R(y)dy + \phi'_R(x) \int_0^0 \phi_L^2(y)dy = 0$$

It is thus clear that $\frac{\partial \phi_L(x)}{\partial E}$ is the solution of the problem.

17. One just needs to take x = 1 in the formula, using $\phi_R(1) = 0$ and recalling the result for the Green function, we get

$$\frac{\partial \phi_L(1,E)}{\partial E} = -\int_0^1 \phi_L(y)\phi_R(y)dy = -\phi_L(1,E)\int_0^1 G_E(y,y)dy$$
(17)

18. In the operator form, we know that the Green function obeys $(\hat{H} - E\mathbb{I})\hat{G}_E = \mathbb{I}$ or $\hat{G}_E = \mathbb{I}/(\hat{H} - E\mathbb{I})$. Therefore, for matrices, the choice $\mathbf{A} = \mathbf{H} - E\mathbb{I}$ gives $\mathbf{A}^{-1} = \mathbf{G}_E$ and $\frac{d\mathbf{A}}{dE} = -\mathbb{I}$ so that

$$\frac{1}{\det(\mathbf{H} - E\mathbb{I})} \frac{\mathrm{d}}{\mathrm{d}E} \det(\mathbf{H} - E\mathbb{I}) = -\operatorname{Tr} \mathbf{G}_E$$
(18)

which suggests the definition for the operator form \hat{G}_E .

19. We notice two things: first $\operatorname{Tr} \hat{G}_E = \int_0^1 G_E(x, x) dx = -\frac{1}{\phi_L(1, E)} \frac{\partial \phi_L(1, E)}{\partial E} = -\frac{\partial}{\partial E} \ln |\phi_L(1, E)|$. Second,

$$\frac{1}{\det(\hat{H} - E\mathbb{I})} \frac{\partial}{\partial E} \det(\hat{H} - E\mathbb{I}) = \frac{1}{\det(E\mathbb{I} - \hat{H})} \frac{\partial}{\partial E} \det(E\mathbb{I} - \hat{H}) = \frac{\mathrm{d}}{\mathrm{d}E} \ln\left|\det(\hat{H} - E\mathbb{I})\right|$$
(19)

Assuming positivity of the arguments of the logs, we can integrate the relation

$$\frac{\mathrm{d}}{\mathrm{d}E}\ln\det(\hat{H} - E\mathbb{I}) = \frac{\partial}{\partial E}\ln\phi_L(1, E) \tag{20}$$

from 0 to E to get the Gel'fand-Yaglom formula (more generally, the integration can actually be performed in the complex plane by assuming that E is a complex variable). N.B.: det (\hat{H}) may be singular is the spectrum of \hat{H} has an eigenvalue that is zero. Another way to regularize the formula is to introduce some reference Hamiltonian \hat{H}_0 (say the free particle) and use

$$\frac{\det(\hat{H} - E\mathbb{I})}{\det(\hat{H}_0 - E\mathbb{I})} = \frac{\phi(1, E)}{\phi_0(1, E)}$$
(21)