Ising model with infinite range interactions

1. $H(s)=-s^{2} /(2 N)-h s$.
2. One recognizes the result of a Gaussian integral with $a=\beta N, b=\beta s$ (notation of the lecture):

$$
\begin{equation*}
\int_{-\infty}^{\infty} d t e^{-N \beta \frac{t^{2}}{2}+\beta(t+h) s}=e^{\beta h s} \int_{-\infty}^{\infty} d t e^{-(N \beta) \frac{t^{2}}{2}+(\beta s) t}=e^{\beta h s} \sqrt{\frac{2 \pi}{N \beta}} e^{(\beta s)^{2} /(2 N \beta)}=\sqrt{\frac{2 \pi}{N \beta}} e^{-\beta H(s)} \tag{1}
\end{equation*}
$$

3. We introduce the partition function $Z=\sum_{\left\{\sigma_{i}= \pm 1\right\}} e^{-\beta H(s)}$. We have the factorization

$$
\begin{equation*}
\sum_{\left\{\sigma_{i}= \pm 1\right\}} e^{\beta(t+h) \sum_{i} \sigma_{i}}=\prod_{i=1}^{N} \sum_{\sigma= \pm 1} e^{\beta(t+h) \sigma}=(2 \cosh (\beta(t+h)))^{N} \tag{2}
\end{equation*}
$$

so that

$$
\begin{equation*}
Z=\sqrt{\frac{N \beta}{2 \pi}} \int_{-\infty}^{\infty} e^{-N \beta \frac{t^{2}}{2}} \sum_{\left\{\sigma_{i}= \pm 1\right\}} e^{-N \beta \frac{t^{2}}{2}+\beta(t+h) s}=\sqrt{\frac{N \beta}{2 \pi}} \int_{-\infty}^{\infty} e^{-N \beta \frac{t^{2}}{2}}(2 \cosh (\beta(t+h)))^{N}=\sqrt{\frac{N \beta}{2 \pi}} \int_{-\infty}^{\infty} d t e^{-N f(t)} \tag{3}
\end{equation*}
$$

with $f(t)=\beta t^{2} / 2-\ln (2 \cosh (\beta(t+h)))$.
4. It is the standard form for the saddle point approximation. We have $f^{\prime}(t)=\beta(t-\tanh (\beta(t+h)))$, and $f^{\prime \prime}(t)=$ $\beta\left(1-\beta\left(1-\tanh ^{2}(\beta(t+h))\right)\right)$. The saddle point thus satisfies to $t_{c}=\tanh \left(\beta\left(t_{c}+h\right)\right)$ provided $f^{\prime \prime}\left(t_{c}\right)=\beta\left(1-\beta\left(1-t_{c}^{2}\right)\right)>0$ (minimum). This is physically the self-consistent equation for the magnetization of the mean-field theory. For $h=0$, the critical temperature corresponds here to $\beta=1$. When $\beta<1, t_{c}=0$, clearly $f^{\prime \prime}\left(t_{c}\right)>0, f\left(t_{c}\right)=-\ln 2$ and the saddle point reads

$$
\begin{equation*}
Z \simeq \sqrt{\frac{\beta}{f^{\prime \prime}\left(t_{c}\right)}} e^{-N f\left(t_{c}\right)}=\sqrt{\frac{1}{1-\beta}} e^{N \ln 2} \tag{4}
\end{equation*}
$$

When $\beta>1$, there are two degenerate minima with $t_{c} \neq 0$ not easy to determine analytically. In this case, one can show that $f^{\prime \prime}\left(t_{c}\right)>0$ and one has (the factor 2 sums up the minima contributions):

$$
\begin{equation*}
Z \simeq 2 \sqrt{\frac{1}{1-\beta\left(1-t_{c}^{2}\right)}} e^{-N\left(\beta t_{c}^{2} / 2-\ln \left(2 \cosh \left(\beta t_{c}\right)\right)\right)} \tag{5}
\end{equation*}
$$

Thus, in the thermodynamical limit, the free energy of this model is (up to logarithmic corrections) equal to the mean-field result.

Functional determinant

1. Using $y_{j \pm 1}=y\left(x_{j} \pm \varepsilon\right) \simeq y\left(x_{j}\right) \pm \varepsilon y^{\prime}\left(x_{j}\right)+\frac{\varepsilon^{2}}{2} y^{\prime \prime}\left(x_{j}\right)$, one gets the usual discrete approximation of the Laplacian operator as $y^{\prime \prime}\left(x_{j}\right) \simeq\left(y_{j+1}+y_{j-1}-2 y_{j}\right) / \varepsilon^{2}$. The differential equation maps on $-\left(y_{j+1}+y_{j-1}-2 y_{j}\right) / \varepsilon^{2}+\left(V_{j} / \varepsilon^{2}\right) y_{j}=\left(E / \varepsilon^{2}\right) y_{j}$ for $j=1, \ldots, N$ using the boundary conditions $y_{0}=y_{N+1}=0$.
2. One has

$$
\mathbf{M}=\left(\begin{array}{cccc}
2+V_{1} & -1 & & \tag{6}\\
-1 & 2+V_{2} & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2+V_{N}
\end{array}\right)
$$

3. We have $\phi_{j+1}=\left(2+V_{j}-\lambda\right) \phi_{j}-\phi_{j-1}$ from the discrete recurrence relation. Furthermore, $\phi_{0}=0, \phi_{1}=1, \phi_{2}=\left(2+V_{1}-\lambda\right)$, $\phi_{3}=\left(2+V_{2}-\lambda\right)\left(2+V_{1}-\lambda\right)-1$, etc... Clearly, the leading term in λ will be $\phi_{j}=(-\lambda)^{j-1}+\ldots$ are polynomials of order $j-1$ in λ and thus $(-\lambda)^{N}$ is the leading term in $\phi_{N+1}(\lambda)$.
4. Let λ_{n} be the N eigenvalues of \mathbf{M}, we have $\operatorname{det}(\mathbf{M}-\lambda \mathbb{I})=\prod_{n=1}^{N}\left(\lambda_{n}-\lambda\right)$, which is the characteristic polynomial of the eigenvalue problem, with its leading term $(-\lambda)^{N}$. Furthermore, solutions of the boundary value problem can be obtained by tuning λ such that $\phi_{N+1}(\lambda)=0$ (shooting method) so that $\vec{\phi}$ satisfies to the boundary conditions. Thus, the roots of $\phi_{N+1}(\lambda)$ are the eigenvalues λ_{n}. By invoking the uniqueness of the characteristic polynomial, we must have

$$
\begin{equation*}
\operatorname{det}(\mathbf{M}-\lambda \mathbb{I})=\phi_{N+1}(\lambda) \tag{7}
\end{equation*}
$$

Remark: another proof can be simply done by brute force calculation of the determinant $D_{N}=\operatorname{det} M$. After performing a transformation against the diagonal from bottom left to top right and expand the determinant against the first column, one gets the recursion relation $D_{N}=\left(2+V_{N}-\lambda\right) D_{N-1}-D_{N-2}$ which is the same as for the ϕ_{j}. It is initiated by $D_{0}=1$ and $D_{1}=\left(2+V_{1}-\lambda\right)$ and we have finally $\phi_{N+1}=D_{N}$.
5. a) The recurrence relation is $y_{j+1}=(2-\lambda) y_{j}-y_{j-1}$. With the ansatz $y_{j}=c r^{j}$, it yields $r^{2}-(2-\lambda) r+1=0=$ $\left(r-r_{-}\right)\left(r-r_{+}\right)$. We write the two roots has $r_{ \pm}$. If there are equal $r_{-}=r_{+}=R \neq 0$, as for differential equation, the eigenvectors would take the form $y_{j}=a R^{j}+b j R^{j}$ with a and b two constants. But, $y_{0}=0 \Rightarrow a=0$ and $y_{N+1}=0 \Rightarrow b=0$, which is absurd. Consequently, the roots are distinct, in particular, since $r_{+} r_{-}=1$ from the last coefficient of the quadratic equation, we have $r_{+} \equiv R$ and $r_{-}=1 / R$.
b) The general form of an eigenvector is thus $y_{j}=a R^{j}+b R^{-j}$ with a and b two constants. $y_{0}=0 \Rightarrow a=-b$ and $y_{N+1}=0 \Rightarrow R^{2(N+1)}=1$. By consequence, the possible values are $R_{n}=e^{i q_{n}}$ with $q_{n}=\frac{n \pi}{N+1}$ with $n=0, N+1$ discarded since one cannot have $|R|=1\left(r_{+} \neq r_{-}\right)$so n takes only N distinct values $n=1, \ldots, N$. The eigenvectors are then $y_{n, j}=2 i a \sin \left(q_{n} j\right)$ and from $2-\lambda_{n}=R_{n}+R_{n}^{-1}=2 \cos q_{n}$ so

$$
\begin{equation*}
\lambda_{n}=2\left(1-\cos q_{n}\right), \quad y_{n, j} \propto \sin \left(q_{n} j\right) \tag{8}
\end{equation*}
$$

6. a) First if we take $\phi_{j}=a e^{i q j}+b e^{-i q j}$, we must have $\phi_{0}=0=a+b$ and $\phi_{1}=1=2 i a \sin q$, which gives $\phi_{j}=\frac{\sin (q j)}{\sin q}$. Now, we must find q such that this is a solution of the recurrence relation. By applying \mathbf{M} on $\sin (q j)$, one gets $\mathbf{M} \sin (q j)=2(1-\cos q) \sin (q j)$ so that $\lambda=2(1-\cos q)$. Clearly, $\phi_{N+1}(q)=\frac{\sin (q(N+1))}{\sin q}=0$ for $q=q_{n}$ (notice that $\phi_{N+1}(q=0)=N+1 \neq 0$ and $\phi_{N+1}(q=\pi)=(-1)^{N+1} \neq 0$ so we do recover $\left.n=1, \ldots, N\right)$.
b) We apply (7) with $\lambda_{n}=2\left(1-\cos q_{n}\right), \lambda=2(1-\cos q)$ so $\operatorname{det}(\mathbf{M}-\lambda \mathbb{I})=2^{N} \prod_{n=1}^{\infty}\left(\cos q-\cos q_{n}\right)$ and $\phi_{N+1}=$ $\frac{\sin (q(N+1))}{\sin q}$.
7. As in the lecture or basic quantum mechanics, we look for $y(x)=a \sin (q x)+b \cos (q x)$ solutions of the homogeneous equation. Boundary conditions imply that the eigenvectors are $y_{n}(x)=a_{n} \sin \left(q_{n} x\right)$ with $q_{n}=n \pi, n=1,2, \ldots, \infty$. Energies are simply $E_{n}=q_{n}^{2}=(n \pi)^{2}$ which corresponds to the $q \rightarrow 0$ limit of $2(1-\cos q)$. Remark: the choice of \sin / \cos basis comes from the fact that energies must be positive: by writing $-\int y^{\prime \prime} y=E \int y^{2}=\int y^{\prime 2}+\left[-y^{\prime} y\right]_{0}^{1}$, one gets $E>0$ for Dirichlet boundary conditions.
8. The differential equation is $-\phi^{\prime \prime}(x)=E \phi(x)$ of solutions $\phi(x)=a \sin (q x)+b \cos (q x)$ and we have $\phi(0)=0=b$ and $\phi^{\prime}(0)=a q=1$ that yields $\phi(x, E)=\sin (q x) / q(q \neq 0)$. From the equation, the parametrization is simply $E=q^{2}>0$.
9. We observe that writing $\operatorname{det}(\hat{H}-E \mathbb{I})=\prod_{n=1}^{\infty}\left(E_{n}-E\right)$ leads to diverging infinite products (for instance $\operatorname{det}\left(\hat{H}_{0}-E \mathbb{I}\right)=$ $\prod_{n=1}^{\infty}\left((n \pi)^{2}-E\right)$. A way to cope with this is to use the following ratio version of the formula

$$
\begin{equation*}
\frac{\operatorname{det}(\hat{H}-E \mathbb{I})}{\operatorname{det}(\hat{H})}=\frac{\phi(1, E)}{\phi(1, E=0)} \tag{9}
\end{equation*}
$$

with $\phi(1, E)=\sin q / q, \phi(1, E=0)=1$ and $\frac{\operatorname{det}(\hat{H}-E \mathbb{I})}{\operatorname{det}(\hat{H})}=\prod_{n=1}^{\infty}\left((n \pi)^{2}-q^{2}\right) / \prod_{n=1}^{\infty}(n \pi)^{2}$, we get (this relation can be checked by other means)

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-\left(\frac{q}{n \pi}\right)^{2}\right)=\frac{\sin q}{q} \tag{10}
\end{equation*}
$$

10. One rewrites the boundary value problem

$$
\begin{equation*}
(\hat{H}-E) G_{E}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right), \quad \text { with } \forall x^{\prime} G_{E}\left(0, x^{\prime}\right)=G_{E}\left(1, x^{\prime}\right)=0 \tag{11}
\end{equation*}
$$

11. As in the lecture, continuity and integrating the Dirac term provide the following two conditions (prime is the derivative with respect to x, x^{\prime} being a parameter): for $\varepsilon \rightarrow 0^{+}$

$$
\begin{equation*}
G_{E}\left(x^{\prime}+\varepsilon, x^{\prime}\right)=G_{E}\left(x^{\prime}-\varepsilon, x^{\prime}\right) \text { and } G_{E}^{\prime}\left(x^{\prime}-\varepsilon, x^{\prime}\right)-G_{E}^{\prime}\left(x^{\prime}+\varepsilon, x^{\prime}\right)=1 \tag{12}
\end{equation*}
$$

12. When $x<x^{\prime}$, a solution of the homogeneous condition satisfying to the left boundary condition is $G_{E}\left(x, x^{\prime}\right)=A \phi_{L}(x)$ with A a constant that has to be set by (12). When $x^{\prime}<x$, the same applies with the right boundary conditions $G_{E}\left(x, x^{\prime}\right)=B \phi_{R}(x)$. As in the tutorial, expliciting (12) provides the following linear system for A and B

$$
\left(\begin{array}{cc}
\phi_{L}\left(x^{\prime}\right) & -\phi_{R}\left(x^{\prime}\right) \tag{13}\\
\phi_{L}^{\prime}\left(x^{\prime}\right) & -\phi_{R}^{\prime}\left(x^{\prime}\right)
\end{array}\right)\binom{A}{B}=\binom{0}{1}
$$

This system has non-zero solution provided its determinant $W\left(x^{\prime}\right)=\phi_{L}^{\prime}\left(x^{\prime}\right) \phi_{R}\left(x^{\prime}\right)-\phi_{R}^{\prime}\left(x^{\prime}\right) \phi_{L}\left(x^{\prime}\right)$ is non zero in which case one gets

$$
\binom{A}{B}=\frac{1}{W\left(x^{\prime}\right)}\left(\begin{array}{ll}
-\phi_{R}^{\prime}\left(x^{\prime}\right) & \phi_{R}\left(x^{\prime}\right) \tag{14}\\
-\phi_{L}^{\prime}\left(x^{\prime}\right) & \phi_{L}\left(x^{\prime}\right)
\end{array}\right)\binom{0}{1} \Rightarrow A=\frac{\phi_{R}\left(x^{\prime}\right)}{W\left(x^{\prime}\right)}, B=\frac{\phi_{L}\left(x^{\prime}\right)}{W\left(x^{\prime}\right)}
$$

and the proposed result for $G_{E}\left(x, x^{\prime}\right)$.
13. We have $W(x)=\phi_{L}^{\prime}(x) \phi_{R}(x)-\phi_{R}^{\prime}(x) \phi_{L}(x)$ so that $W^{\prime}=\phi_{L}^{\prime \prime} \phi_{R}-\phi_{R}^{\prime \prime} \phi_{L}$ and using $\phi_{R / L}^{\prime \prime}=(V-E) \phi_{R / L}$, one gets $W^{\prime}=0$ so $W(x)$ is constant $W(x)=W(0)=\phi_{R}(0)$ or $W(x)=W(1)=\phi_{L}(1)$.
14. We already found $\phi_{L}(x)=\sin (q x) / q$ in question 8 . The same analysis gives $\phi_{R}(x)=\sin (q(1-x)) / q$. We have $W=\sin q / q$ and finally

$$
G_{E}\left(x, x^{\prime}\right)= \begin{cases}\frac{\sin (q x) \sin \left(q\left(1-x^{\prime}\right)\right)}{q \sin q} & \text { if } x \leq x^{\prime} \tag{15}\\ \frac{\sin \left(q x^{\prime}\right) \sin (q(1-x))}{q \sin q} & \text { if } x \geq x^{\prime}\end{cases}
$$

which is the result obtained in the tutorial.
15. As ϕ_{L} is solution of the homogeneous equation $(\hat{H}-E \mathbb{I}) \phi_{L}(x)=0$ and that $\frac{\partial}{\partial E}(\hat{H}-E \mathbb{I})=-\mathbb{I}$, taking the partial derivative of this equation with respect to E yields:

$$
\begin{equation*}
(\hat{H}-E \mathbb{I}) \frac{\partial \phi_{L}(x)}{\partial E}-\phi_{L}(x)=0 \tag{16}
\end{equation*}
$$

In addition, the boundary conditions at $x=0$ are always the same and independent of E so $\frac{\partial \phi_{L}(0)}{\partial E}=\frac{\partial \phi_{L}^{\prime}(0)}{\partial E}=0$.
16. Let $f(x)=\phi_{L}(1) \frac{\partial \phi_{L}(x)}{\partial E}$ (remember that $\left.\phi_{L}(1)=\phi_{R}(0)\right)$. Then, using $\phi_{R / L}^{\prime \prime}=(V-E) \phi_{R / L}$

$$
\begin{aligned}
f(x) & =-\phi_{L}(x) \int_{0}^{x} \phi_{L}(y) \phi_{R}(y) d y+\phi_{R}(x) \int_{0}^{x} \phi_{L}^{2}(y) d y \\
f^{\prime}(x) & =-\phi_{L}^{\prime}(x) \int_{0}^{x} \phi_{L}(y) \phi_{R}(y) d y-\phi_{L}(x)^{2} \phi_{R}(x)+\phi_{R}^{\prime}(x) \int_{0}^{x} \phi_{L}^{2}(y) d y+\phi_{R}(x) \phi_{L}^{2}(x) \\
& =-\phi_{L}^{\prime}(x) \int_{0}^{x} \phi_{L}(y) \phi_{R}(y) d y+\phi_{R}^{\prime}(x) \int_{0}^{x} \phi_{L}^{2}(y) d y \\
f^{\prime \prime}(x) & =-\phi_{L}^{\prime \prime}(x) \int_{0}^{x} \phi_{L}(y) \phi_{R}(y) d y-\phi_{L}^{\prime}(x) \phi_{L}(x) \phi_{R}(x)+\phi_{R}^{\prime \prime}(x) \int_{0}^{x} \phi_{L}^{2}(y) d y+\phi_{R}^{\prime}(x) \phi_{L}^{2}(x) \\
& =(V(x)-E)\left\{-\phi_{L}(x) \int_{0}^{x} \phi_{L}(y) \phi_{R}(y) d y+\phi_{R}(x) \int_{0}^{x} \phi_{L}^{2}(y) d y\right\}-\phi_{L}(x) W(x) \\
& =(V(x)-E) f(x)-\phi_{L}(x) \phi_{L}(1)
\end{aligned}
$$

We check the boundary conditions

$$
\begin{aligned}
& f(0)=-\phi_{L}(0) \int_{0}^{0} \phi_{L}(y) \phi_{R}(y) d y+\phi_{R}(0) \int_{0}^{0} \phi_{L}^{2}(y) d y=0 \\
& f^{\prime}(0)=-\phi_{L}^{\prime}(0) \int_{0}^{0} \phi_{L}(y) \phi_{R}(y) d y+\phi_{R}^{\prime}(x) \int_{0}^{0} \phi_{L}^{2}(y) d y=0
\end{aligned}
$$

It is thus clear that $\frac{\partial \phi_{L}(x)}{\partial E}$ is the solution of the problem.
17. One just needs to take $x=1$ in the formula, using $\phi_{R}(1)=0$ and recalling the result for the Green function, we get

$$
\begin{equation*}
\frac{\partial \phi_{L}(1, E)}{\partial E}=-\int_{0}^{1} \phi_{L}(y) \phi_{R}(y) d y=-\phi_{L}(1, E) \int_{0}^{1} G_{E}(y, y) d y \tag{17}
\end{equation*}
$$

18. In the operator form, we know that the Green function obeys $(\hat{H}-E \mathbb{I}) \hat{G}_{E}=\mathbb{I}$ or $\hat{G}_{E}=\mathbb{I} /(\hat{H}-E \mathbb{I})$. Therefore, for matrices, the choice $\mathbf{A}=\mathbf{H}-E \mathbb{I}$ gives $\mathbf{A}^{-1}=\mathbf{G}_{E}$ and $\frac{\mathrm{d} \mathbf{A}}{\mathrm{d} E}=-\mathbb{I}$ so that

$$
\begin{equation*}
\frac{1}{\operatorname{det}(\mathbf{H}-E \mathbb{I})} \frac{\mathrm{d}}{\mathrm{~d} E} \operatorname{det}(\mathbf{H}-E \mathbb{I})=-\operatorname{Tr} \mathbf{G}_{E} \tag{18}
\end{equation*}
$$

which suggests the definition for the operator form \hat{G}_{E}.
19. We notice two things: first $\operatorname{Tr} \hat{G}_{E}=\int_{0}^{1} G_{E}(x, x) d x=-\frac{1}{\phi_{L}(1, E)} \frac{\partial \phi_{L}(1, E)}{\partial E}=-\frac{\partial}{\partial E} \ln \left|\phi_{L}(1, E)\right|$. Second,

$$
\begin{equation*}
\frac{1}{\operatorname{det}(\hat{H}-E \mathbb{I})} \frac{\partial}{\partial E} \operatorname{det}(\hat{H}-E \mathbb{I})=\frac{1}{\operatorname{det}(E \mathbb{I}-\hat{H})} \frac{\partial}{\partial E} \operatorname{det}(E \mathbb{I}-\hat{H})=\frac{\mathrm{d}}{\mathrm{~d} E} \ln |\operatorname{det}(\hat{H}-E \mathbb{I})| \tag{19}
\end{equation*}
$$

Assuming positivity of the arguments of the logs, we can integrate the relation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} E} \ln \operatorname{det}(\hat{H}-E \mathbb{I})=\frac{\partial}{\partial E} \ln \phi_{L}(1, E) \tag{20}
\end{equation*}
$$

from 0 to E to get the Gel'fand-Yaglom formula (more generally, the integration can actually be performed in the complex plane by assuming that E is a complex variable). N.B.: $\operatorname{det}(\hat{H})$ may be singular is the spectrum of \hat{H} has an eigenvalue that is zero. Another way to regularize the formula is to introduce some reference Hamiltonian \hat{H}_{0} (say the free particle) and use

$$
\begin{equation*}
\frac{\operatorname{det}(\hat{H}-E \mathbb{I})}{\operatorname{det}\left(\hat{H}_{0}-E \mathbb{I}\right)}=\frac{\phi(1, E)}{\phi_{0}(1, E)} \tag{21}
\end{equation*}
$$

