
Master Physics of Complex Systems Year 2019-2020

Exam on Mathematical tools

3 hours

Wednesday January 8th

You are allowed to use only your notes and documents distributed during the lectures.
Do not mind about not doing everything, the exam is too long.
As a guide, we give an estimate of points [n] for each question (the final mean of the class will be
rescaled so these are indicative only).
We add a star ∗ for difficult or lengthly questions.
Many parts and questions are actually independent and can be done without solving the previous ones
(but using intermediate results). Try to read and understand carefully the whole problem.
This exam uses the following topics: complex analysis, Fourier transform, saddle-point methods,
Green’s functions, orthogonal polynomials.

The Poisson summation formula [∼3 points]

We consider a function g(x) of a real variable x, that is periodic of period 1. We recall that it can
be expand in Fourier series, in the following way

g(x) =

+∞∑
n=−∞

cne
i2πnx , where cn =

∫ 1/2

−1/2
g(x) e−i2πnxdx (1)

1. [1] Give the expression of the Fourier transform G(k) of g(x), defined as G(k) =
1√
2π

∫ +∞

−∞
g(x) e−ikxdx, as a function of the cn and delta functions.

2. [1] We consider the Dirac comb g(x) =
+∞∑

n=−∞
δ(x− n). What is G(k)?

3. [1∗] Let f(x) be a function of a real variable x and F (k) its Fourier transform. Infer the
Poisson summation formula

+∞∑
n=−∞

f(n) =
+∞∑

m=−∞

∫ +∞

−∞
f(x) e−i2πmxdx (2)



Some properties of Bessel functions [∼12 points]

Prime’s means derivative in this exercise. Bessel functions are solutions of the equation of the
unknown real function y(x) of real variable x for ν ∈ R:

y′′ +
1

x
y′ +

(
1− ν2

x2

)
y = 0 (3)

4. Series expansion. We look for a solution of the form y(x) = xµ
+∞∑
k=0

akx
k with µ ∈ R, a0 6= 0.

a) [1] By considering the x→ 0 behavior, show that µ = ±ν.

b) [2∗] By convention, we impose that a0 = 1/2νΓ(ν + 1) (use your notes on the Gamma
function). We consider for simplicity the case ν ≥ 0, show (check) that

Jν(x) =
(x

2

)ν +∞∑
m=0

(−1)m

m! Γ(m+ ν + 1)

(x
2

)2m
(4)

We admit that this expansion remains valid for all ν ∈ R.

5. [2∗] Generating function. Prove the following relation for t ∈ C (we recall that by convention
n! =∞ for n = −1,−2,−3, . . .):

G(x, t) = e
x
2
(t−1/t) =

+∞∑
n=−∞

tnJn(x) (5)

In passing, you may show that Jn(x) = (−1)nJ|n|(x) when n < 0.

6. [1.5] Integral representation. First show that eix sin θ =
+∞∑

n=−∞
einθJn(x) and then that

Jn(x) =
1

2π

∫ 2π

0
eix sin θe−inθdθ , and J0(x) =

1

2π

∫ 2π

0
eix cos θdθ (6)

7. [1] Complex integral representation. For any counterclockwise contour C enclosing t = 0,
show that the following two equalities, for n ∈ Z:

Jn(x) =
1

2iπ

∮
C
t−n−1e

x
2
(t−1/t)dt =

1

2iπ

(x
2

)n ∮
C
u−n−1eu−

x2

4u du (7)

8. [2] Recursion relations. Prove the following two relations:

2J ′n(x) = Jn−1(x)− Jn+1(x) (8)

2nJn(x) = x(Jn−1(x) + Jn+1(x)) (9)

9. [2.5∗] Asymptotic behavior. Show that, when x→∞ (in particular x� |n|)

Jn(x) ∼
√

2

πx
cos
(
x− nπ

2
− π

4

)
(10)
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Trace formula on the rectangular billiard [∼18+4 points]

We consider the problem of calculating the density of states of a free particle confined in a two-
dimensional rectangular billiard with periodic boundary conditions (see Figure 1). The density of
states is formally defined for a discrete spectrum as

ρ(E) =
∑
~n

δ(E − E~n) (11)

using Dirac peaks centered over the energies E~n, with ~n the vector containing the quantum numbers.
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Figure 1: Left: Sketch of the billiard and a typical classical periodic trajectory of length L1,1 =√
a2 + b2. Middle: Comparison between exact spectrum and its reconstruction from the

trace formula truncated to the first 250 terms. Right: Bessel functions.

In quantum mechanics, it corresponds to the following linear differential eigenvalue problem

(∆ + E~n)ψ~n(x, y) = 0 (12)

with x ∈ [0, a] and y ∈ [0, b] are the two-dimensional cartesian coordinates and the rectangle has

dimensions a and b. ∆ = ∂2

∂x2
+ ∂2

∂y2
is the laplacian operator. Periodic boundary conditions means

that the solutions satisfy to ψ(x+ a, y) = ψ(x, y) and ψ(x, y + b) = ψ(x, y). The {E~n, ψ~n(x, y)} are
eigenvalues and normalized eigenfunctions of the problem.

Using Poisson formula

10. [2] Using plane waves ei(k1x+k2y) as eigenfunctions, show that the eigenvalues (energies) read

En1,n2 =

(
2π

a
n1

)2

+

(
2π

b
n2

)2

(13)

and give the possible values of the quantum numbers n1 and n2. Interpret their signs.

11. [4∗] Using twice the Poisson formula (2) introducing two variables x1 and x2, and switching
to the following polar coordinates (r, θ) with x1 = ar

2π cos θ and x2 = br
2π sin θ, show that the

density of states can be rewritten as

ρ(E) =
S

4π

+∞∑
m1,m2=−∞

J0

(
Lm1,m2

√
E
)
, where Lm1,m2 =

√
(m1a)2 + (m2b)2 (14)

with S a constant to be determined and J0 the Bessel function of order 0 defined in (6). The
series may not be convergent but we allow ourselves to writes summations of this type without
care in the following.
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12. [2∗] Geometrically speaking, what are the possible periodic classical trajectories of a particle
is such a rectangular billiard with periodic boundary conditions? In particular, what are the
possible lengths of these periodic orbits?

13. [1] Show that there is a non-oscillating contribution to the density of states ρ̄(E) and give its
expression. Thus, we’ll use the splitting ρ(E) = ρ̄(E) + ρ̃(E).

14. [1] We consider the semi-classical limit Lm1,m2

√
E � 1, give an explicit approximation for

the oscillating part of the density of states ρ̃(E) as a function of
√
E, Lm1,m2 and S using the

asymptotical behavior of Bessel functions.

Using the Green’s function

In quantum mechanics, one defines a special kind of Green’s function Gz, called the resolvant, as the
solution of the following problem

(z − Ĥ)Gz(~r, ~r
′) = δ(~r − ~r ′) + boundary conditions (15)

where Ĥ is the Hamiltonian (Ĥ = −∆ for the free particle) and z ∈ C a complex number.

15. Density of states from the Green’s function.

a) [1] Give the spectral representation of the operator Ĝz associated to Gz(~r, ~r
′) in terms of

the E~n and the kets |ψ~n〉.
b) [1] Infer the expression of Tr Ĝz both as a series involving the E~n and an integral over ~r.

c) [2] We now set z = E + iε with ε > 0 a small number for which one implicitly assumes
ε→ 0. Prove the following relation involving the retarded Green’s function Ĝ+

E = lim
ε→0

Ĝz

ρ(E) = − 1

π
Im

∫
G+
E(~r, ~r )d~r (16)

16. Free particle Green’s function: We now consider a particle in free space (not a billiard)
with boundary conditions such that the Green’s function vanishes when ‖~r ‖ → ∞.

a) [2] Show that the corresponding solution G0,+
E can be expressed as

G0,+
E (~r, ~r ′) =

x

R2

dkxdky
(2π)2

ei
~k·(~r−~r ′)

E − ~k 2 + iε
(17)

b) [Bonus+4∗∗] Using the trick
1

~k 2 − E − iε
=

∫ +∞

0
dt e−t(

~k 2−E−iε), and the expression of

the Bessel function (7), show that this integral gives the result

ImG0,+
E (~r, ~r ′) = −1

4
J0

(√
E
∥∥~r − ~r ′∥∥) (18)

17. Rectangular billiard Green’s function: periodic boundary conditions now impose that
G+
E(x+ na, y +mb, x′, y′) = G+

E(x, y, x′, y′) for all integer n, m.

a) [1] Give two main arguments supporting the fact that the following ansatz is the Green’s
function for the confined particle

G+
E(x, y, x′, y′) =

∞∑
n,m=−∞

G0,+
E (x+ na, y +mb, x′, y′) (19)

b) [1] Recover the trace formula (14) from the above results.
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