The Poisson summation formula [~ 3 points]

We consider a function $g(x)$ of a real variable x, that is periodic of period 1 . We recall that it can be expand in Fourier series, in the following way

$$
\begin{equation*}
g(x)=\sum_{n=-\infty}^{+\infty} c_{n} e^{i 2 \pi n x}, \quad \text { where } c_{n}=\int_{-1 / 2}^{1 / 2} g(x) e^{-i 2 \pi n x} d x \tag{1}
\end{equation*}
$$

1. $[1] G(k)=\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{+\infty} c_{n} \int_{-\infty}^{+\infty} e^{i(2 \pi n-k) x} d x=\sqrt{2 \pi} \sum_{n=-\infty}^{+\infty} c_{n} \delta(k-2 \pi n)$
2. [1] $c_{n}=\int_{-1 / 2}^{1 / 2} \sum_{m=-\infty}^{+\infty} \delta(x-m) e^{-i 2 \pi n x} d x=\int_{-1 / 2}^{1 / 2} \delta(x) e^{-i 2 \pi n x} d x=1$ (only $m=0$ in the interval of the integral). Thus, $G(k)=\sqrt{2 \pi} \sum_{n=-\infty}^{+\infty} \delta(k-2 \pi n)$
3. $\left[\mathbf{1}^{*}\right]$ Using Parseval-Plancherel equality : $\int_{-\infty}^{+\infty} f(x) g(x) d x=\int_{-\infty}^{+\infty} F(k) G(k) d k$, we get

$$
\begin{align*}
& \int_{-\infty}^{+\infty} f(x) \sum_{n=-\infty}^{+\infty} \delta(x-n) d x=\sum_{n} f(n) \tag{2}\\
& =\int_{-\infty}^{+\infty} F(k) \sqrt{2 \pi} \sum_{n=-\infty}^{+\infty} \delta(k-2 \pi n) d k=\sqrt{2 \pi} \sum_{m=-\infty}^{+\infty} F(2 \pi m)=\sum_{m=-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x) e^{-i 2 \pi m x} d x \tag{3}
\end{align*}
$$

Some properties of Bessel functions [~ 12 points]

4. a) [1] the behavior of the ansatz when $x \rightarrow 0$ is $y(x) \simeq x^{m} u$. Injecting this in the differential equation gives for the $x^{\mu-2}$ coefficient $\mu(\mu-1)+\mu-\nu^{2} \Rightarrow \mu= \pm \nu$.
b) [$\mathbf{2}^{*}$] with $\nu \geq 0$ inserting the ansatz and setting to 0 the coefficient in front of $x^{\nu+k-2}$ gives the relation $a_{k}=-\frac{a_{k-2}}{k(2 \nu+k)}$. Furthermore, the term $a_{1}(2) x^{\nu-1}$ is alone which sets $a_{1}(2 \nu+1)=0$ so only even indices k remain. Writting the expansion $y(x)=x^{\nu} \sum_{m=0}^{+\infty} c_{m} x^{2 m}$ one obtains

$$
\begin{equation*}
c_{m}=\frac{(-1)^{m}}{2^{2 m} m!(1+\nu) \cdots(m+\nu)} a_{0} \tag{4}
\end{equation*}
$$

taking $a_{0}=1 / 2^{\nu} \Gamma(\nu+1)$ and using $\Gamma(m+\nu+1)=(1+\nu) \cdots(m+\nu) \Gamma(\nu+1)$, one gets

$$
\begin{equation*}
J_{\nu}(x)=\left(\frac{x}{2}\right)^{\nu} \sum_{m=0}^{+\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{x}{2}\right)^{2 m} \tag{5}
\end{equation*}
$$

A similar reasoning allows one to show that the formula extends to $\nu<0$.
5. [2*] Let us expand algebraically the formula using the exponential expansion and the binomial formula

$$
\begin{align*}
G(x, t) & =e^{\frac{x}{2}(t-1 / t)}=\sum_{k=0}^{+\infty} \frac{1}{k!}\left(\frac{x}{2}\left(t-t^{-1}\right)\right)^{k}=\sum_{k=0}^{+\infty} \frac{1}{k!}\left(\frac{x}{2}\right)^{k} \sum_{\substack{r, s=0 \\
r+s=k}}^{k} \frac{(r+s)!}{r!s!} t^{r}(-t)^{-s} \tag{6}\\
& =\sum_{r=0}^{\infty} \sum_{s=0}^{\infty}(-1)^{s}\left(\frac{x}{2}\right)^{r+s} \frac{1}{r!s!} t^{r} t^{-s} \tag{7}
\end{align*}
$$

making the change of variable $n=r-s \in \mathbb{Z}$, one formally obtains

$$
\begin{equation*}
G(x, t)=\sum_{n=-\infty}^{+\infty} t^{n}\left(\frac{x}{2}\right)^{n} \sum_{s=0}^{\infty} \frac{(-1)^{s}}{(n+s)!s!}\left(\frac{x}{2}\right)^{2 s} \tag{8}
\end{equation*}
$$

in which we recognize the series expansion of $J_{n}(x)$ for $\nu=n$ integer. Yet, one has to be careful with negative n in this formula. Formally, some negative factorial appear whenever $s<-|n|$ when $n<0$. The convention is that these terms are infinite so they kill the contribution. For $n<0$, then the definition of J_{n} reads

$$
\begin{equation*}
J_{n}(x)=\left(\frac{x}{2}\right)^{-|n|} \sum_{s=|n|}^{\infty} \frac{(-1)^{s}}{(s-|n|)!s!}\left(\frac{x}{2}\right)^{2 s}=\left(\frac{x}{2}\right)^{-|n|} \sum_{s^{\prime}=0}^{\infty} \frac{(-1)^{s^{\prime}+|n|}}{\left(s^{\prime}+|n|\right)!s^{\prime}!}\left(\frac{x}{2}\right)^{2 s^{\prime}+2|n|}=(-1)^{|n|} J_{|n|}(x) \tag{9}
\end{equation*}
$$

so these are the same functions up to a sign and the identification with the series holds assuming the previous definition of J_{ν} holds for all $\nu \in \mathbb{R}$.
6. [1.5] Integral representation. One sets $t=e^{i \theta}$ to get $e^{i x \sin \theta}=\sum_{n=-\infty}^{+\infty} e^{i n \theta} J_{n}(x)$ and then one integrates the generating function as

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i x \sin \theta} e^{-i n \theta} d \theta=\sum_{m} J_{m}(x) \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(m-n) \theta} d \theta=J_{n}(x) \tag{10}
\end{equation*}
$$

Then, for $\nu=0$ one can make the change of variable $\theta \Rightarrow \pi / 2-\theta$ that changes the sine function into a cosine and notice that the origin of the integral domain doesn't matter since the cosine function is periodic

$$
\begin{equation*}
J_{0}(x)=\frac{1}{2 \pi} \int_{\varphi_{0}}^{\varphi_{0}+2 \pi} e^{i x \cos \theta} d \theta \tag{11}
\end{equation*}
$$

This is a form commonly found in physics and that we used in the tutorial.
7. [1] Complex integral representation. Integrating the generating function over t yields

$$
\begin{equation*}
\frac{1}{2 i \pi} \oint_{C} t^{-n-1} e^{\frac{x}{2}(t-1 / t)} d t=\sum_{m} J_{m}(x) \frac{1}{2 i \pi} \oint_{C} t^{m-n-1} d t=J_{n}(x) \tag{12}
\end{equation*}
$$

This can be also be seen as the $n^{\text {th }}$ derivative w.r.t. t at $t=0$, following the principle of generating functions, associated to the Cauchy formula. The following representation is obtained from the change of variables $t=2 u / x$:

$$
\begin{equation*}
J_{n}(x)=\frac{1}{2 i \pi}\left(\frac{x}{2}\right)^{n} \oint_{C} u^{-n-1} e^{u-\frac{x^{2}}{4 u}} d u \tag{13}
\end{equation*}
$$

8. [2] Recursion relations. From the generating function $\frac{\partial G}{\partial x}=\sum_{n} t^{n} J_{n}^{\prime}(x)=\frac{1}{2}(t-1 / t) G(x, t)=\left(\sum_{n} J_{n} t^{n+1}-\right.$ $\left.\sum_{n} J_{n} t^{n-1}\right) / 2$ yields the first equality by identification of powers of t. The second one is obtained from $\frac{\partial G}{\partial t}=$ $\sum_{n}^{n} t^{n} J_{n}^{\prime}(x)=\frac{x}{2}\left(1+1 / t^{2}\right) G(x, t)=\sum_{n} n t^{n-1} J_{n}(x)$. Finally,

$$
\begin{equation*}
2 J_{n}^{\prime}(x)=J_{n-1}(x)-J_{n+1}(x) \text { and } 2 n J_{n}(x)=x\left(J_{n-1}(x)+J_{n+1}(x)\right) \tag{14}
\end{equation*}
$$

9. [2.5*] Asymptotic behavior. With the notation of the lecture, we have $h(\theta, x)=x \sin \theta-n \theta, h^{\prime}(\theta, x)=$ $x \cos \theta-n, h^{\prime \prime}(\theta, x)=-x \sin \theta$, so the saddle points satisfy (approximations use $x \gg n$ assuming $n>0$ for simplicity) $\cos \theta_{c}=n / x \simeq 0$ so $\theta_{c, \pm}= \pm \arccos (n / x) \simeq \pm \pi / 2$. We have $h_{c, \pm}^{\prime \prime}=\mp \sqrt{x^{2}-n^{2}} \simeq \mp x$ (+ : maximum, $-:$ minimum) and $h_{c, \pm}= \pm\left(\sqrt{x^{2}-n^{2}}-n \arccos (n / x)\right) \simeq \pm(x-n \pi / 2)$. We can now apply the formula summing up the two contributions

$$
\begin{align*}
J_{n}(x) & \sim \frac{1}{2 \pi} \sqrt{\frac{2 \pi}{\sqrt{x^{2}-n^{2}}}}\left(e^{i\left(\sqrt{x^{2}-n^{2}}-n \arccos (n / x)\right)-i \pi / 4}+e^{-i\left(\sqrt{x^{2}-n^{2}}-n \arccos (n / x)\right)+i \pi / 4}\right) \tag{15}\\
& \sim \sqrt{\frac{2}{\pi \sqrt{x^{2}-n^{2}}}} \cos \left(\sqrt{x^{2}-n^{2}}-n \arccos (n / x)-\frac{\pi}{4}\right) \tag{16}
\end{align*}
$$

and, with the approximation $x \gg|n|$

$$
\begin{equation*}
J_{n}(x) \sim \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{n \pi}{2}-\frac{\pi}{4}\right) \tag{17}
\end{equation*}
$$

Trace formula on the rectangular billiard [$\sim 18+4$ points]

$$
\begin{equation*}
\rho(E)=\sum_{\vec{n}} \delta\left(E-E_{\vec{n}}\right) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\left(\Delta+E_{\vec{n}}\right) \psi_{\vec{n}}(x, y)=0 \tag{19}
\end{equation*}
$$

with $x \in[0, a]$ and $y \in[0, b]$ are the two-dimensional cartesian coordinates and the rectangle has dimensions a and b. $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ is the laplacian operator. Periodic boundary conditions means that the solutions satisfy to $\psi(x+a, y)=$ $\psi(x, y)$ and $\psi(x, y+b)=\psi(x, y)$. The $\left\{E_{\vec{n}}, \psi_{\vec{n}}(x, y)\right\}$ are eigenvalues and normalized eigenfunctions of the problem.

Using Poisson formula

10. [2] Periodic boundary conditions imposes $k_{1} a=2 \pi n_{1}$ with $n_{1} \in \mathbb{Z}$ and $k_{2} b=2 \pi n_{2}$ with $n_{2} \in \mathbb{Z}$, energies are simply given by $E=\vec{k}^{2}=k_{1}^{2}+k_{2}^{2}$ so $E_{n_{1}, n_{2}}=\left(\frac{2 \pi}{a} n_{1}\right)^{2}+\left(\frac{2 \pi}{b} n_{2}\right)^{2}$
11. [4* ${ }^{*}$ Let do the calculation using $f(x, y)=\delta\left(E-\left(\frac{2 \pi}{a}\right)^{2} x^{2}-\left(\frac{2 \pi}{b}\right)^{2} y^{2}\right)$

$$
\begin{align*}
\rho(E) & =\sum_{n_{1}, n_{2}} \delta\left(E-E_{n_{1}, n_{2}}\right)=\sum_{n_{1}, n_{2} \in \mathbb{Z}} f\left(n_{1}, n_{2}\right)=\sum_{m_{1}, m_{2} \in \mathbb{Z}} \iint_{-\infty}^{+\infty} f\left(x_{1}, x_{2}\right) e^{-i 2 \pi\left(m_{1} x_{1}+m_{2} x_{2}\right)} d x_{1} d x_{2} \tag{20}\\
& =\sum_{m_{1}, m_{2} \in \mathbb{Z}} \frac{a b}{(2 \pi)^{2}} \int_{0}^{+\infty} \int_{0}^{2 \pi} \delta\left(E-r^{2}\right) e^{-i r\left(a m_{1} \cos \theta+m_{2} b \sin \theta\right)} r d r d \theta \tag{21}
\end{align*}
$$

with $S=a b$ the surface of the billiard, using $\delta\left(E-r^{2}\right)=\frac{1}{2 r} \delta(r-\sqrt{E})$ (because $\left.r>0\right)$ and noticing that $r\left(a m_{1} \cos \theta+m_{2} b \sin \theta\right)=\vec{r} \cdot \vec{m}$ is the scalar product of the two vectors $\vec{r}=(r \cos \theta, r \sin \theta)$ and $\vec{m}=\left(m_{1} a, m_{2} b\right)$ so it can be rewritten as $\|\vec{r}\|\|\vec{m}\| \cos \varphi$ where φ is the relative angle between the two vectors. When θ spans $[0,2 \pi]$, then φ also spans a range of 2π so that, by periodicity of the cosine, we can rewrite the integral as

$$
\begin{equation*}
\rho(E)=\frac{S}{4 \pi} \sum_{m_{1}, m_{2} \in \mathbb{Z}} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i \sqrt{E} \sqrt{\left(a m_{1}\right)^{2}+\left(b m_{2}\right)^{2}} \cos \varphi} d \varphi=\frac{S}{4 \pi} \sum_{m_{1}, m_{2}=-\infty}^{+\infty} J_{0}\left(L_{m_{1}, m_{2}} \sqrt{E}\right) \tag{22}
\end{equation*}
$$

12. $\left[\mathbf{2}^{*}\right]$ Periodic orbits of period (n, m) can be viewed as trajectories spaning n cells along x and m along y such that the trajectory within in the (n, m) is the same as in the first cell, formally $(x+n a, y+n b) \equiv(x, y)$. Consequently the length of such orbit is the distance between two identical points in these cells, that is $L_{n, m}$. The signs of n and m gives the directions along x and y of the particle.
13. [1] Having a look at the behavior of the Bessel function, we see that the non-oscillating part is given only by the $n=0, m=0$ such that $L_{0,0}=0$ giving a independent of energy contribution. It corresponds to no periodic orbits, just points on the billiard, so unsurprisingly $\bar{\rho}=S / 4 \pi$. This actually corresponds to usual the result of the semi-classical calculation in statistical mechanics performed over phase-space

$$
\bar{\rho}=\iint \frac{d \vec{r} d \vec{p}}{(2 \pi)^{2}} \delta(E-H(\vec{r}, \vec{p}))=\frac{S}{(2 \pi)^{2}} \int_{0}^{\infty} \delta\left(E-p^{2}\right) 2 \pi p d p=\frac{S}{4 \pi}
$$

with H the classical Hamiltonian (here $H=\vec{p}^{2}$).
14. [1] Using the asymptotical behavior derived previously, we get a sum over periodic orbits

$$
\begin{equation*}
\tilde{\rho}(E) \sim \frac{S}{\sqrt{(2 \pi)^{3} \sqrt{E}}} \sum_{\text {per.orb. } p} \frac{1}{\sqrt{L_{p}}} \cos \left(L_{p} \sqrt{E}-\frac{\pi}{4}\right) \tag{23}
\end{equation*}
$$

Using the Green's function

15. Density of states from the Green's function.
a) [1] We can write $\hat{G}_{z}=\frac{1}{z-\hat{H}}=\sum_{n} \frac{\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|}{z-E_{n}}$
b) [1] The trace corresponds to an integral over $\vec{r}: \operatorname{Tr} \hat{G}_{z}=\int G_{z}(\vec{r}, \vec{r}) d \vec{r}=\sum_{n} \frac{1}{z-E_{n}}$.
c) [2] We have $\operatorname{Tr} \hat{G}_{E}^{+}=\sum_{n} \frac{1}{E-E_{n}+i \varepsilon}$. We recall the Feynman formula as written in the lecture, in the sens of distributions: $\frac{1{ }^{n}}{x-x_{0} \pm i \varepsilon}=\mathrm{PP} \frac{1}{x-x_{0}} \mp i \pi \delta\left(x-x_{0}\right)$, which gives $\operatorname{Tr} \hat{G}_{E}^{+}=\sum_{n} \operatorname{PP} \frac{1}{E-E_{n}}-i \pi \sum_{n} \delta\left(E-E_{n}\right)$ so that $\rho(E)=-\frac{1}{\pi} \operatorname{Im} \operatorname{Tr} \hat{G}_{z}$ and for the particle problem $\rho(E)=-\frac{1}{\pi} \operatorname{Im} \int G_{E}^{+}(\vec{r}, \vec{r}) d \vec{r}$.

16. Free particle Green's function:

a) [2] We move to Fourier space : the differential equation then reads $\left(z-\vec{k}^{2}\right) G_{E}^{0,+}(\vec{k})=1$, which using $z=E+i \varepsilon$ and performing the inverse Fourier transform gives (translational invariance)

$$
\begin{equation*}
G_{E}^{0,+}\left(\vec{r}, \vec{r}^{\prime}\right)=\iint_{\mathbb{R}^{2}} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} \frac{e^{i \vec{k} \cdot\left(\vec{r}-\vec{r}^{\prime}\right)}}{E-\vec{k}^{2}+i \varepsilon} \tag{24}
\end{equation*}
$$

b) [Bonus+4** One writes $\vec{R}=\vec{r}-\vec{r}^{\prime}=(X, Y)$ and using Gaussian integrals

$$
\begin{align*}
G_{E}^{0,+}(\vec{R}) & =-\int_{0}^{+\infty} d t \iint \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} e^{i\left(k_{x} X+k_{y} Y\right)} e^{-t\left(\vec{k}^{2}-E-i \varepsilon\right)} \tag{25}\\
& =-\frac{1}{(2 \pi)^{2}} \int_{0}^{+\infty} d t e^{(E+i \varepsilon) t} \sqrt{\frac{2 \pi}{2 t}} e^{-X^{2} / 4 t} \sqrt{\frac{2 \pi}{2 t}} e^{-Y^{2} / 4 t} \tag{26}\\
& =-\frac{1}{4 \pi} \int_{0}^{+\infty} d t e^{(E+i \varepsilon) t} t^{-1} e^{-R^{2} / 4 t}=-\frac{1}{4 \pi} \int_{L} d u u^{-1} e^{u-z R^{2} / 4 u} \tag{27}
\end{align*}
$$

where is the lign in the complex plane from the origin and passing through $z=E+i \varepsilon \ldots$ (contour integral discussion) ... we arrive at

$$
\begin{equation*}
\operatorname{Im} G_{E}^{0,+}\left(\vec{r}, \vec{r}^{\prime}\right)=-\frac{1}{4} J_{0}\left(\sqrt{E}\left\|\vec{r}-\vec{r}^{\prime}\right\|\right) \tag{28}
\end{equation*}
$$

17. Rectangular billiard Green's function:

a) [1] i) All terms $G_{E}^{0,+}\left(x+n a, y+m b, x^{\prime}, y^{\prime}\right)$ satisfy to the differential equation of the Green's function. Only the ($n=0, m=0$) term will produce a δ peak inside the billiard.
ii) The G_{E}^{+}function clearly satisfy to boundary conditions since applying translation to x and y amounts the shifting the sum indices that goes from $-\infty$ to $+\infty$.
b) [1] We now get

$$
\begin{align*}
\rho(E) & =-\frac{1}{\pi} \operatorname{Im} \int G_{E}^{+}(\vec{r}, \vec{r}) d \vec{r}=-\frac{1}{\pi} \sum_{n, m=-\infty}^{+\infty} \operatorname{Im} \int_{S} G_{E}^{0,+}(\vec{r}+(n a, m b), \vec{r}) d \vec{r} \tag{29}\\
& =\frac{1}{4 \pi} \sum_{n, m=-\infty}^{+\infty} \underbrace{\int_{S} d \vec{r}}_{=S} \underbrace{J_{0}(\sqrt{E}\|(n a, m b)\|)}_{\text {independent of } \vec{r}}=\frac{S}{4 \pi} \sum_{n, m=-\infty}^{+\infty} J_{0}\left(L_{n, m} \sqrt{E}\right) \tag{30}
\end{align*}
$$

