The Poisson summation formula [~3 points]

We consider a function g(z) of a real variable z, that is periodic of period 1. We recall that it can be expand in Fourier
series, in the following way
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3. [17] Using Parseval-Plancherel equality : / f(z)g(z)dx = / F(k)G(k)dk, we get
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Some properties of Bessel functions [~12 points]

4. a) [1] the behavior of the ansatz when  — 0 is y(x) ~ £™u. Injecting this in the differential equation gives for
the 72 coefficient p(p — 1) + p — v = pu = +v.
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b) [2*] with v > 0 inserting the ansatz and setting to O the coefficient in front of gives the relation

ar = —%. Furthermore, the term a1(2)z” ! is alone which sets a1(2v + 1) = 0 so only even indices k
remain. Writting the expansion y(z) = 2 3% ¢,nz®™ one obtains
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A similar reasoning allows one to show that the formula extends to v < 0.
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1) and using '(m+v+1) = (1+v) - (m+v)I'(v+ 1), one gets

5. [2"] Let us expand algebraically the formula using the exponential expansion and the binomial formula
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making the change of variable n = r — s € Z, one formally obtains
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in which we recognize the series expansion of J,,(z) for v = n integer. Yet, one has to be careful with negative n
in this formula. Formally, some negative factorial appear whenever s < —|n| when n < 0. The convention is that
these terms are infinite so they kill the contribution. For n < 0, then the definition of .J,, reads
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so these are the same functions up to a sign and the identification with the series holds assuming the previous
definition of J, holds for all v € R.
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6. [1.5] Integral representation. One sets t = e? to get ™% = Z ¢ J,(z) and then one integrates the
generating function as -
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Then, for ¥ = 0 one can make the change of variable § = 7/2 — 6 that changes the sine function into a cosine
and notice that the origin of the integral domain doesn’t matter since the cosine function is periodic
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This is a form commonly found in physics and that we used in the tutorial.

7. [1] Complex integral representation. Integrating the generating function over ¢t yields
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This can be also be seen as the n'' derivative w.r.t. t at ¢t = 0, following the principle of generating functions,

associated to the Cauchy formula. The following representation is obtained from the change of variables t = 2u/x:
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8. [2] Recursion relations. From the generating functlon — Zt Jn( t— 1/t)G(z,t) = Z Jt™t —

z Jntnfl) /2 yields the first equality by identification of powers of ¢. The second one is obtained from % =
> ot T(x) = (1 +1/t*)G Z nt" ' J,(x). Finally,

2J0(z) = Ju1(z) — Jna1(z) and 2n Jn(z) = 2(Jn_1(2) + Jni1(2)) (14)

9. [2.5"] Asymptotic behavior. With the notation of the lecture, we have h(,z) = zsinf — nf, h'(0,z) =
xcosf —n, h"'(0,z) = —xsinh, so the saddle points satisfy (approximations use z >> n assuming n > 0 for
simplicity) cosf. = n/x ~ 0 so ..+ = £ arccos(n/x) ~ £m/2. We have h y = Fvz2 —n? ~ Fz (+: maximum,
-: minimum) and he + = £(vV2? — n? — narccos(n/x)) ~ +(x — nm/2). We can now apply the formula summing
up the two contributions
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and, with the approximation x > |n|

In(x) ~ \/gcos (a: — % — %) (17)

Trace formula on the rectangular billiard [~18+4 points]

= 6(E - Egz) (18)

(A+ Eq)ia(z,y) =0 (19)

with x G [0,a] and y € [0, b] are the two-dimensional cartesian coordinates and the rectangle has dimensions a and b.
A= 812 + 5y 22 is the laplacian operator. Periodic boundary conditions means that the solutions satisfy to ¥ (z +a,y) =
Y(z,y) and w(:v y+b) =¢(x,y). The {Es, va(z,y)} are eigenvalues and normalized eigenfunctions of the problem.



Using Poisson formula

10. [2] Periodic boundary conditions imposes kia = 27mni, with n; € Z and k2b = 2wng with ne € Z, energies are
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11. [4*] Let do the calculation using f(z,y) = 6(E — (2{)2302 - (27”)2342)
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with S = ab the surface of the billiard, using §(E — r?) = L£4(r — VE) (because r > 0) and noticing that
r(amy cos @ + mabsin ) = 7+ m is the scalar product of the two vectors ¥ = (r cos 8,7 sin ) and m = (m1a, mab)
so it can be rewritten as ||7]|||/7|| cos ¢ where ¢ is the relative angle between the two vectors. When 6 spans [0, 27],
then ¢ also spans a range of 27 so that, by periodicity of the cosine, we can rewrite the integral as
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12. [2*] Periodic orbits of period (n,m) can be viewed as trajectories spaning n cells along  and m along y such that
the trajectory within in the (n,m) is the same as in the first cell, formally (z +na,y + nb) = (z,y). Consequently
the length of such orbit is the distance between two identical points in these cells, that is Ly m. The signs of n
and m gives the directions along x and y of the particle.

13. [1] Having a look at the behavior of the Bessel function, we see that the non-oscillating part is given only by
the n = 0,m = 0 such that Lo o = 0 giving a independent of energy contribution. It corresponds to no periodic
orbits, just points on the billiard, so unsurprisingly p = S/4m. This actually corresponds to usual the result of
the semi-classical calculation in statistical mechanics performed over phase-space
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with H the classical Hamiltonian (here H = p’?).

14. [1] Using the asymptotical behavior derived previously, we get a sum over periodic orbits
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Using the Green'’s function

15. Density of states from the Green’s function.

a) [1] We can write G, = 2_1 —=> |1ﬁ"_> %/’n‘
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b) [1] The trace corresponds to an integral over 7 TrG, = /GZ (7, 7)dr = Z

¢) [2] We have Tr G, = ; ﬁ We recall the Feynman formula as written in the lecture, in the sens of
distributions: pr xlo T PP$ —lx Find(x—x0), which gives Tr G = Z PPE . —im Z 0(E—Eny)
so that p(E) = —% ImTr G and for the particle problem p(E)=—= Im/ G (7, 7)

16. Free particle Green’s function:

a) [2] We move to Fourier space : the differential equation then reads (z — EZ)G%+(E) = 1, which using
z = E +ie and performing the inverse Fourier transform gives (translational invariance)
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b) [Bonus+4**] One writes R = 7 — 7' = (X,Y) and using Gaussian integrals
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where is the lign in the complex plane from the origin and passing through z = E + ic ... (contour integral
discussion) ... we arrive at
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17. Rectangular billiard Green’s function:
a) [1] i) All terms G%’+(m + na,y +mb,x’,y") satisfy to the differential equation of the Green’s function. Only
the (n = 0,m = 0) term will produce a § peak inside the billiard.
ii) The GE function clearly satisfy to boundary conditions since applying translation to z and y amounts
the shifting the sum indices that goes from —oo to +oco.
b) [1] We now get
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