
The Poisson summation formula [∼3 points]

We consider a function g(x) of a real variable x, that is periodic of period 1. We recall that it can be expand in Fourier
series, in the following way

g(x) =

+∞∑
n=−∞

cne
i2πnx , where cn =

∫ 1/2

−1/2

g(x) e−i2πnxdx (1)

1. [1] G(k) =
1√
2π

+∞∑
n=−∞

cn

∫ +∞

−∞
ei(2πn−k)xdx =

√
2π

+∞∑
n=−∞

cn δ(k − 2πn)

2. [1] cn =
∫ 1/2

−1/2

+∞∑
m=−∞

δ(x−m) e−i2πnxdx =
∫ 1/2

−1/2
δ(x) e−i2πnxdx = 1 (only m = 0 in the interval of the integral).

Thus, G(k) =
√

2π

+∞∑
n=−∞

δ(k − 2πn)

3. [1∗] Using Parseval-Plancherel equality :

∫ +∞

−∞
f(x)g(x)dx =

∫ +∞

−∞
F (k)G(k)dk, we get

∫ +∞

−∞
f(x)

+∞∑
n=−∞

δ(x− n)dx =
∑
n

f(n) (2)

=

∫ +∞

−∞
F (k)

√
2π

+∞∑
n=−∞

δ(k − 2πn)dk =
√

2π

+∞∑
m=−∞

F (2πm) =

+∞∑
m=−∞

∫ +∞

−∞
f(x)e−i2πmxdx (3)

Some properties of Bessel functions [∼12 points]

4. a) [1] the behavior of the ansatz when x→ 0 is y(x) ' xmu. Injecting this in the differential equation gives for
the xµ−2 coefficient µ(µ− 1) + µ− ν2 ⇒ µ = ±ν.

b) [2∗] with ν ≥ 0 inserting the ansatz and setting to 0 the coefficient in front of xν+k−2 gives the relation
ak = − ak−2

k(2ν+k)
. Furthermore, the term a1(2)xν−1 is alone which sets a1(2ν + 1) = 0 so only even indices k

remain. Writting the expansion y(x) = xν
∑+∞
m=0 cmx

2m one obtains

cm =
(−1)m

22mm!(1 + ν) · · · (m+ ν)
a0 (4)

taking a0 = 1/2νΓ(ν + 1) and using Γ(m+ ν + 1) = (1 + ν) · · · (m+ ν)Γ(ν + 1), one gets

Jν(x) =
(x

2

)ν +∞∑
m=0

(−1)m

m! Γ(m+ ν + 1)

(x
2

)2m
(5)

A similar reasoning allows one to show that the formula extends to ν < 0.

5. [2∗] Let us expand algebraically the formula using the exponential expansion and the binomial formula

G(x, t) = e
x
2
(t−1/t) =

+∞∑
k=0

1

k!

(x
2

(t− t−1)
)k

=

+∞∑
k=0

1

k!

(x
2

)k k∑
r,s=0
r+s=k

(r + s)!

r!s!
tr(−t)−s (6)

=

∞∑
r=0

∞∑
s=0

(−1)s
(x

2

)r+s 1

r!s!
trt−s (7)

making the change of variable n = r − s ∈ Z, one formally obtains

G(x, t) =

+∞∑
n=−∞

tn
(x

2

)n ∞∑
s=0

(−1)s

(n+ s)!s!

(x
2

)2s
(8)

in which we recognize the series expansion of Jn(x) for ν = n integer. Yet, one has to be careful with negative n
in this formula. Formally, some negative factorial appear whenever s < −|n| when n < 0. The convention is that
these terms are infinite so they kill the contribution. For n < 0, then the definition of Jn reads

Jn(x) =
(x

2

)−|n| ∞∑
s=|n|

(−1)s

(s− |n|)!s!

(x
2

)2s
=
(x

2

)−|n| ∞∑
s′=0

(−1)s
′+|n|

(s′ + |n|)!s′!

(x
2

)2s′+2|n|
= (−1)|n|J|n|(x) (9)
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so these are the same functions up to a sign and the identification with the series holds assuming the previous
definition of Jν holds for all ν ∈ R.

6. [1.5] Integral representation. One sets t = eiθ to get eix sin θ =

+∞∑
n=−∞

einθJn(x) and then one integrates the

generating function as

1

2π

∫ 2π

0

eix sin θe−inθdθ =
∑
m

Jm(x)
1

2π

∫ 2π

0

ei(m−n)θdθ = Jn(x) , (10)

Then, for ν = 0 one can make the change of variable θ ⇒ π/2 − θ that changes the sine function into a cosine
and notice that the origin of the integral domain doesn’t matter since the cosine function is periodic

J0(x) =
1

2π

∫ ϕ0+2π

ϕ0

eix cos θdθ (11)

This is a form commonly found in physics and that we used in the tutorial.

7. [1] Complex integral representation. Integrating the generating function over t yields

1

2iπ

∮
C

t−n−1e
x
2
(t−1/t)dt =

∑
m

Jm(x)
1

2iπ

∮
C

tm−n−1dt = Jn(x) (12)

This can be also be seen as the nth derivative w.r.t. t at t = 0, following the principle of generating functions,
associated to the Cauchy formula. The following representation is obtained from the change of variables t = 2u/x:

Jn(x) =
1

2iπ

(x
2

)n ∮
C

u−n−1eu−
x2

4u du (13)

8. [2] Recursion relations. From the generating function
∂G

∂x
=
∑
n

tnJ ′n(x) =
1

2
(t− 1/t)G(x, t) = (

∑
n

Jnt
n+1 −∑

n

Jnt
n−1)/2 yields the first equality by identification of powers of t. The second one is obtained from

∂G

∂t
=∑

n

tnJ ′n(x) =
x

2
(1 + 1/t2)G(x, t) =

∑
n

ntn−1Jn(x). Finally,

2J ′n(x) = Jn−1(x)− Jn+1(x) and 2nJn(x) = x(Jn−1(x) + Jn+1(x)) (14)

9. [2.5∗] Asymptotic behavior. With the notation of the lecture, we have h(θ, x) = x sin θ − nθ, h′(θ, x) =
x cos θ − n, h′′(θ, x) = −x sin θ, so the saddle points satisfy (approximations use x � n assuming n > 0 for
simplicity) cos θc = n/x ' 0 so θc,± = ± arccos(n/x) ' ±π/2. We have h′′c,± = ∓

√
x2 − n2 ' ∓x (+: maximum,

-: minimum) and hc,± = ±(
√
x2 − n2 − n arccos(n/x)) ' ±(x− nπ/2). We can now apply the formula summing

up the two contributions

Jn(x) ∼ 1

2π

√
2π√

x2 − n2

(
ei(
√
x2−n2−n arccos(n/x))−iπ/4 + e−i(

√
x2−n2−n arccos(n/x))+iπ/4

)
(15)

∼

√
2

π
√
x2 − n2

cos
(√

x2 − n2 − n arccos(n/x)− π

4

)
(16)

and, with the approximation x� |n|

Jn(x) ∼
√

2

πx
cos
(
x− nπ

2
− π

4

)
(17)

Trace formula on the rectangular billiard [∼18+4 points]

ρ(E) =
∑
~n

δ(E − E~n) (18)

(∆ + E~n)ψ~n(x, y) = 0 (19)

with x ∈ [0, a] and y ∈ [0, b] are the two-dimensional cartesian coordinates and the rectangle has dimensions a and b.

∆ = ∂2

∂x2
+ ∂2

∂y2
is the laplacian operator. Periodic boundary conditions means that the solutions satisfy to ψ(x+a, y) =

ψ(x, y) and ψ(x, y + b) = ψ(x, y). The {E~n, ψ~n(x, y)} are eigenvalues and normalized eigenfunctions of the problem.
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Using Poisson formula

10. [2] Periodic boundary conditions imposes k1a = 2πn1 with n1 ∈ Z and k2b = 2πn2 with n2 ∈ Z, energies are

simply given by E = ~k 2 = k21 + k22 so En1,n2 =

(
2π

a
n1

)2

+

(
2π

b
n2

)2

11. [4∗] Let do the calculation using f(x, y) = δ(E −
(
2π
a

)2
x2 −

(
2π
b

)2
y2)

ρ(E) =
∑
n1,n2

δ(E − En1,n2) =
∑

n1,n2∈Z

f(n1, n2) =
∑

m1,m2∈Z

+∞x

−∞

f(x1, x2)e−i2π(m1x1+m2x2)dx1dx2 (20)

=
∑

m1,m2∈Z

ab

(2π)2

+∞∫
0

2π∫
0

δ(E − r2)e−ir(am1 cos θ+m2b sin θ)rdrdθ (21)

with S = ab the surface of the billiard, using δ(E − r2) = 1
2r
δ(r −

√
E) (because r > 0) and noticing that

r(am1 cos θ +m2b sin θ) = ~r · ~m is the scalar product of the two vectors ~r = (r cos θ, r sin θ) and ~m = (m1a,m2b)
so it can be rewritten as ‖~r‖‖~m‖ cosϕ where ϕ is the relative angle between the two vectors. When θ spans [0, 2π],
then ϕ also spans a range of 2π so that, by periodicity of the cosine, we can rewrite the integral as

ρ(E) =
S

4π

∑
m1,m2∈Z

1

2π

∫ 2π

0

e−i
√
E
√

(am1)2+(bm2)2 cosϕdϕ =
S

4π

+∞∑
m1,m2=−∞

J0
(
Lm1,m2

√
E
)

(22)

12. [2∗] Periodic orbits of period (n,m) can be viewed as trajectories spaning n cells along x and m along y such that
the trajectory within in the (n,m) is the same as in the first cell, formally (x+na, y+nb) ≡ (x, y). Consequently
the length of such orbit is the distance between two identical points in these cells, that is Ln,m. The signs of n
and m gives the directions along x and y of the particle.

13. [1] Having a look at the behavior of the Bessel function, we see that the non-oscillating part is given only by
the n = 0,m = 0 such that L0,0 = 0 giving a independent of energy contribution. It corresponds to no periodic
orbits, just points on the billiard, so unsurprisingly ρ̄ = S/4π. This actually corresponds to usual the result of
the semi-classical calculation in statistical mechanics performed over phase-space

ρ̄ =
x d~r d~p

(2π)2
δ(E −H(~r, ~p)) =

S

(2π)2

∫ ∞
0

δ(E − p2)2πpdp =
S

4π

with H the classical Hamiltonian (here H = ~p 2).

14. [1] Using the asymptotical behavior derived previously, we get a sum over periodic orbits

ρ̃(E) ∼ S√
(2π)3

√
E

∑
per.orb.p

1√
Lp

cos
(
Lp
√
E − π

4

)
(23)

Using the Green’s function

15. Density of states from the Green’s function.

a) [1] We can write Ĝz =
1

z − Ĥ
=
∑
n

|ψn〉 〈ψn|
z − En

b) [1] The trace corresponds to an integral over ~r: Tr Ĝz =

∫
Gz(~r, ~r )d~r =

∑
n

1

z − En
.

c) [2] We have Tr Ĝ+
E =

∑
n

1

E − En + iε
. We recall the Feynman formula as written in the lecture, in the sens of

distributions:
1

x− x0 ± iε
= PP

1

x− x0
∓iπδ(x−x0), which gives Tr Ĝ+

E =
∑
n

PP
1

E − En
−iπ

∑
n

δ(E−En)

so that ρ(E) = − 1
π

Im Tr Ĝz and for the particle problem ρ(E) = − 1

π
Im

∫
G+
E(~r, ~r )d~r.

16. Free particle Green’s function:

a) [2] We move to Fourier space : the differential equation then reads (z − ~k 2)G0,+
E (~k ) = 1, which using

z = E + iε and performing the inverse Fourier transform gives (translational invariance)

G0,+
E (~r, ~r ′) =

x

R2

dkxdky
(2π)2

ei
~k·(~r−~r ′)

E − ~k 2 + iε
(24)
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b) [Bonus+4∗∗] One writes ~R = ~r − ~r ′ = (X,Y ) and using Gaussian integrals

G0,+
E (~R ) = −

∫ +∞

0

dt
x dkxdky

(2π)2
ei(kxX+kyY )e−t(

~k 2−E−iε) (25)

= − 1

(2π)2

∫ +∞

0

dt e(E+iε)t

√
2π

2t
e−X

2/4t

√
2π

2t
e−Y

2/4t (26)

= − 1

4π

∫ +∞

0

dt e(E+iε)t t−1 e−R
2/4t = − 1

4π

∫
L

duu−1 eu−zR
2/4u (27)

where is the lign in the complex plane from the origin and passing through z = E + iε . . . (contour integral
discussion) . . . we arrive at

ImG0,+
E (~r, ~r ′) = −1

4
J0
(√

E
∥∥~r − ~r ′∥∥) (28)

17. Rectangular billiard Green’s function:

a) [1] i) All terms G0,+
E (x+ na, y +mb, x′, y′) satisfy to the differential equation of the Green’s function. Only

the (n = 0,m = 0) term will produce a δ peak inside the billiard.
ii) The G+

E function clearly satisfy to boundary conditions since applying translation to x and y amounts
the shifting the sum indices that goes from −∞ to +∞.

b) [1] We now get

ρ(E) = − 1

π
Im

∫
G+
E(~r, ~r )d~r = − 1

π

+∞∑
n,m=−∞

Im

∫
S

G0,+
E (~r + (na,mb), ~r )d~r (29)

=
1

4π

+∞∑
n,m=−∞

∫
S

d~r︸ ︷︷ ︸
=S

J0
(√

E‖(na,mb)‖
)

︸ ︷︷ ︸
independent of ~r

=
S

4π

+∞∑
n,m=−∞

J0
(
Ln,m

√
E
)

(30)
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