Some Fourier integral [~ 3 points]

1. [2] $C_{n}(\lambda)=\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{2 \pi} \frac{\sinh \lambda}{\cosh \lambda+\cos \theta} e^{i n \theta}=\frac{2 \sinh \lambda}{2 i \pi} \oint_{|z|=1} \mathrm{~d} z \frac{z^{n}}{z^{2}+2 \cosh (\lambda) z+1}$ by the usual $z=e^{i \theta}$ change of variable over the unit circle. We consider $n \geq 0$ not to put the power in the and for negative n, one can check that one has $C_{-n}(\lambda)=C_{n}(\lambda)$. One finds two poles $z_{ \pm}=-\cosh \lambda \pm \sinh \lambda=-e^{\mp \lambda}$. Since $\lambda>0$, only z_{+}is in the circle and applying the residue theorem and generalizing to $n<0$ in the last equation, one gets

$$
\begin{equation*}
C_{n}(\lambda)=2 \sinh \lambda \frac{z_{+}^{n}}{z_{+}-z_{-}}=(-1)^{n} e^{-\lambda|n|} \tag{1}
\end{equation*}
$$

2. [1] Resumming the series explicitly: setting $a=e^{i \theta-\lambda}$ of module <1 :

$$
\begin{equation*}
C(\theta, \lambda)=\sum_{n=-\infty}^{+\infty}(-1)^{n} e^{-\lambda|n|} e^{i n \theta}=-1+\sum_{n=0}^{\infty}(-1)^{n}\left(a^{n}+\left(a^{*}\right)^{n}\right)=-1+\frac{1}{1+a}+\frac{1}{1+a^{*}}=\frac{1-|a|^{2}}{1+a+a^{*}+|a|} \tag{2}
\end{equation*}
$$

which gives back the compact form of $C(\theta, \lambda)$ using $|a|^{2}=e^{-2 \lambda}$ and $a+a^{*}=2 \cos (\theta) e^{-\lambda}$.

Expansions of the complementary error function [~ 3 points]

3. [1] One can expand $e^{-t^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} t^{2 n}$ but integrating the powers at ∞ is dangerous so one does the following

$$
\begin{equation*}
\operatorname{Erfc}(x)=\frac{2}{\sqrt{\pi}}\left(\int_{0}^{+\infty} e^{-t^{2}} \mathrm{~d} t-\int_{0}^{x} e^{-t^{2}} \mathrm{~d} t\right)=1-\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{x} t^{2 n} \mathrm{~d} t=1-\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} x^{2 n+1} \tag{3}
\end{equation*}
$$

4. [2] We are going to use the integration by parts trick since the x variable appears in the bounds of the integral. Then, we have a gaussian to integrate, which satisfies $\frac{\mathrm{d}}{\mathrm{d} t} e^{-t^{2}}=-2 t e^{-t^{2}}$, rewritten as $e^{-t^{2}}=-\frac{1}{2 t} \frac{\mathrm{~d}}{\mathrm{~d} t} e^{-t^{2}}$ which will be then easy to integrate. Thus, for the first term, we consider

$$
\begin{equation*}
\int_{x}^{+\infty} e^{-t^{2}} \mathrm{~d} t=\int_{x}^{+\infty}-\frac{1}{2 t} \frac{\mathrm{~d}}{\mathrm{~d} t} e^{-t^{2}} \mathrm{~d} t=\left[-\left.\frac{1}{2 t} e^{-t^{2}}\right|_{x} ^{\infty}-\frac{1}{2} \int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{2}} \mathrm{~d} t=\frac{e^{-x^{2}}}{2 x}-\frac{1}{2} \int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{2}} \mathrm{~d} t\right. \tag{4}
\end{equation*}
$$

Rq: another possible strategy is to set $u=t^{2}$ first and then to do integration by parts over $1 / \sqrt{u}^{n}$ and e^{-u} terms which then is very close to the exponential integral example of the course. There clearly is a recursion mechanism appearing, that one generalizes to

$$
I_{p}=\int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{p}} \mathrm{~d} t=\int_{x}^{+\infty}-\frac{1}{2 t^{p+1}} \frac{\mathrm{~d}}{\mathrm{~d} t} e^{-t^{2}} \mathrm{~d} t=\left[-\left.\frac{1}{2 t^{p+1}} e^{-t^{2}}\right|_{x} ^{\infty}-\frac{p+1}{2} \int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{p+2}} \mathrm{~d} t=\frac{e^{-x^{2}}}{2 x^{p+1}}-\frac{p+1}{2} \int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{p+2}} \mathrm{~d} t\right.
$$

So $I_{p}=\frac{e^{-x^{2}}}{2 x^{p+1}}-\frac{p+1}{2} I_{p+2}$, so that finally $p=2 n$ and, using $(2 n-1)!!=(2 n-1)(2 n-3) \cdots 3.1$:

$$
\begin{equation*}
\operatorname{Erfc}(x) \sim \frac{e^{-x^{2}}}{x \sqrt{\pi}}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n-1)!!}{2^{n}} \frac{1}{x^{2 n}}\right) \tag{5}
\end{equation*}
$$

One can check that the rest term does satisfy the convergence criteria of asymptotic series.

Field theories [~ 5 points]

Elastic string

5. [1] $\frac{\partial \mathcal{L}}{\partial \psi}-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \psi\right)}-\frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}=0$

Non-linear Schrödinger equation

7. [1] There are two Euler-Lagrange equations $\frac{\delta \mathcal{S}}{\delta \psi}=0$ and $\frac{\delta \mathcal{S}}{\delta \psi^{*}}=0$. One has, following the lecture,

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi}-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \psi\right)}-\sum_{j} \frac{\partial}{\partial x_{j}} \frac{\partial \mathcal{L}}{\partial\left(\partial_{x_{j}} \psi\right)}=0 \quad \text { and } \quad \frac{\partial \mathcal{L}}{\partial \psi^{*}}-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \psi^{*}\right)}-\sum_{j} \frac{\partial}{\partial x_{j}} \frac{\partial \mathcal{L}}{\partial\left(\partial_{x_{j}} \psi^{*}\right)}=0 \tag{6}
\end{equation*}
$$

8. [2] we get, using $\vec{\nabla} \psi \cdot \vec{\nabla} \psi^{*}=\sum_{j}\left(\partial_{x_{j}} \psi\right)\left(\partial_{x_{j}} \psi^{*}\right)$ and $|\psi|^{2}=\psi \psi^{*}$

$$
\begin{align*}
i \frac{\hbar}{2}\left(-\partial_{t} \psi^{*}-\frac{\partial}{\partial t} \psi^{*}\right)+\frac{\hbar^{2}}{2 m} \sum_{j} \frac{\partial}{\partial x_{j}}\left(\partial_{x_{j}} \psi^{*}\right)-V(x) \psi^{*}-2 g \psi\left(\psi^{*}\right)^{2} & =0 \tag{7}\\
i \frac{\hbar}{2}\left(\partial_{t} \psi+\frac{\partial}{\partial t} \psi\right)+\frac{\hbar^{2}}{2 m} \sum_{j} \frac{\partial}{\partial x_{j}}\left(\partial_{x_{j}} \psi\right)-V(x) \psi-2 g \psi^{*} \psi^{2} & =0 \tag{8}
\end{align*}
$$

Both equations are actually related by complex conjugation and gives the non-linear Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(x) \psi+2 g|\psi|^{2} \psi \tag{9}
\end{equation*}
$$

Green's function for the damped harmonic oscillator [~ 14.5 points]

9. [1] The (retarded) Green's function satisfies to

$$
\begin{equation*}
\hat{L}_{t} G=\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+2 \gamma \frac{\mathrm{~d}}{\mathrm{~d} t}+\omega_{0}^{2}\right] G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \tag{10}
\end{equation*}
$$

it depends on τ only and meets the causality condition $G(\tau)=0$ for $\tau<0$. At $t=t^{\prime}$, one has two conditions : continuity of the function $G\left(\tau=0^{+}\right)=G\left(\tau=0^{-}\right)$and for the derivative, by integrating the equation, one has $G^{\prime}\left(\tau=0^{+}\right)-G^{\prime}\left(\tau=0^{-}\right)=1$.
10. [1] The solutions of the homogeneous equation $\hat{L}_{t} x=0$ are of the form (with coefficients A, B to be determined by initial conditions):

$$
x(t)=\left\{\begin{array}{lll}
{[A \cos (\Omega t)+B \sin (\Omega t)] e^{-\gamma t}} & \text { if } & \omega_{0}>\gamma \tag{11}\\
{[A+B t] e^{-\gamma t}} & \text { if } & \omega_{0}=\gamma \\
{[A \cosh (\Gamma t)+B \sinh (\Gamma t)] e^{-\gamma t}} & \text { if } & \omega_{0}<\gamma
\end{array}\right.
$$

where, $\Omega=\sqrt{\omega_{0}^{2}-\gamma^{2}}$, or alternative forms using the $e^{ \pm i \Omega t}$ and $e^{ \pm \Gamma t}$ function basis. The particular solution is derived from the Green's function

$$
\begin{equation*}
x(t)=\int_{-\infty}^{+\infty} G\left(t, t^{\prime}\right) f\left(t^{\prime}\right) \mathrm{d} t^{\prime} . \tag{12}
\end{equation*}
$$

11. The overdamped limit $\gamma>\boldsymbol{\omega}_{\mathbf{0}}$.
a) [2] We use Fourier transform following the lecture's notations $G(\omega)=\int_{-\infty}^{+\infty} G(\tau) e^{i \omega \tau} \mathrm{~d} \tau$, one gets as in the lecture

$$
\begin{equation*}
G(\tau)=-\int_{-\infty}^{+\infty} \frac{\mathrm{d} \omega}{2 \pi} \frac{e^{-i \omega \tau}}{\omega^{2}+2 i \gamma \omega-\omega_{0}^{2}} \tag{13}
\end{equation*}
$$

Here for $\gamma>\omega_{0}$, the two simple poles $z_{ \pm}=-i \gamma \pm i \sqrt{\gamma^{2}-\omega_{0}^{2}}=i(-\gamma \pm \Gamma)$ are purely imaginary and in the lower half of the complex plane since $\Gamma<\gamma$. Applying the residue theorem for $\tau<0$ gives 0 and for $\tau>0$, it gives

$$
\begin{equation*}
G(\tau)=-\frac{-2 i \pi}{2 \pi}\left(\frac{e^{-i z_{+} \tau}}{z_{+}-z_{-}}+\frac{e^{-i z_{-} \tau}}{z_{-}-z_{+}}\right) \tag{14}
\end{equation*}
$$

one finally gets

$$
\begin{equation*}
G(\tau)=\Theta(\tau) \frac{e^{-\gamma \tau}}{\Gamma} \sinh (\Gamma \tau) \tag{15}
\end{equation*}
$$

b) [1] We substitute twice the particular solution in the average

$$
\begin{align*}
C(T) & =\langle x(t+T) x(t)\rangle=\left\langle\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{d} t_{1}^{\prime} \mathrm{d} t_{2}^{\prime} G\left(t+T, t_{1}^{\prime}\right) G\left(t, t_{2}^{\prime}\right) f\left(t_{1}^{\prime}\right) f\left(t_{2}^{\prime}\right)\right\rangle \tag{16}\\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{d} t_{1}^{\prime} \mathrm{d} t_{2}^{\prime} G\left(t+T, t_{1}^{\prime}\right) G\left(t, t_{2}^{\prime}\right)\left\langle f\left(t_{1}^{\prime}\right) f\left(t_{2}^{\prime}\right)\right\rangle=A \int_{-\infty}^{+\infty} \mathrm{d} t^{\prime} G\left(t+T, t^{\prime}\right) G\left(t, t^{\prime}\right) \tag{17}\\
& =A \int_{-\infty}^{+\infty} \mathrm{d} \tau G(\tau+T) G(\tau) \tag{18}
\end{align*}
$$

c) [2] We compute $C(T)$, assuming $T>0$ for simplicity

$$
\begin{align*}
C(T) & =\frac{A}{\Gamma^{2}} \int_{-\infty}^{+\infty} \mathrm{d} \tau \Theta(\tau+T) \Theta(\tau) e^{-\gamma(2 \tau+T)} \sinh (\Gamma(\tau+T)) \sinh (\Gamma \tau) \tag{19}\\
& =\frac{A}{\Gamma^{2}} \int_{0}^{+\infty} \mathrm{d} \tau e^{-\gamma(2 \tau+T)} \sinh (\Gamma(\tau+T)) \sinh (\Gamma \tau) \tag{20}\\
& =\frac{A e^{-\gamma T}}{4 \Gamma^{2}} \int_{0}^{+\infty} \mathrm{d} \tau e^{-2 \gamma \tau}\left(e^{\Gamma(\tau+T)}-e^{-\Gamma(\tau+T)}\right)\left(e^{\Gamma \tau}-e^{-\Gamma \tau}\right) \tag{21}\\
& =\frac{A e^{-\gamma T}}{4 \Gamma^{2}} \int_{0}^{+\infty} \mathrm{d} \tau\left(e^{\Gamma T} e^{-2(\gamma-\Gamma) \tau}+e^{-\Gamma T} e^{-2(\Gamma+\gamma) \tau}-e^{-\Gamma T} e^{-2 \gamma \tau}-e^{\Gamma T} e^{-2 \gamma \tau}\right) \tag{22}\\
& =\frac{A e^{-\gamma T}}{4 \Gamma^{2}}\left(\frac{e^{\Gamma T}}{2(\gamma-\Gamma)}+\frac{e^{-\Gamma T}}{2(\gamma+\Gamma)}-\frac{e^{-\Gamma T}}{2 \gamma}-\frac{e^{\Gamma T}}{2 \gamma}\right) \tag{23}\\
& =\frac{A e^{-\gamma T}}{4 \Gamma^{2}}\left(\frac{(\gamma+\Gamma) e^{\Gamma T}+(\gamma-\Gamma) e^{-\Gamma T}}{2\left(\gamma^{2}-\Gamma^{2}\right)}-\frac{1}{\gamma} \cosh (\Gamma T)\right) \tag{24}\\
& =\frac{A e^{-\gamma T}}{4 \Gamma^{2}}\left(\frac{1}{\omega_{0}^{2}}(\gamma \cosh (\Gamma T)+\Gamma \sinh (\Gamma T))-\frac{1}{\gamma} \cosh (\Gamma T)\right) \tag{25}\\
& =\frac{A e^{-\gamma T}}{4 \omega_{0}^{2}}\left(\frac{1}{\Gamma} \sinh (\Gamma T)+\frac{1}{\gamma} \cosh (\Gamma T)\right) \tag{26}
\end{align*}
$$

d) [1] On one hand, equipartition theorem gives $\frac{1}{2} \omega_{0}^{2}\left\langle x^{2}(t)\right\rangle=\frac{1}{2} k_{B} T_{\text {eq }}$. On the other hand, we have $C(0)=$ $\left\langle x^{2}(t)\right\rangle=\frac{A}{4 \gamma \omega_{0}^{2}}$. One infers that the white noise amplitude matches $A=4 \gamma k_{B} T_{\text {eq }}$.
e) [2] First, we have the mean-square displacement $\Delta x^{2}(T)=\left\langle[x(t+T)-x(t)]^{2}\right\rangle=\left\langle x^{2}(t+T)\right\rangle+\left\langle x^{2}(t)\right\rangle-$ $2\langle x(t+T) x(t)\rangle=2(C(0)-C(T)):$

$$
\begin{equation*}
\Delta x^{2}(T)=2 \frac{k_{B} T_{\mathrm{eq}}}{\omega_{0}^{2}}\left[1-\gamma e^{-\gamma T}\left(\frac{1}{\Gamma} \sinh (\Gamma T)+\frac{1}{\gamma} \cosh (\Gamma T)\right)\right] \tag{27}
\end{equation*}
$$

It turns out that the short time $T \rightarrow 0$ limit is in T^{2}, that gives a diffusion coefficient $D=0$, because of inertia that makes the motion ballistic at short time times. At long times, the displacement is bound due to the harmonic confinement. If γ is sufficiently greater than ω_{0}, there exist an intermediate diffusive regime (there are two characteristic times $1 /(\gamma+\Gamma)$ and $1 /(\gamma-\Gamma)$) as sketched below in log log plot

12. Critical case $\gamma=\boldsymbol{\omega}_{0}$.
a) [2] We use again Fourier transform $G(\omega)=\int_{-\infty}^{+\infty} G(\tau) e^{i \omega \tau} \mathrm{~d} \tau$, one gets as in the lecture

$$
\begin{equation*}
G(\tau)=-\int_{-\infty}^{+\infty} \frac{\mathrm{d} \omega}{2 \pi} \frac{e^{-i \omega \tau}}{\omega^{2}+2 i \gamma \omega-\gamma^{2}}=-\int_{-\infty}^{+\infty} \frac{\mathrm{d} \omega}{2 \pi} \frac{e^{-i \omega \tau}}{(\omega+i \gamma)^{2}} \tag{28}
\end{equation*}
$$

There is second order pole $z_{ \pm}=-i \gamma$ that is purely imaginary and in the lower half of the complex plane. Applying the residue theorem for $\tau<0$ gives 0 and for $\tau>0$, it gives, using the formula for higher order residues:

$$
\begin{equation*}
G(\tau)=-\frac{-2 i \pi}{2 \pi} \lim _{z \rightarrow-i \gamma} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[(z+i \gamma)^{2} \frac{e^{-i z \tau}}{(z+i \gamma)^{2}}\right]=i(-i \tau) e^{-i(-i \gamma) \tau}=\tau e^{-\gamma \tau} \tag{29}
\end{equation*}
$$

one finally gets

$$
\begin{equation*}
G(\tau)=\Theta(\tau) \tau e^{-\gamma \tau} \tag{30}
\end{equation*}
$$

b) [2] The homogeneous solution for $\tau>0$ leads to a form $G(\tau)=(A+B \tau) e^{-\gamma \tau}$ for the Green's function and we know by causality that $G(\tau)=0$ for $\tau<0$. Using the continuity equation $G\left(0^{+}\right)=0$ gives $A=0$. Using $G\left(0^{+}\right)-G\left(0^{-}\right)=1$ gives $B=1$ so we recover $G(\tau)=\Theta(\tau) \tau e^{-\gamma \tau}$.
c) [0.5] When $\gamma \rightarrow \omega_{0}$, setting $\Gamma \rightarrow 0$ in (15) for all t and using $\sinh (\Gamma \tau) \simeq \Gamma \tau$ gives back the result.

Hermite's polynomials [~ 24 points]

We recall the main results on Hermite's polynomials $H_{n}(x)$ using the notations of the lecture. We recall the table of the lecture notes but we did not prove all formulas.

Differential equation	$y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 n y(x)=0$
Rodrigues formula: $w(x)=e^{-x^{2}}$	$H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} e^{-x^{2}}$
Parameters	$S=]-\infty, \infty\left[, \quad \lambda_{n}=2 n, \quad c_{n}=(-1)^{n}, \quad N_{n}=2^{n} n!\sqrt{\pi}\right.$
Generating function	$G(x, t)=e^{-t^{2}+2 t x}=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}$
Recurrence relation	$H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x)$

General properties

13. [1] Applying the result (6.5) of the lecture, using $p(x)=1$ and $q(x)=-2 x$ we get:

$$
\begin{equation*}
w(x)=\frac{1}{p(x)} \exp \left\{\int^{x} \frac{q\left(x^{\prime}\right)}{p\left(x^{\prime}\right)} \mathrm{d} x^{\prime}\right\}=\exp \left\{-2 \int^{x} x^{\prime} \mathrm{d} x^{\prime}\right\}=e^{-x^{2}} \tag{31}
\end{equation*}
$$

14. [2] We write $y=H_{n+1}-2 x H_{n}+2 n H_{n-1}=0$! so that $y^{\prime \prime}-2 x y^{\prime}+2 n y=0$. We also have $H_{n}^{\prime \prime}-2 x H_{n}^{\prime}+2 n H_{n}=0$, $H_{n+1}^{\prime \prime}-2 x H_{n+1}^{\prime}+2(n+1) H_{n+1}=0$ and $H_{n-1}^{\prime \prime}-2 x H_{n-1}^{\prime}+2(n-1) H_{n-1}=0$. Thus

$$
\begin{aligned}
& \left(H_{n+1}-2 x H_{n}+2 n H_{n-1}\right)^{\prime \prime}-2 x\left(H_{n+1}-2 x H_{n}+2 n H_{n-1}\right)^{\prime}+2 n\left(H_{n+1}-2 x H_{n}+2 n H_{n-1}\right)=0 \\
& \left(H_{n+1}^{\prime \prime}-2 x H_{n}^{\prime \prime}+2 n H_{n-1}^{\prime \prime}-4 H_{n}^{\prime}\right)-2 x\left(H_{n+1}^{\prime}-2 x H_{n}^{\prime}+2 n H_{n-1}^{\prime}-2 H_{n}\right) \\
& \left.\quad+2(n+1-1) H_{n+1}-(2 n) 2 x H_{n}+(2 n) 2(n-1+1) H_{n-1}\right)=0 \\
& \left(H_{n+1}^{\prime \prime}-2 x H_{n+1}^{\prime}+2(n+1) H_{n+1}\right)-2 H_{n+1}-2 x\left(H_{n}^{\prime \prime}-2 x H_{n}^{\prime}+2 n H_{n}\right)-4 H_{n}^{\prime}+4 x H_{n} \\
& \quad+2 n\left(H_{n-1}^{\prime \prime}-2 x H_{n-1}^{\prime}+2(n-1) H_{n-1}\right)+4 n H_{n-1}=0 \\
& -2 H_{n+1}-4 H_{n}^{\prime}+4 x H_{n}+4 n H_{n-1}=0 \\
& -\left(2 x H_{n}-2 n H_{n-1}\right)-2 H_{n}^{\prime}+2 x H_{n}+2 n H_{n-1}=0
\end{aligned}
$$

so finally $H_{n}^{\prime}(x)=2 n H_{n-1}(x)$.
15. a) [1] Schlaefli representation. We start from the Cauchy integral formula with $f(z)=e^{-z^{2}}$ that is holomorphic and taking $z_{0}=x$:

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} e^{-x^{2}}=\frac{n!}{2 \pi i} \oint_{\mathcal{C}} \frac{f(z)}{(z-x)^{n+1}} d z \tag{32}
\end{equation*}
$$

with \mathcal{C} centered around x. Combining it with $H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} e^{-x^{2}}$, one has

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} \frac{n!}{2 i \pi} e^{x^{2}} \oint_{\mathcal{C}} \frac{e^{-z^{2}}}{(z-x)^{n+1}} \mathrm{~d} z \tag{33}
\end{equation*}
$$

b) [2] We inject this in the definition of the generating function, the countour is chosen such that $|t /(z-x)|<1$ to ensure convergence of the sum and to contain the $x-t$ pole:

$$
\begin{align*}
G(x, t) & =\frac{e^{x^{2}}}{2 i \pi} \sum_{n=0}^{\infty} t^{n}(-1)^{n} \oint_{\mathcal{C}} \frac{e^{-z^{2}}}{(z-x)^{n+1}} \mathrm{~d} z=\frac{e^{x^{2}}}{2 i \pi} \oint_{\mathcal{C}} \sum_{n=0}^{\infty}\left(\frac{-t}{z-x}\right)^{n} \frac{e^{-z^{2}}}{(z-x)} \mathrm{d} z \tag{34}\\
& =\frac{e^{x^{2}}}{2 i \pi} \oint_{\mathcal{C}} \frac{1}{1+\frac{t}{z-x}} \frac{e^{-z^{2}}}{(z-x)} \mathrm{d} z=\frac{e^{x^{2}}}{2 i \pi} \oint_{\mathcal{C}} \frac{e^{-z^{2}}}{z-(x-t)} \mathrm{d} z=e^{x^{2}} e^{-(x-t)^{2}}=e^{x^{2}} e^{-x^{2}-t^{2}+2 t x} \tag{35}\\
& =e^{-t^{2}+2 t x} \tag{36}
\end{align*}
$$

16. [2] The idea here is to use the generating function from the previous question when $x=0$:

$$
\begin{equation*}
G(t, x=0)=e^{-t^{2}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{n!}=\sum_{k=0}^{\infty} H_{k}(0) \frac{t^{k}}{k!} \tag{37}
\end{equation*}
$$

By identification, one obtains $H_{2 n+1}(0)=0$ for odd k and $H_{2 n}(0)=(-1)^{n} \frac{(2 n)!}{n!}$.
Using recursion relation or integrating $H_{n}^{\prime}(x)=2 n H_{n-1}(x)$, one finds

$$
\begin{equation*}
H_{0}=1 \quad H_{1}=2 x \quad H_{2}=4 x^{2}-2 \quad H_{3}=8 x^{3}-12 x \tag{38}
\end{equation*}
$$

17. [0.5] From Rodrigues formula or the generating function, we see that $H_{n}(-x)=(-1)^{n} H_{n}(x)$.
18. [2] Series expansion. Starting from the expansion of the generating function, show that Hermite's polynomials can be expanded as

$$
\begin{equation*}
H_{n}(x)=\sum_{s=0}^{\lfloor n / 2\rfloor}(-1)^{s} \frac{n!}{s!(n-2 s)!}(2 x)^{n-2 s} \tag{39}
\end{equation*}
$$

in which you have to give the expression of S_{n} as a function of n and the h_{s}^{n} coefficients as a function of s and n.

Norm and orthogonality

19. [1] The scalar product requires to use the weight function $w(x)$, then we must write

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x) \mathrm{d} x=N_{n} \delta_{n m} \tag{40}
\end{equation*}
$$

with N_{n} the norm.
20. [1] we write

$$
\begin{equation*}
N_{n}=\int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{n}(x) \mathrm{d} x=(-1)^{n} \int_{-\infty}^{\infty} H_{n}(x) \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} e^{-x^{2}} \mathrm{~d} x=\int_{-\infty}^{\infty} e^{-x^{2}} \frac{\mathrm{~d}^{n} H_{n}}{\mathrm{~d} x^{n}} \mathrm{~d} x \tag{41}
\end{equation*}
$$

where we have used n times the integration by parts. This H_{n} is a polynomial of order $n, \frac{\mathrm{~d}^{n} H_{n}}{\mathrm{~d} x^{n}}$ is just the constant $n!a_{n}$ steming from the leading term $a_{n} x^{n}$ that can be computed from Rodrigues formula. From $\frac{\mathrm{d}}{\mathrm{d} x} e^{-x^{2}}=$ $-2 x e^{-x^{2}}$, we see that $a_{n}=2^{n}$ (the $(-1)^{n}$ factor cancels with the one from the definition. Thus,

$$
\begin{equation*}
N_{n}=n!2^{n} \int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{~d} x=n!2^{n} \sqrt{\pi} \tag{42}
\end{equation*}
$$

21. [1] Compute explicitly the integral

$$
\begin{equation*}
F(s, t)=\int_{-\infty}^{\infty} e^{-x^{2}} G(x, s) G(x, t) \mathrm{d} x=\sqrt{\pi} e^{2 s t} \tag{43}
\end{equation*}
$$

22. [1.5] By considering the double expansion of $F(s, t)$ as a function of both s and t, show that the $H_{n}(x)$ polynomials form an orthogonal basis. Infer again the N_{n} coefficient from this reasoning.
23. Application: Let $f(x)$ be a function that we expand over the $H_{n}(x)$ basis as $f(x)=\sum_{n=0}^{\infty} a_{n} H_{n}(x)$.
a) $[\mathbf{0 . 5}]$ Give the explicit formula allowing one to compute the a_{n}.
b) $[1.5]$ Compute the a_{n} in the case where $f(x)=x^{2 r}$ with r integer.

Mehler's formula and thermal density matrix

We consider the following Hamiltonian operator (harmonic oscillator):

$$
\begin{equation*}
\hat{H}=-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\frac{1}{2} x^{2}, \quad \varphi_{n}(x)=H_{n}(x) \frac{e^{-x^{2} / 2}}{\sqrt{N_{n}}} \tag{44}
\end{equation*}
$$

24. [1] Show that the $\varphi_{n}(x)$ are normalized eigenfunctions for \hat{H} and give their eigenvalues E_{n}.

The thermal density matrix $\rho(x, y, \beta)$ describes the quantum statistical features of \hat{H}. It satisfies to the following diffusion equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial \beta}=-\hat{H}_{x} \rho \tag{45}
\end{equation*}
$$

in which \hat{H}_{x} means that \hat{H}_{x} acts on the x-variable only. It is then natural to look for a solution that is an expansion over the φ_{n} basis:

$$
\begin{equation*}
\rho(x, y, \beta)=\sum_{n=0}^{\infty} c_{n}(\beta) \varphi_{n}(x) \varphi_{n}(y) \tag{46}
\end{equation*}
$$

25. [1] Show that $c_{n}(\beta)=e^{-\beta / 2} e^{-\beta n}$.

For $0 \leq t<1$, Mehler's formula reads

$$
\begin{align*}
\sum_{n=0}^{\infty} t^{n} \varphi_{n}(x) \varphi_{n}(y) & =\frac{1}{\sqrt{\pi\left(1-t^{2}\right)}} \exp \left(\frac{t}{1-t^{2}} 2 x y-\frac{1+t^{2}}{1-t^{2}} \frac{x^{2}+y^{2}}{2}\right) \tag{47}\\
& =\frac{1}{\sqrt{\pi\left(1-t^{2}\right)}} \exp \left(\frac{x^{2}-y^{2}}{2}-\frac{(x-y t)^{2}}{1-t^{2}}\right) \tag{48}
\end{align*}
$$

26. [1] After explaining the Gaussian equality $e^{-x^{2}}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-u^{2}+2 i x u} \mathrm{~d} u$, show that

$$
\begin{equation*}
H_{n}(x)=\frac{(-2 i)^{n}}{\sqrt{\pi}} e^{x^{2}} \int_{-\infty}^{\infty} u^{n} e^{-u^{2}+2 i x u} \mathrm{~d} u \tag{49}
\end{equation*}
$$

27. [2] Using (49), prove (48) through an explicit resummation of the left-hand side expansion.
28. [2] Finally, show that the thermal density matrix can be put into the compact form

$$
\begin{equation*}
\rho(x, y, \beta)=C(\beta) \exp \left(-A_{+}(\beta) \frac{(x+y)^{2}}{4}-A_{-}(\beta) \frac{(x-y)^{2}}{4}\right) \tag{50}
\end{equation*}
$$

in which C and the $A_{ \pm}$are simple functions of β to be determined explicitly.

