
Some Fourier integral [∼ 3 points]

1. [2] Cn(λ) =

∫ 2π

0

dθ

2π

sinhλ

coshλ+ cos θ
einθ =

2 sinhλ

2iπ

∮
|z|=1

dz
zn

z2 + 2 cosh(λ)z + 1
by the usual z = eiθ change of

variable over the unit circle. We consider n ≥ 0 not to put the power in the and for negative n, one can check
that one has C−n(λ) = Cn(λ). One finds two poles z± = − coshλ ± sinhλ = −e∓λ. Since λ > 0, only z+ is in
the circle and applying the residue theorem and generalizing to n < 0 in the last equation, one gets

Cn(λ) = 2 sinhλ
zn+

z+ − z−
= (−1)ne−λ|n| (1)

2. [1] Resumming the series explicitly: setting a = eiθ−λ of module < 1:

C(θ, λ) =

+∞∑
n=−∞

(−1)ne−λ|n| einθ = −1 +

∞∑
n=0

(−1)n(an + (a∗)n) = −1 +
1

1 + a
+

1

1 + a∗
=

1− |a|2

1 + a+ a∗ + |a| (2)

which gives back the compact form of C(θ, λ) using |a|2 = e−2λ and a+ a∗ = 2 cos(θ)e−λ.

Expansions of the complementary error function [∼ 3 points]

3. [1] One can expand e−t
2

=

∞∑
n=0

(−1)n

n!
t2n but integrating the powers at ∞ is dangerous so one does the following

Erfc(x) =
2√
π

(∫ +∞

0

e−t
2

dt−
∫ x

0

e−t
2

dt

)
= 1− 2√

π

∞∑
n=0

(−1)n

n!

∫ x

0

t2ndt = 1− 2√
π

∞∑
n=0

(−1)n

n!(2n+ 1)
x2n+1

(3)

4. [2] We are going to use the integration by parts trick since the x variable appears in the bounds of the integral.

Then, we have a gaussian to integrate, which satisfies d
dt
e−t

2

= −2te−t
2

, rewritten as e−t
2

= − 1
2t

d
dt
e−t

2

which
will be then easy to integrate. Thus, for the first term, we consider∫ +∞

x

e−t
2

dt =

∫ +∞

x

− 1

2t

d

dt
e−t

2

dt =

[
− 1

2t
e−t

2
∣∣∣∣∞
x

− 1

2

∫ +∞

x

e−t
2

t2
dt =

e−x
2

2x
− 1

2

∫ +∞

x

e−t
2

t2
dt (4)

Rq: another possible strategy is to set u = t2 first and then to do integration by parts over 1/
√
u
n

and e−u terms
which then is very close to the exponential integral example of the course. There clearly is a recursion mechanism
appearing, that one generalizes to

Ip =

∫ +∞

x

e−t
2

tp
dt =

∫ +∞

x

− 1

2tp+1

d

dt
e−t

2

dt =

[
− 1

2tp+1
e−t

2
∣∣∣∣∞
x

− p+ 1

2

∫ +∞

x

e−t
2

tp+2
dt =

e−x
2

2xp+1
− p+ 1

2

∫ +∞

x

e−t
2

tp+2
dt

So Ip =
e−x

2

2xp+1
− p+ 1

2
Ip+2, so that finally p = 2n and, using (2n− 1)!! = (2n− 1)(2n− 3) · · · 3.1 :

Erfc(x) ∼ e−x
2

x
√
π

(
∞∑
n=0

(−1)n
(2n− 1)!!

2n
1

x2n

)
(5)

One can check that the rest term does satisfy the convergence criteria of asymptotic series.

Field theories [∼ 5 points]

Elastic string

5. [1]
∂L
∂ψ
− ∂

∂t

∂L
∂(∂tψ)

− ∂

∂x

∂L
∂(∂xψ)

= 0

6. [1] ρ

(
− ∂

∂t
∂tψ + c2

∂

∂x
∂xψ

)
= 0 so

∂2ψ

∂t2
− c2 ∂

2ψ

∂x2
= 0, d’Alembert equation with velocity c.
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Non-linear Schrödinger equation

7. [1] There are two Euler-Lagrange equations δS
δψ

= 0 and δS
δψ∗ = 0. One has, following the lecture,

∂L
∂ψ
− ∂

∂t

∂L
∂(∂tψ)

−
∑
j

∂

∂xj

∂L
∂(∂xjψ)

= 0 and
∂L
∂ψ∗

− ∂

∂t

∂L
∂(∂tψ∗)

−
∑
j

∂

∂xj

∂L
∂(∂xjψ

∗)
= 0 (6)

8. [2] we get, using ~∇ψ · ~∇ψ∗ =
∑
j(∂xjψ)(∂xjψ

∗) and |ψ|2 = ψ ψ∗

i
~
2

(
−∂tψ∗ −

∂

∂t
ψ∗
)

+
~2

2m

∑
j

∂

∂xj
(∂xjψ

∗)− V (x)ψ∗ − 2gψ(ψ∗)2 = 0 (7)

i
~
2

(
∂tψ +

∂

∂t
ψ

)
+

~2

2m

∑
j

∂

∂xj
(∂xjψ)− V (x)ψ − 2gψ∗ψ2 = 0 (8)

Both equations are actually related by complex conjugation and gives the non-linear Schrödinger equation

i~∂ψ
∂t

= − ~2

2m
∆ψ + V (x)ψ + 2g|ψ|2ψ (9)

Green’s function for the damped harmonic oscillator [∼ 14.5 points]

9. [1] The (retarded) Green’s function satisfies to

L̂tG =

[
d2

dt2
+ 2γ

d

dt
+ ω2

0

]
G(t, t′) = δ(t− t′) (10)

it depends on τ only and meets the causality condition G(τ) = 0 for τ < 0. At t = t′, one has two conditions :
continuity of the function G(τ = 0+) = G(τ = 0−) and for the derivative, by integrating the equation, one has
G′(τ = 0+)−G′(τ = 0−) = 1.

10. [1] The solutions of the homogeneous equation L̂tx = 0 are of the form (with coefficients A, B to be determined
by initial conditions):

x(t) =


[A cos(Ωt) +B sin(Ωt)]e−γt if ω0 > γ

[A+Bt]e−γt if ω0 = γ

[A cosh(Γt) +B sinh(Γt)]e−γt if ω0 < γ

(11)

where, Ω =
√
ω2

0 − γ2, or alternative forms using the e±iΩt and e±Γt function basis. The particular solution is
derived from the Green’s function

x(t) =

∫ +∞

−∞
G(t, t′)f(t′)dt′ . (12)

11. The overdamped limit γ > ω0.

a) [2] We use Fourier transform following the lecture’s notations G(ω) =
∫ +∞
−∞ G(τ)eiωτdτ , one gets as in the

lecture

G(τ) = −
∫ +∞

−∞

dω

2π

e−iωτ

ω2 + 2iγω − ω2
0

(13)

Here for γ > ω0, the two simple poles z± = −iγ ± i
√
γ2 − ω2

0 = i(−γ ± Γ) are purely imaginary and in the
lower half of the complex plane since Γ < γ. Applying the residue theorem for τ < 0 gives 0 and for τ > 0,
it gives

G(τ) = −−2iπ

2π

(
e−iz+τ

z+ − z−
+

e−iz−τ

z− − z+

)
(14)

one finally gets

G(τ) = Θ(τ)
e−γτ

Γ
sinh(Γτ) (15)
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b) [1] We substitute twice the particular solution in the average

C(T ) = 〈x(t+ T )x(t)〉 =

〈∫ +∞

−∞

∫ +∞

−∞
dt′1dt′2G(t+ T, t′1)G(t, t′2)f(t′1)f(t′2)

〉
(16)

=

∫ +∞

−∞

∫ +∞

−∞
dt′1dt′2G(t+ T, t′1)G(t, t′2)

〈
f(t′1)f(t′2)

〉
= A

∫ +∞

−∞
dt′G(t+ T, t′)G(t, t′) (17)

= A

∫ +∞

−∞
dτG(τ + T )G(τ) (18)

c) [2] We compute C(T ), assuming T > 0 for simplicity

C(T ) =
A

Γ2

∫ +∞

−∞
dτ Θ(τ + T )Θ(τ)e−γ(2τ+T ) sinh(Γ(τ + T )) sinh(Γτ) (19)

=
A

Γ2

∫ +∞

0

dτ e−γ(2τ+T ) sinh(Γ(τ + T )) sinh(Γτ) (20)

=
Ae−γT

4Γ2

∫ +∞

0

dτ e−2γτ
(
eΓ(τ+T ) − e−Γ(τ+T )

)(
eΓτ − e−Γτ

)
(21)

=
Ae−γT

4Γ2

∫ +∞

0

dτ
(
eΓT e−2(γ−Γ)τ + e−ΓT e−2(Γ+γ)τ − e−ΓT e−2γτ − eΓT e−2γτ

)
(22)

=
Ae−γT

4Γ2

(
eΓT

2(γ − Γ)
+

e−ΓT

2(γ + Γ)
− e−ΓT

2γ
− eΓT

2γ

)
(23)

=
Ae−γT

4Γ2

(
(γ + Γ)eΓT + (γ − Γ)e−ΓT

2(γ2 − Γ2)
− 1

γ
cosh(ΓT )

)
(24)

=
Ae−γT

4Γ2

(
1

ω2
0

(γ cosh(ΓT ) + Γ sinh(ΓT ))− 1

γ
cosh(ΓT )

)
(25)

=
Ae−γT

4ω2
0

(
1

Γ
sinh(ΓT ) +

1

γ
cosh(ΓT )

)
(26)

d) [1] On one hand, equipartition theorem gives 1
2
ω2

0

〈
x2(t)

〉
= 1

2
kBTeq. On the other hand, we have C(0) =〈

x2(t)
〉

= A
4γω2

0
. One infers that the white noise amplitude matches A = 4γkBTeq.

e) [2] First, we have the mean-square displacement ∆x2(T ) =
〈
[x(t+ T )− x(t)]2

〉
=
〈
x2(t+ T )

〉
+
〈
x2(t)

〉
−

2 〈x(t+ T )x(t)〉 = 2(C(0)− C(T )) :

∆x2(T ) = 2
kBTeq

ω2
0

[
1− γe−γT

(
1

Γ
sinh(ΓT ) +

1

γ
cosh(ΓT )

)]
(27)

It turns out that the short time T → 0 limit is in T 2, that gives a diffusion coefficient D = 0, because of
inertia that makes the motion ballistic at short time times. At long times, the displacement is bound due to
the harmonic confinement. If γ is sufficiently greater than ω0, there exist an intermediate diffusive regime
(there are two characteristic times 1/(γ + Γ) and 1/(γ − Γ)) as sketched below in log log plot
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12. Critical case γ = ω0.

a) [2] We use again Fourier transform G(ω) =
∫ +∞
−∞ G(τ)eiωτdτ , one gets as in the lecture

G(τ) = −
∫ +∞

−∞

dω

2π

e−iωτ

ω2 + 2iγω − γ2
= −

∫ +∞

−∞

dω

2π

e−iωτ

(ω + iγ)2
(28)

There is second order pole z± = −iγ that is purely imaginary and in the lower half of the complex plane.
Applying the residue theorem for τ < 0 gives 0 and for τ > 0, it gives, using the formula for higher order
residues :

G(τ) = −−2iπ

2π
lim

z→−iγ

d

dz

[
(z + iγ)2 e−izτ

(z + iγ)2

]
= i(−iτ)e−i(−iγ)τ = τ e−γτ (29)

one finally gets

G(τ) = Θ(τ)τ e−γτ (30)

b) [2] The homogeneous solution for τ > 0 leads to a form G(τ) = (A+ Bτ)e−γτ for the Green’s function and
we know by causality that G(τ) = 0 for τ < 0. Using the continuity equation G(0+) = 0 gives A = 0. Using
G(0+)−G(0−) = 1 gives B = 1 so we recover G(τ) = Θ(τ)τ e−γτ .

c) [0.5] When γ → ω0, setting Γ→ 0 in (15) for all t and using sinh(Γτ) ' Γτ gives back the result.

Hermite’s polynomials [∼ 24 points]

We recall the main results on Hermite’s polynomials Hn(x) using the notations of the lecture. We recall the table of
the lecture notes but we did not prove all formulas.

Differential equation y′′(x)− 2xy′(x) + 2ny(x) = 0

Rodrigues formula: w(x) = e−x
2

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

Parameters S =]−∞,∞[ , λn = 2n , cn = (−1)n , Nn = 2nn!
√
π

Generating function G(x, t) = e−t
2+2tx =

∞∑
n=0

Hn(x)
tn

n!

Recurrence relation Hn+1(x) = 2xHn(x)− 2nHn−1(x)

General properties

13. [1] Applying the result (6.5) of the lecture, using p(x) = 1 and q(x) = −2x we get:

w(x) =
1

p(x)
exp

{∫ x q(x′)

p(x′)
dx′
}

= exp

{
−2

∫ x

x′dx′
}

= e−x
2

(31)

14. [2] We write y = Hn+1−2xHn+2nHn−1 = 0! so that y′′−2xy′+2ny = 0. We also have H ′′n −2xH ′n+2nHn = 0,
H ′′n+1 − 2xH ′n+1 + 2(n+ 1)Hn+1 = 0 and H ′′n−1 − 2xH ′n−1 + 2(n− 1)Hn−1 = 0. Thus

(Hn+1 − 2xHn + 2nHn−1)′′ − 2x(Hn+1 − 2xHn + 2nHn−1)′ + 2n(Hn+1 − 2xHn + 2nHn−1) = 0

(H ′′n+1 − 2xH ′′n + 2nH ′′n−1 − 4H ′n)− 2x(H ′n+1 − 2xH ′n + 2nH ′n−1 − 2Hn)

+ 2(n+ 1− 1)Hn+1 − (2n)2xHn + (2n)2(n− 1 + 1)Hn−1) = 0

(H ′′n+1 − 2xH ′n+1 + 2(n+ 1)Hn+1)− 2Hn+1 − 2x(H ′′n − 2xH ′n + 2nHn)− 4H ′n + 4xHn

+ 2n(H ′′n−1 − 2xH ′n−1 + 2(n− 1)Hn−1) + 4nHn−1 = 0

− 2Hn+1 − 4H ′n + 4xHn + 4nHn−1 = 0

− (2xHn − 2nHn−1)− 2H ′n + 2xHn + 2nHn−1 = 0

so finally H ′n(x) = 2nHn−1(x).

4



15. a) [1] Schlaefli representation. We start from the Cauchy integral formula with f(z) = e−z
2

that is holomorphic
and taking z0 = x:

dn

dxn
e−x

2

=
n!

2πi

∮
C

f(z)

(z − x)n+1
dz (32)

with C centered around x. Combining it with Hn(x) = (−1)nex
2 dn

dxn
e−x

2

, one has

Hn(x) = (−1)n
n!

2iπ
ex

2
∮
C

e−z
2

(z − x)n+1
dz (33)

b) [2] We inject this in the definition of the generating function, the countour is chosen such that |t/(z − x)| < 1
to ensure convergence of the sum and to contain the x− t pole:

G(x, t) =
ex

2

2iπ

∞∑
n=0

tn(−1)n
∮
C

e−z
2

(z − x)n+1
dz =

ex
2

2iπ

∮
C

∞∑
n=0

(
−t
z − x

)n
e−z

2

(z − x)
dz (34)

=
ex

2

2iπ

∮
C

1

1 + t
z−x

e−z
2

(z − x)
dz =

ex
2

2iπ

∮
C

e−z
2

z − (x− t)dz = ex
2

e−(x−t)2 = ex
2

e−x
2−t2+2tx (35)

= e−t
2+2tx (36)

16. [2] The idea here is to use the generating function from the previous question when x = 0:

G(t, x = 0) = e−t
2

=
∞∑
n=0

(−1)n
t2n

n!
=

∞∑
k=0

Hk(0)
tk

k!
(37)

By identification, one obtains H2n+1(0) = 0 for odd k and H2n(0) = (−1)n
(2n)!

n!
.

Using recursion relation or integrating H ′n(x) = 2nHn−1(x), one finds

H0 = 1 H1 = 2x H2 = 4x2 − 2 H3 = 8x3 − 12x (38)

17. [0.5] From Rodrigues formula or the generating function, we see that Hn(−x) = (−1)nHn(x).

18. [2] Series expansion. Starting from the expansion of the generating function, show that Hermite’s polynomials
can be expanded as

Hn(x) =

bn/2c∑
s=0

(−1)s
n!

s!(n− 2s)!
(2x)n−2s (39)

in which you have to give the expression of Sn as a function of n and the hns coefficients as a function of s and n.

Norm and orthogonality

19. [1] The scalar product requires to use the weight function w(x), then we must write∫ ∞
−∞

e−x
2

Hn(x)Hm(x)dx = Nnδnm (40)

with Nn the norm.

20. [1] we write

Nn =

∫ ∞
−∞

e−x
2

Hn(x)Hn(x)dx = (−1)n
∫ ∞
−∞

Hn(x)
dn

dxn
e−x

2

dx =

∫ ∞
−∞

e−x
2 dnHn

dxn
dx (41)

where we have used n times the integration by parts. This Hn is a polynomial of order n, dnHn
dxn

is just the

constant n!an steming from the leading term anx
n that can be computed from Rodrigues formula. From d

dx
e−x

2

=

−2xe−x
2

, we see that an = 2n (the (−1)n factor cancels with the one from the definition. Thus,

Nn = n!2n
∫ ∞
−∞

e−x
2

dx = n! 2n
√
π (42)
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21. [1] Compute explicitly the integral

F (s, t) =

∫ ∞
−∞

e−x
2

G(x, s)G(x, t)dx =
√
πe2st (43)

22. [1.5] By considering the double expansion of F (s, t) as a function of both s and t, show that the Hn(x) polynomials
form an orthogonal basis. Infer again the Nn coefficient from this reasoning.

23. Application: Let f(x) be a function that we expand over the Hn(x) basis as f(x) =

∞∑
n=0

anHn(x).

a) [0.5] Give the explicit formula allowing one to compute the an.

b) [1.5] Compute the an in the case where f(x) = x2r with r integer.

Mehler’s formula and thermal density matrix

We consider the following Hamiltonian operator (harmonic oscillator):

Ĥ = −1

2

d2

dx2
+

1

2
x2 , ϕn(x) = Hn(x)

e−x
2/2

√
Nn

(44)

24. [1] Show that the ϕn(x) are normalized eigenfunctions for Ĥ and give their eigenvalues En.

The thermal density matrix ρ(x, y, β) describes the quantum statistical features of Ĥ. It satisfies to the following
diffusion equation

∂ρ

∂β
= −Ĥxρ (45)

in which Ĥx means that Ĥx acts on the x-variable only. It is then natural to look for a solution that is an expansion
over the ϕn basis:

ρ(x, y, β) =

∞∑
n=0

cn(β)ϕn(x)ϕn(y) . (46)

25. [1] Show that cn(β) = e−β/2e−βn.

For 0 ≤ t < 1, Mehler’s formula reads

∞∑
n=0

tnϕn(x)ϕn(y) =
1√

π(1− t2)
exp

(
t

1− t2 2xy − 1 + t2

1− t2
x2 + y2

2

)
(47)

=
1√

π(1− t2)
exp

(
x2 − y2

2
− (x− yt)2

1− t2

)
(48)

26. [1] After explaining the Gaussian equality e−x
2

=
1√
π

∫ ∞
−∞

e−u
2+2ixudu, show that

Hn(x) =
(−2i)n√

π
ex

2
∫ ∞
−∞

une−u
2+2ixudu (49)

27. [2] Using (49), prove (48) through an explicit resummation of the left-hand side expansion.

28. [2] Finally, show that the thermal density matrix can be put into the compact form

ρ(x, y, β) = C(β) exp

(
−A+(β)

(x+ y)2

4
−A−(β)

(x− y)2

4

)
(50)

in which C and the A± are simple functions of β to be determined explicitly.
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