
Poisson formula on the disk [7]

1. a) [1] f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz.

b) [2] Clearly, the point 1/z̄0 lies outside the circle C so there is no pole inside the circle. We get

0 =
1

2πi

∮
C

f(z)

z − 1/z̄0
dz.

c) [2] We subtract the two previous relation in order to rewrite the integrals with real numbers and an angular
variable only. We take the parametrization z0 = reiθ and z = eiφ, dz = izdφ : first, after calculation(

1

z − z0
− 1

z − 1/z̄0

)
iz = i

1− r2

1− 2r cos(θ − φ) + r2

that is inserted into the integral to give the desired result

f(z = reiθ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − φ) + r2
f(eiφ) dφ . (1)

2. [2] Without charges, the electrostatic potential is an harmonic function. So are the real an imaginary parts of
the previous f function since it is analytical. With f(r, θ) = fR(r, θ) + ifI(r, θ), we thus have two properties :
∆̂fR = 0 and ∆̂fI = 0 and both fR,I satisfy to (1) by taking the real and imaginary part of the Poisson relation.
Last, choosing say the real part such that fR(1, θ) = v(θ), we have that V = fR is solution of the Poisson equation
and the value of the potential inside the disk is obtained from

V (r, θ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − φ) + r2
v(φ) dφ . (2)

involving only real numbers.

Saddle point technique with many variables [8]

We consider the function f(x) of the variable x > 0 defined under the integral form

f(x) =

∫
d~t exp

(
−xh(~t )

)
(3)

assuming a entire multivariate real function h(~t ) of d variables that has a single absolute minimum ~tc. We assume for
sake of simplicity that h is entire and that the integral range if the whole space Rd and we take the limit x→∞.

1. [3] We expand h around its minimum ~tc to second order

h(~t ) ' h(~tc ) +
1

2

d∑
i,j=1

Hc
ij(ti − tc,i)(tj − tc,j)

using the notations Hc
ij =

∂2h

∂ti∂tj

∣∣∣∣
~tc

for the Hessian matrix that is a positively defined matrix for an absolute

minimum (we assume no zero eigenvalue for non-degenerate minimum). The saddle point equation giving the
extrema is

~∇~t h|~tc = ~0 (4)

Then, the saddle point technique gives

f(x) ' exp
(
−xh(~tc )

) ∫
d~t exp

(
−x

2

d∑
i,j=1

Hc
ij(ti − tc,i)(tj − tc,j)

)
(5)

which is a Gaussian integral. We get

f(x) '
√

(2π)d

detHc

e−xh(
~tc )

xd/2
(6)

2. [2] The saddle point equation is now

~∇~t h|~tc = ~b (7)

so ~tc(~b ). Applying the previous result using the fact that the external field ~b does not change the Hessian matrix,
we get

Z(x,~b ) '
√

(2π)d

detHc(~b )

e−x [h(~tc(~b ))−~b·~tc(~b ) ]

xd/2
(8)
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3. [3] As usual,〈
~t
〉

=
1

Z(x,~0 )

∫
d~t~t exp

[
−x h(~t )

]
(9)

=
1

xZ(x,~0 )
~∇~b
∫

d~t exp
(
−x

[
h(~t )−~b · ~t

]) ∣∣∣∣
~b=~0

(10)

=
1

x
~∇~b lnZ(x,~b )

∣∣∣∣
~b=~0

(11)

Using the saddle point approximation, we get

1

x
lnZ(x,~b ) ' −h(~tc(~b )) +~b · ~tc(~b )− d

2x
ln(x/2π)− 1

2x
ln detHc(~b )

The last two terms can be neglected when x→∞. The first two give〈
~t
〉
' −~∇~bh(~tc(~b )) + ~tc(~b ) +~b · ~∇~b~tc(~b )

but by chain rule, we have ~∇~bh = ~∇~th · ~∇~b~tc(~b ) = ~b · ~∇~b~tc(~b ) where we have used the saddle point equation in
the last equality so that finally: 〈

~t
〉
' ~tc(~b )

Green’s function for 1D and 2D waves [12]

1. [1] t′ and ~r ′ are the time and position of the impulse. In free space with translational and rotational invariance,

we expect the Green’s function to depend only on the relative distance ~R = ~r − ~r ′ (actually its norm) and the
time from impulse τ = t− t′.

We’ll note R = ‖~R‖ .

2. [2] Fourier transforming the equation after changing variables to[
∆̂~R −

∂2

∂τ2

]
G(~R, τ) = δ(~R )δ(τ) gives (ω2 − ~k 2)G̃(~k, ω) = 1 (12)

so, with k = ‖~k‖ ,

G(~R, τ) =

∫
d~k

(2π)d

∫
dω

2π

ei(
~k·~R−ωτ)

ω2 − k2 (13)

3. [2] For the integral over ω, we have two poles ω = ±k lying on the real axis. We regularize this integral using
the causal regularization by shifting these poles below the real axis to ω = ±k − iε, ε → 0+. Then, for τ < 0,
we compute the integral using the upper half-circle and residue theorem, which gives zero since there is no poles.
For τ > 0, we must use the lower half-circle. Adding the contribuion of the two poles, we get

G(~R, τ) = −Θ(τ)

∫
d~k

(2π)d
sin(kτ)

k
ei
~k·~R (14)

with Θ the Heavyside function, that accounts for vanishing of the integral when τ < 0.

4. d = 1 case

a) [1] Using the result of the lecture / tutorial, we know that

∫ ∞
−∞

sin(u)

u
du = π. Now, we the y variable, if we

write I(y) =
1

π

∫ ∞
−∞

sin(ky)

k
dk, we have I(y) = 0 if y = 0, using u = ky, I(y) = +1 if y > 0 and I(y) = −1

if y < 0 (it is the sign function !). In the end, we can use

I(y) =
1

π

∫ ∞
−∞

sin(ky)

k
dk = 2 Θ(y)− 1

b) [2] First

G(x, τ) = −Θ(τ)

∫
dkx
2π

sin(kτ)

k
cos(kxx) = −Θ(τ)

∫
dkx
2π

sin(kxτ)

kx
cos(kxx) (15)

Using cos(kxx) sin(kxτ) = 1
2
[sin(kx(τ + x)) + sin(kx(τ − x))], we get

G(x, τ) = −Θ(τ)

4
[I(x+ τ) + I(τ − x)] = −Θ(τ)

2
[Θ(x+ τ) + Θ(τ − x)− 1] (16)
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With τ > 0, the last term can be shown to be equal to Θ(τ − |x|) and then, the condition Θ(τ) can get
absorbed since non-zero result requires τ > |x| > 0.

G(x, τ) = −1

2
Θ(τ − |x|) (17)

5. d = 2 case

a) [1] Eq. (14) in polar coordinates (k, θ) in k-space reads

G(R, τ) = −Θ(τ)

∫ ∞
0

∫ 2π

0

kdkdθ

(2π)2
sin(kτ)

k
eikR cos θ = −Θ(τ)

∫ ∞
0

dk

2π
sin(kτ) J0(kR) (18)

with the Bessel function J0(α) =
1

2π

∫ 2π

0

dθ eiα cos θ

b) [3] Using the Bessel function identity for real α

J0(α) =
2

π

∫ ∞
1

du
sin(αu)√
u2 − 1

(19)

we get

G(R, τ) = −Θ(τ)

2π

∫ ∞
1

du√
u2 − 1

2

π

∫ ∞
0

dk sin(kτ) sin(kRu)︸ ︷︷ ︸
δ(Ru−τ)

= −Θ(τ)

2πR

∫ ∞
R−τ

dξ
δ(ξ)√

((ξ + τ)/R)2 − 1
(20)

if R− τ < 0, 0 is not in the range of the integral so the result is zero. It gives an overall Theta(τ −R) factor
that can be merged with the Θ(τ). One eventually gets

G(R, τ) = − Θ(τ −R)

2π
√
τ2 −R2

(21)

which somehow interpolates between the light-cone result in 1D and the pulse result in 3D.

Laguerre’s polynomials [19]

General properties

1. [1] Applying the result (6.5) of the lecture, using p(x) = x and q(x) = 1− x we get:

w(x) =
1

p(x)
exp

{∫ x q(x′)

p(x′)
dx′
}

=
1

x
exp

{
−
∫ x 1− x′

x′
dx′
}

=
1

x
eln x−x = e−x (22)

2. [3] Generating function. We use first Schlaefli representation and then resume the series under the integral. We
start from the Cauchy integral formula with f(z) = zne−z that is holomorphic and taking z0 = x:

dn

dxn
xne−x =

n!

2πi

∮
C

zne−z

(z − x)n+1
dz (23)

with C centered around x. Combining it with Ln(x) =
ex

n!

dn

dxn
xne−x, one has

Ln(x) =
ex

2iπ

∮
C

zne−z

(z − x)n+1
dz (24)

We inject this in the definition of the generating function, the countour is chosen such that |zt/(z − x)| < 1 to
ensure convergence of the sum and to contain the x− t pole:

G(x, t) =
ex

2iπ

∞∑
n=0

∮
C

(zt)ne−z

(z − x)n+1
dz =

ex

2iπ

∮
C

∞∑
n=0

(
zt

z − x

)n
e−z

(z − x)
dz (25)

=
ex

2iπ

∮
C

1

1− zt
z−x

e−z

(z − x)
dz =

ex

2iπ(1− t)

∮
C

e−z

z − x/(1− t)dz (26)

=
ex

1− t e
−x/(1−t) =

e−xt/(1−t)

1− t (27)
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3. [2] From
∂

∂t
G(x, t) =

∑
n=0

(n+ 1)Ln+1(x)tn =
1− t− x
(1− t)2 G(x, t), we get

(1− t)2
∑
n=0

(n+ 1)Ln+1(x)tn = (1− t− x)
∑
n=0

Ln(x)tn (28)

and equalling tn coefficients gives

(n+ 1)Ln+1(x)− 2nLn(x) + (n− 1)Ln−1(x) = (1− x)Ln(x)− Ln−1(x) (29)

and finally

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x) (30)

4. [2] From
∂

∂x
G(x, t) =

∑
n=0

L′n(x)tn =
−t

1− tG(x, t), we immediately get

L′n(x)− L′n−1(x) = −Ln−1(x) (31)

Then, differentiating (30) gives

(n+ 1)L′n+1 = −Ln + (2n+ 1− x)L′n − nL′n−1 (32)

(n+ 1)(L′n+1 − L′n) = −Ln − xL′n + n(L′n − L′n−1) (33)

−(n+ 1)Ln = −Ln − xL′n − nLn−1 (34)

in which we have used (31); so that

xL′n(x) = n(Ln(x)− Ln−1(x)) (35)

5. [1] From the definition of the generating function, we have Ln(x) =
1

n!

∂nG(x, t)

∂tn

∣∣∣
t=0

.

For x = 0, it simplifies to Ln(0) =
1

n!

∂n

∂tn
1

1− t

∣∣∣
t=0

=
1

n!

n!

(1− t)n+1

∣∣∣
t=0

= 1.

6. [1] We have a0 = 1 and from (30), it is clear that

(n+ 1)an+1 = −an =⇒ an =
(−1)n

n!
(36)

7. [2] We obtain from (30) that

L0(x) = 1 , 1!L1(x) = −x+ 1 , 2!L2(x) = x2 − 4x+ 2 , 3!L3(x) = −x3 + 9x2 − 18x+ 6 , (37)

8. [1] Using the w(x) weighted scalar product definition and notation Nn for the norm, it follows from the lectures
that ∫ ∞

0

e−xLn(x)Lm(x)dx = Nnδnm (38)

9. [2] We have

Nn =

∫ ∞
0

e−xLn(x)Ln(x)dx =
1

n!

∫ ∞
0

Ln(x)
dn

dxn
(xne−x)dx =

(−1)n

n!

∫ ∞
0

dnLn(x)

dxn
xne−xdx (39)

where we have used n times the integration by parts. Since Ln is a polynomial of order n, dnLn
dxn

is just the
constant n!an = (−1)n that we have computed. Finally,

Nn =
1

n!

∫ ∞
0

xne−xdx =
n!

n!
= 1 (40)

from the properties and definition of the Gamma function.

10. a) [1] We write an = 〈Ln, f〉w =

∫ ∞
0

e−xLn(x)f(x)dx

b) [2] We proceed as for the computation of Nn.

an =

∫ ∞
0

e−(1+r)xLn(x)dx =
1

n!

∫ ∞
0

e−rx
dn

dxn
(xne−x)dx =

(−1)n

n!

∫ ∞
0

dne−rx

dxn
xne−xdx =

rn

n!

∫ ∞
0

xne−(1+r)xdx =
rn

(1 + r)n+1

We eventually obtain the identity e−rx =
1

1 + r

∞∑
n=0

( r

1 + r

)n
Ln(x).

c) [1] simply use r = t/(1− t) giving t = r/(1 + r) and use the definition of the generating function to recover
the result.
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