Poisson formula on the disk [7]
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b) [2] Clearly, the point 1/Z; lies outside the circle C so there is no pole inside the circle. We get
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c) [2] We subtract the two previous relation in order to rewrite the integrals with real numbers and an angular
variable only. We take the parametrization zo = re?® and z = ¢*®, dz = izd¢ : first, after calculation
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that is inserted into the integral to give the desired result

TS B 1—r? id
flz=re )_277/0 1—2Tcos(9—¢>)+r2f(e )d¢ - )

2. [2] Without charges, the electrostatic potential is an harmonic function. So are the real an imaginary parts of
the previous f function since it is analytical. With f(r,0) = fr(r,0) + if1(r,6), we thus have two properties :
Afr =0and Af; =0 and both fr s satisfy to (1) by taking the real and imaginary part of the Poisson relation.
Last, choosing say the real part such that fr(1,0) = v(0), we have that V' = fr is solution of the Poisson equation
and the value of the potential inside the disk is obtained from
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involving only real numbers.

Saddle point technique with many variables [8]
We consider the function f(z) of the variable z > 0 defined under the integral form
flx) = /dfexp (—ac h(f)) (3)

assuming a entire multivariate real function h(f ) of d variables that has a single absolute minimum #,. We assume for
sake of simplicity that h is entire and that the integral range if the whole space R¢ and we take the limit z — oo.

1. [3] We expand h around its minimum . to second order

d
. o1 .
h(t) = h(te) + 5 > HG(t — te)(ty — te,y)

i,j=1
. . . *h . . . L .
using the notations Hf; = gD, for the Hessian matrix that is a positively defined matrix for an absolute
0t |z
minimum (we assume no zero eigenvalue for non-degenerate minimum). The saddle point equation giving the
extrema is
Vihlz =0 (4)

Then, the saddle point technique gives
d
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which is a Gaussian integral. We get
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2. [2] The saddle point equation is now

Vihlz =b (7
SO fc(l; ). Applying the previous result using the fact that the external field b does not change the Hessian matrix,
we get
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3. [3] As usual,
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Using the saddle point approximation, we get
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The last two terms can be neglected when x — oco. The first two give

—

(T) =~ —Vsh(T.(b)) +1o(b) +b- Vitu(b)

but by chain rule, we have ﬁgh =Vh- ﬁgtc(l—)‘) =b- ﬁgtc(l_)‘) where we have used the saddle point equation in
the last equality so that finally:

Green’s function for 1D and 2D waves [12]

1. [1] ¢’ and 7 are the time and position of the impulse. In free space with translational and rotational invariance,
we expect the Green’s function to depend only on the relative distance R = ¥ — 7’ (actually its norm) and the
time from impulse 7 =t — t'.

We'll note R = ||R||.
2. [2] Fourier transforming the equation after changing variables to

{AE - %} G(R,7) = 5(R)s(r) gives (o — E2)G(F,w) = 1 (12)

so, with k = ||&||,

s dk dw eik-R—wr)
G(R,7) = /(277)d /% w? — k2 (13)

3. [2] For the integral over w, we have two poles w = £k lying on the real axis. We regularize this integral using
the causal regularization by shifting these poles below the real axis to w = 4k — ie, ¢ — 0. Then, for 7 < 0,
we compute the integral using the upper half-circle and residue theorem, which gives zero since there is no poles.
For 7 > 0, we must use the lower half-circle. Adding the contribuion of the two poles, we get

G(R.7) = —e(r) [ k) ik (14)

with © the Heavyside function, that accounts for vanishing of the integral when 7 < 0.

4. d =1 case

> sin(u)

a) [1] Using the result of the lecture / tutorial, we know that / du = w. Now, we the y variable, if we

write I(y) = %/ %dk, we have I(y) =0ify =0, using u = ky, I(y) = +1if y > 0 and I(y) = —1

if y < 0 (it is the sign function !). In the end, we can use
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b) [2] First
Gla,7) = —O(r) / ‘12’; Smgw) cos(ka) = —O(r) / dZ’jT Sm;ﬁ cos(ka) (15)
Using cos(ke) sin(ka7) = 3[sin(ks (7 + 2)) + sin(ka (7 — 2))], we get
6, =~ 2001+ 7 + 16 - 0] =~ 2D (0w + 1) + 0 —2) - 1] (16)



With 7 > 0, the last term can be shown to be equal to ©(7 — |z|) and then, the condition ©(7) can get
absorbed since non-zero result requires 7 > |z| > 0.

G(a, ) = ~50(r — |x) (17)

5. d =2 case
a) [1] Eq. (14) in polar coordinates (k,#) in k-space reads

Glrr) = () [ [T T et — o) [ sinir) o) (1)
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with the Bessel function Jo(a) = QL / dg ' cos?
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b) [3] Using the Bessel function identity for real «
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Jo(a) = p NoeE (19)
we get
G(R,7) = —92(;) /1 - \/% 2 /0 "k sin(kr) sin(kRu) = (;)(2 e T()/)  (20)
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if R—7 <0, 0is not in the range of the integral so the result is zero. It gives an overall Theta(t — R) factor
that can be merged with the ©(7). One eventually gets

O(t — R)
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which somehow interpolates between the light-cone result in 1D and the pulse result in 3D.

G(R,7)=— (21)

Laguerre’s polynomials [19]

General properties

1. [1] Applying the result (6.5) of the lecture, using p(z) = = and ¢(z) = 1 — z we get:
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2. [3] Generating function. We use first Schlaefli representation and then resume the series under the integral. We
start from the Cauchy integral formula with f(z) = z"e™* that is holomorphic and taking zo = x:
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with C centered around z. Combining it with L, (z) = et e s one has
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We inject this in the definition of the generating function, the countour is chosen such that |zt/(z — z)| < 1 to
ensure convergence of the sum and to contain the x — ¢ pole:

Gla,t) = 2z7r Zf —2) n; 2m f{ Z (z - x) ze:z:v) dz (25)

_“ e’ dz = jl{ ¢’ dz (26)
= 2 . zfz (z —x) 217r(1—t) cz—x/(1—1)
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3. [2] From — G(x,1) = ;(n + 1) Ly (2)t" = WG(m,t), we get
1=t (4 DLppa(@)t" =1 —t—2) Y La(a)t" (28)
n=0 n=0
and equalling t" coefficients gives
(n+1)Lnt1(z) —2nLy(z) + (n — 1)Lp—1(z) = (1 — 2)Ln(x) — Ln—1(x) (29)
and finally
(n+1)Lnt1(z) = 2n+1—2)Ln(z) —nLln_1(x) (30)
4. [2] From —G (z,t) Z Li( =1 j G(z,t), we immediately get
Lu(w) = Ln-1(2) = —Ln-1(x) (31)
Then, differentiating (30) gives
(n+1)Lhyy=—Ln+ 2n+1—2)L, —nl,_, (32)
(n+1)(Lyy1 — L) = —Ln — 2Ly +n(Ly, — Li,_y) (33)
—(n+1)Ly, =—Ly, — 2L, —nLn,_1 (34)
in which we have used (31); so that
oLy (2) = n(Ln(z) — Ln-1(2)) (35)
5. [1] From the definition of the generating function, we have L, (z) = %8%(:,75) .
! t=0
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For z = 0, it simplifies to L,(0) = 107 1 _ 1 n =1

nlotn 1 —tli=o  n! (1 —t)"+ =0
6. [1] We have ap = 1 and from (30), it is clear that

(n+1Dans1 = —an = an= bl (36)

7. [2] We obtain from (30) that

Lo(z) =1, ULi(x)=-z+1, 2Lo(z)=2a>—4x+2, 3'Lsz(z)=—2°+92°—18c+6, (37)

8. [1] Using the w(z) weighted scalar product definition and notation N, for the norm, it follows from the lectures
that
/ € "Ln(2)Lm(z)dz = Npbnm (38)
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9. [2] We have
(&S} . 1 0o dr R —1)" 0o dnLn "
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where we have used n times the integration by parts. Since L, is a polynomial of order n, ddz"" is just the
constant nla, = (—1)" that we have computed. Finally,
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from the properties and definition of the Gamma function.

10. a) [1] We write an = (Ln, f), = /000 e “Ly(x)f(z)dx

b) [2] We proceed as for the computation of N,,.

oo . 1 oo X n _1 n oo n_—rx n oo n
an = / e UT L (x)dz = — efmd— (z"e ")dx = (=1 / d’e x"e Tdx = T—/ AT L OL P —
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. R n
We eventually obtain the identity e™"* = T TLZ:;) (1 jr r) Ln(z).

c) [1] simply use r = ¢/(1 —t) giving ¢t = r/(1 + r) and use the definition of the generating function to recover
the result.



