Poisson formula on the disk [7]

1. a) $[1] f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{f(z)}{z-z_{0}} \mathrm{~d} z$.
b) [2] Clearly, the point $1 / \bar{z}_{0}$ lies outside the circle \mathcal{C} so there is no pole inside the circle. We get $0=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{f(z)}{z-1 / \bar{z}_{0}} \mathrm{~d} z$.
c) [2] We subtract the two previous relation in order to rewrite the integrals with real numbers and an angular variable only. We take the parametrization $z_{0}=r e^{i \theta}$ and $z=e^{i \phi}, \mathrm{~d} z=i z \mathrm{~d} \phi$: first, after calculation

$$
\left(\frac{1}{z-z_{0}}-\frac{1}{z-1 / \bar{z}_{0}}\right) i z=i \frac{1-r^{2}}{1-2 r \cos (\theta-\phi)+r^{2}}
$$

that is inserted into the integral to give the desired result

$$
\begin{equation*}
f\left(z=r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{1-2 r \cos (\theta-\phi)+r^{2}} f\left(e^{i \phi}\right) \mathrm{d} \phi . \tag{1}
\end{equation*}
$$

2. [2] Without charges, the electrostatic potential is an harmonic function. So are the real an imaginary parts of the previous f function since it is analytical. With $f(r, \theta)=f_{R}(r, \theta)+i f_{I}(r, \theta)$, we thus have two properties : $\hat{\Delta} f_{R}=0$ and $\hat{\Delta} f_{I}=0$ and both $f_{R, I}$ satisfy to (1) by taking the real and imaginary part of the Poisson relation. Last, choosing say the real part such that $f_{R}(1, \theta)=v(\theta)$, we have that $V=f_{R}$ is solution of the Poisson equation and the value of the potential inside the disk is obtained from

$$
\begin{equation*}
V(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{1-2 r \cos (\theta-\phi)+r^{2}} v(\phi) \mathrm{d} \phi . \tag{2}
\end{equation*}
$$

involving only real numbers.

Saddle point technique with many variables [8]

We consider the function $f(x)$ of the variable $x>0$ defined under the integral form

$$
\begin{equation*}
f(x)=\int \mathrm{d} \vec{t} \exp (-x h(\vec{t})) \tag{3}
\end{equation*}
$$

assuming a entire multivariate real function $h(\vec{t})$ of d variables that has a single absolute minimum \vec{t}_{c}. We assume for sake of simplicity that h is entire and that the integral range if the whole space \mathbb{R}^{d} and we take the limit $x \rightarrow \infty$.

1. [3] We expand h around its minimum $\overrightarrow{t_{c}}$ to second order

$$
h(\vec{t}) \simeq h\left(\vec{t}_{c}\right)+\frac{1}{2} \sum_{i, j=1}^{d} \mathbf{H}_{i j}^{c}\left(t_{i}-t_{c, i}\right)\left(t_{j}-t_{c, j}\right)
$$

using the notations $\mathbf{H}_{i j}^{c}=\left.\frac{\partial^{2} h}{\partial t_{i} \partial t_{j}}\right|_{\vec{t}_{c}}$ for the Hessian matrix that is a positively defined matrix for an absolute minimum (we assume no zero eigenvalue for non-degenerate minimum). The saddle point equation giving the extrema is

$$
\begin{equation*}
\left.\vec{\nabla}_{\vec{t}} h\right|_{\vec{t}_{c}}=\overrightarrow{0} \tag{4}
\end{equation*}
$$

Then, the saddle point technique gives

$$
\begin{equation*}
f(x) \simeq \exp \left(-x h\left(\vec{t}_{c}\right)\right) \int \mathrm{d} \vec{t} \exp \left(-\frac{x}{2} \sum_{i, j=1}^{d} \mathbf{H}_{i j}^{c}\left(t_{i}-t_{c, i}\right)\left(t_{j}-t_{c, j}\right)\right) \tag{5}
\end{equation*}
$$

which is a Gaussian integral. We get

$$
\begin{equation*}
f(x) \simeq \sqrt{\frac{(2 \pi)^{d}}{\operatorname{det} \mathbf{H}^{c}}} \frac{e^{-x h\left(\vec{t}_{c}\right)}}{x^{d / 2}} \tag{6}
\end{equation*}
$$

2. [2] The saddle point equation is now

$$
\begin{equation*}
\left.\vec{\nabla}_{\vec{t}} h\right|_{\vec{t}_{c}}=\vec{b} \tag{7}
\end{equation*}
$$

so $\vec{t}_{c}(\vec{b})$. Applying the previous result using the fact that the external field \vec{b} does not change the Hessian matrix, we get

$$
\begin{equation*}
Z(x, \vec{b}) \simeq \sqrt{\frac{(2 \pi)^{d}}{\operatorname{det} \mathbf{H}^{c}(\vec{b})}} \frac{e^{-x\left[h\left(\vec{t}_{c}(\vec{b})\right)-\vec{b} \cdot \vec{t}_{c}(\vec{b})\right]}}{x^{d / 2}} \tag{8}
\end{equation*}
$$

3. [3] As usual,

$$
\begin{align*}
\langle\vec{t}\rangle & =\frac{1}{Z(x, \overrightarrow{0})} \int \mathrm{d} \vec{t} \vec{t} \exp [-x h(\vec{t})] \tag{9}\\
& =\left.\frac{1}{x Z(x, \overrightarrow{0})} \vec{\nabla}_{\vec{b}} \int \mathrm{~d} \vec{t} \exp (-x[h(\vec{t})-\vec{b} \cdot \vec{t}])\right|_{\vec{b}=\overrightarrow{0}} \tag{10}\\
& =\left.\frac{1}{x} \vec{\nabla}_{\vec{b}} \ln Z(x, \vec{b})\right|_{\vec{b}=\overrightarrow{0}} \tag{11}
\end{align*}
$$

Using the saddle point approximation, we get

$$
\frac{1}{x} \ln Z(x, \vec{b}) \simeq-h\left(\vec{t}_{c}(\vec{b})\right)+\vec{b} \cdot \vec{t}_{c}(\vec{b})-\frac{d}{2 x} \ln (x / 2 \pi)-\frac{1}{2 x} \ln \operatorname{det} \mathbf{H}^{c}(\vec{b})
$$

The last two terms can be neglected when $x \rightarrow \infty$. The first two give

$$
\langle\vec{t}\rangle \simeq-\vec{\nabla}_{\vec{b}} h\left(\vec{t}_{c}(\vec{b})\right)+\vec{t}_{c}(\vec{b})+\vec{b} \cdot \vec{\nabla}_{\vec{b}} \vec{t}_{c}(\vec{b})
$$

but by chain rule, we have $\vec{\nabla}_{\vec{b}} h=\vec{\nabla}_{\vec{t}} h \cdot \vec{\nabla}_{\vec{b}} \vec{t}_{c}(\vec{b})=\vec{b} \cdot \vec{\nabla}_{\vec{b}} \vec{t}_{c}(\vec{b})$ where we have used the saddle point equation in the last equality so that finally:

$$
\langle\vec{t}\rangle \simeq \vec{t}_{c}(\vec{b})
$$

Green's function for 1D and 2D waves [12]

1. [1] t^{\prime} and \vec{r}^{\prime} are the time and position of the impulse. In free space with translational and rotational invariance, we expect the Green's function to depend only on the relative distance $\vec{R}=\vec{r}-\vec{r}^{\prime}$ (actually its norm) and the time from impulse $\tau=t-t^{\prime}$.

We'll note $R=\|\vec{R}\|$.
2. [2] Fourier transforming the equation after changing variables to

$$
\begin{equation*}
\left[\hat{\Delta}_{\vec{R}}-\frac{\partial^{2}}{\partial \tau^{2}}\right] G(\vec{R}, \tau)=\delta(\vec{R}) \delta(\tau) \quad \text { gives } \quad\left(\omega^{2}-\vec{k}^{2}\right) \tilde{G}(\vec{k}, \omega)=1 \tag{12}
\end{equation*}
$$

so, with $k=\|\vec{k}\|$,

$$
\begin{equation*}
G(\vec{R}, \tau)=\int \frac{\mathrm{d} \vec{k}}{(2 \pi)^{d}} \int \frac{\mathrm{~d} \omega}{2 \pi} \frac{e^{i(\vec{k} \cdot \vec{R}-\omega \tau)}}{\omega^{2}-k^{2}} \tag{13}
\end{equation*}
$$

3. [2] For the integral over ω, we have two poles $\omega= \pm k$ lying on the real axis. We regularize this integral using the causal regularization by shifting these poles below the real axis to $\omega= \pm k-i \varepsilon, \varepsilon \rightarrow 0^{+}$. Then, for $\tau<0$, we compute the integral using the upper half-circle and residue theorem, which gives zero since there is no poles. For $\tau>0$, we must use the lower half-circle. Adding the contribuion of the two poles, we get

$$
\begin{equation*}
G(\vec{R}, \tau)=-\Theta(\tau) \int \frac{\mathrm{d} \vec{k}}{(2 \pi)^{d}} \frac{\sin (k \tau)}{k} e^{i \vec{k} \cdot \vec{R}} \tag{14}
\end{equation*}
$$

with Θ the Heavyside function, that accounts for vanishing of the integral when $\tau<0$.
4. $d=1$ case
a) [1] Using the result of the lecture / tutorial, we know that $\int_{-\infty}^{\infty} \frac{\sin (u)}{u} \mathrm{~d} u=\pi$. Now, we the y variable, if we write $I(y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin (k y)}{k} \mathrm{~d} k$, we have $I(y)=0$ if $y=0$, using $u=k y, I(y)=+1$ if $y>0$ and $I(y)=-1$ if $y<0$ (it is the sign function!). In the end, we can use

$$
I(y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin (k y)}{k} \mathrm{~d} k=2 \Theta(y)-1
$$

b) [2] First

$$
\begin{equation*}
G(x, \tau)=-\Theta(\tau) \int \frac{\mathrm{d} k_{x}}{2 \pi} \frac{\sin (k \tau)}{k} \cos \left(k_{x} x\right)=-\Theta(\tau) \int \frac{\mathrm{d} k_{x}}{2 \pi} \frac{\sin \left(k_{x} \tau\right)}{k_{x}} \cos \left(k_{x} x\right) \tag{15}
\end{equation*}
$$

Using $\cos \left(k_{x} x\right) \sin \left(k_{x} \tau\right)=\frac{1}{2}\left[\sin \left(k_{x}(\tau+x)\right)+\sin \left(k_{x}(\tau-x)\right)\right]$, we get

$$
\begin{equation*}
G(x, \tau)=-\frac{\Theta(\tau)}{4}[I(x+\tau)+I(\tau-x)]=-\frac{\Theta(\tau)}{2}[\Theta(x+\tau)+\Theta(\tau-x)-1] \tag{16}
\end{equation*}
$$

With $\tau>0$, the last term can be shown to be equal to $\Theta(\tau-|x|)$ and then, the condition $\Theta(\tau)$ can get absorbed since non-zero result requires $\tau>|x|>0$.

$$
\begin{equation*}
G(x, \tau)=-\frac{1}{2} \Theta(\tau-|x|) \tag{17}
\end{equation*}
$$

5. $d=2$ case
a) [1] Eq. (14) in polar coordinates (k, θ) in k-space reads

$$
\begin{equation*}
G(R, \tau)=-\Theta(\tau) \int_{0}^{\infty} \int_{0}^{2 \pi} \frac{k \mathrm{~d} k \mathrm{~d} \theta}{(2 \pi)^{2}} \frac{\sin (k \tau)}{k} e^{i k R \cos \theta}=-\Theta(\tau) \int_{0}^{\infty} \frac{\mathrm{d} k}{2 \pi} \sin (k \tau) J_{0}(k R) \tag{18}
\end{equation*}
$$

with the Bessel function $J_{0}(\alpha)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \theta e^{i \alpha \cos \theta}$
b) [3] Using the Bessel function identity for real α

$$
\begin{equation*}
J_{0}(\alpha)=\frac{2}{\pi} \int_{1}^{\infty} \mathrm{d} u \frac{\sin (\alpha u)}{\sqrt{u^{2}-1}} \tag{19}
\end{equation*}
$$

we get

$$
\begin{equation*}
G(R, \tau)=-\frac{\Theta(\tau)}{2 \pi} \int_{1}^{\infty} \frac{\mathrm{d} u}{\sqrt{u^{2}-1}} \underbrace{\frac{2}{\pi} \int_{0}^{\infty} \mathrm{d} k \sin (k \tau) \sin (k R u)}_{\delta(R u-\tau)}=-\frac{\Theta(\tau)}{2 \pi R} \int_{R-\tau}^{\infty} \mathrm{d} \xi \frac{\delta(\xi)}{\sqrt{((\xi+\tau) / R)^{2}-1}} \tag{20}
\end{equation*}
$$

if $R-\tau<0,0$ is not in the range of the integral so the result is zero. It gives an overall Theta $(\tau-R)$ factor that can be merged with the $\Theta(\tau)$. One eventually gets

$$
\begin{equation*}
G(R, \tau)=-\frac{\Theta(\tau-R)}{2 \pi \sqrt{\tau^{2}-R^{2}}} \tag{21}
\end{equation*}
$$

which somehow interpolates between the light-cone result in 1D and the pulse result in 3D.

Laguerre's polynomials [19]

General properties

1. [1] Applying the result (6.5) of the lecture, using $p(x)=x$ and $q(x)=1-x$ we get:

$$
\begin{equation*}
w(x)=\frac{1}{p(x)} \exp \left\{\int^{x} \frac{q\left(x^{\prime}\right)}{p\left(x^{\prime}\right)} \mathrm{d} x^{\prime}\right\}=\frac{1}{x} \exp \left\{-\int^{x} \frac{1-x^{\prime}}{x^{\prime}} \mathrm{d} x^{\prime}\right\}=\frac{1}{x} e^{\ln x-x}=e^{-x} \tag{22}
\end{equation*}
$$

2. [3] Generating function. We use first Schlaefli representation and then resume the series under the integral. We start from the Cauchy integral formula with $f(z)=z^{n} e^{-z}$ that is holomorphic and taking $z_{0}=x$:

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} x^{n} e^{-x}=\frac{n!}{2 \pi i} \oint_{\mathcal{C}} \frac{z^{n} e^{-z}}{(z-x)^{n+1}} d z \tag{23}
\end{equation*}
$$

with \mathcal{C} centered around x. Combining it with $L_{n}(x)=\frac{e^{x}}{n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} x^{n} e^{-x}$, one has

$$
\begin{equation*}
L_{n}(x)=\frac{e^{x}}{2 i \pi} \oint_{\mathcal{C}} \frac{z^{n} e^{-z}}{(z-x)^{n+1}} \mathrm{~d} z \tag{24}
\end{equation*}
$$

We inject this in the definition of the generating function, the countour is chosen such that $|z t /(z-x)|<1$ to ensure convergence of the sum and to contain the $x-t$ pole:

$$
\begin{align*}
G(x, t) & =\frac{e^{x}}{2 i \pi} \sum_{n=0}^{\infty} \oint_{\mathcal{C}} \frac{(z t)^{n} e^{-z}}{(z-x)^{n+1}} \mathrm{~d} z=\frac{e^{x}}{2 i \pi} \oint_{\mathcal{C}} \sum_{n=0}^{\infty}\left(\frac{z t}{z-x}\right)^{n} \frac{e^{-z}}{(z-x)} \mathrm{d} z \tag{25}\\
& =\frac{e^{x}}{2 i \pi} \oint_{\mathcal{C}} \frac{1}{1-\frac{z t}{z-x}} \frac{e^{-z}}{(z-x)} \mathrm{d} z=\frac{e^{x}}{2 i \pi(1-t)} \oint_{\mathcal{C}} \frac{e^{-z}}{z-x /(1-t)} \mathrm{d} z \tag{26}\\
& =\frac{e^{x}}{1-t} e^{-x /(1-t)}=\frac{e^{-x t /(1-t)}}{1-t} \tag{27}
\end{align*}
$$

3. [2] From $\frac{\partial}{\partial t} G(x, t)=\sum_{n=0}(n+1) L_{n+1}(x) t^{n}=\frac{1-t-x}{(1-t)^{2}} G(x, t)$, we get

$$
\begin{equation*}
(1-t)^{2} \sum_{n=0}(n+1) L_{n+1}(x) t^{n}=(1-t-x) \sum_{n=0} L_{n}(x) t^{n} \tag{28}
\end{equation*}
$$

and equalling t^{n} coefficients gives

$$
\begin{equation*}
(n+1) L_{n+1}(x)-2 n L_{n}(x)+(n-1) L_{n-1}(x)=(1-x) L_{n}(x)-L_{n-1}(x) \tag{29}
\end{equation*}
$$

and finally

$$
\begin{equation*}
(n+1) L_{n+1}(x)=(2 n+1-x) L_{n}(x)-n L_{n-1}(x) \tag{30}
\end{equation*}
$$

4. [2] From $\frac{\partial}{\partial x} G(x, t)=\sum_{n=0} L_{n}^{\prime}(x) t^{n}=\frac{-t}{1-t} G(x, t)$, we immediately get

$$
\begin{equation*}
L_{n}^{\prime}(x)-L_{n-1}^{\prime}(x)=-L_{n-1}(x) \tag{31}
\end{equation*}
$$

Then, differentiating (30) gives

$$
\begin{align*}
(n+1) L_{n+1}^{\prime} & =-L_{n}+(2 n+1-x) L_{n}^{\prime}-n L_{n-1}^{\prime} \tag{32}\\
(n+1)\left(L_{n+1}^{\prime}-L_{n}^{\prime}\right) & =-L_{n}-x L_{n}^{\prime}+n\left(L_{n}^{\prime}-L_{n-1}^{\prime}\right) \tag{33}\\
-(n+1) L_{n} & =-L_{n}-x L_{n}^{\prime}-n L_{n-1} \tag{34}
\end{align*}
$$

in which we have used (31); so that

$$
\begin{equation*}
x L_{n}^{\prime}(x)=n\left(L_{n}(x)-L_{n-1}(x)\right) \tag{35}
\end{equation*}
$$

5. [1] From the definition of the generating function, we have $L_{n}(x)=\left.\frac{1}{n!} \frac{\partial^{n} G(x, t)}{\partial t^{n}}\right|_{t=0}$.

For $x=0$, it simplifies to $L_{n}(0)=\left.\frac{1}{n!} \frac{\partial^{n}}{\partial t^{n}} \frac{1}{1-t}\right|_{t=0}=\left.\frac{1}{n!} \frac{n!}{(1-t)^{n+1}}\right|_{t=0}=1$.
6. [1] We have $a_{0}=1$ and from (30), it is clear that

$$
\begin{equation*}
(n+1) a_{n+1}=-a_{n} \quad \Longrightarrow \quad a_{n}=\frac{(-1)^{n}}{n!} \tag{36}
\end{equation*}
$$

7. [2] We obtain from (30) that

$$
\begin{equation*}
L_{0}(x)=1, \quad 1!L_{1}(x)=-x+1, \quad 2!L_{2}(x)=x^{2}-4 x+2, \quad 3!L_{3}(x)=-x^{3}+9 x^{2}-18 x+6 \tag{37}
\end{equation*}
$$

8. [1] Using the $w(x)$ weighted scalar product definition and notation N_{n} for the norm, it follows from the lectures that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x} L_{n}(x) L_{m}(x) \mathrm{d} x=N_{n} \delta_{n m} \tag{38}
\end{equation*}
$$

9. [2] We have

$$
\begin{equation*}
N_{n}=\int_{0}^{\infty} e^{-x} L_{n}(x) L_{n}(x) \mathrm{d} x=\frac{1}{n!} \int_{0}^{\infty} L_{n}(x) \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(x^{n} e^{-x}\right) \mathrm{d} x=\frac{(-1)^{n}}{n!} \int_{0}^{\infty} \frac{\mathrm{d}^{n} L_{n}(x)}{\mathrm{d} x^{n}} x^{n} e^{-x} \mathrm{~d} x \tag{39}
\end{equation*}
$$

where we have used n times the integration by parts. Since L_{n} is a polynomial of order $n, \frac{\mathrm{~d}^{n} L_{n}}{\mathrm{~d} x^{n}}$ is just the constant $n!a_{n}=(-1)^{n}$ that we have computed. Finally,

$$
\begin{equation*}
N_{n}=\frac{1}{n!} \int_{0}^{\infty} x^{n} e^{-x} \mathrm{~d} x=\frac{n!}{n!}=1 \tag{40}
\end{equation*}
$$

from the properties and definition of the Gamma function.
10. a) [1] We write $a_{n}=\left\langle L_{n}, f\right\rangle_{w}=\int_{0}^{\infty} e^{-x} L_{n}(x) f(x) \mathrm{d} x$
b) [2] We proceed as for the computation of N_{n}.

$$
a_{n}=\int_{0}^{\infty} e^{-(1+r) x} L_{n}(x) \mathrm{d} x=\frac{1}{n!} \int_{0}^{\infty} e^{-r x} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}}\left(x^{n} e^{-x}\right) \mathrm{d} x=\frac{(-1)^{n}}{n!} \int_{0}^{\infty} \frac{\mathrm{d}^{n} e^{-r x}}{\mathrm{~d} x^{n}} x^{n} e^{-x} \mathrm{~d} x=\frac{r^{n}}{n!} \int_{0}^{\infty} x^{n} e^{-(1+r) x} \mathrm{~d} x=\frac{r^{n}}{(1+r)^{n+1}}
$$

We eventually obtain the identity $e^{-r x}=\frac{1}{1+r} \sum_{n=0}^{\infty}\left(\frac{r}{1+r}\right)^{n} L_{n}(x)$.
c) [1] simply use $r=t /(1-t)$ giving $t=r /(1+r)$ and use the definition of the generating function to recover the result.

