Gaussian integrals

One dimension: a > 0, b real numbers
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d-dimension: 7 € RY, b € R? two column vectors, A a d X d real matrix that is symmetric and
positive (all eigenvalues are real and strictly positive):
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Wick’s theorem: considering the Gaussian joint probability (Z(A) = Z(A,0))
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p(Z) = Z(A) exp{—2fTAa'c'} (3.59)
for an even number 2n of variables. If P(2n) is the set of partitions of {i1,...,d2,} in pairs:
(Tiy ++ Tip,) = Z <xip(1>mip(2)> T <xip(2n71)xip(2n)> with (z,z;) = (A_l)ij (3.60)
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Asymptotic behavior of some integrals, saddle point methods

Asymptotic series: the asymptotic behavior of some function f(z) when |z| — oc:
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Most of the time, these series are divergent. Good approximations are obtained when the series is
truncated. A first method to derive the expansion is integration by parts when z is in a bound of
the integral defining f(z).

Steepest descent: let h(t;z) be a function that diverges when x — oo and has a single absolute
minimum ¢.(z) in [a, b], then the leading contribution for z — oo is given by
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where h(x) = h(t.(z);z) and h/(x) = h”(t.(z);x). Discussion of the validity and corrections is done
case by case (several minima, boundary terms,. .. ).

Stationary phase approximation: with basically the same properties for h(¢, x), one has to look for
all extrema (both minima and maxima), with a — sign for a maximum and a + sign for a minimum,
we have for each contribution when x — oo
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Laplace’s method: assuming that h(t) has a single absolute minimum at ¢. and close to which
(t — tI) we have the following expansions
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Then (beware of the lower bound in the integral), for + — oo
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in which the ¢, can be expressed as a function of the ay, b,, u and 5. For example
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