
Gaussian integrals
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d-dimension: ~x ∈ Rd, ~b ∈ Rd two column vectors, A a d × d real matrix that is symmetric and
positive (all eigenvalues are real and strictly positive):
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Wick’s theorem: considering the Gaussian joint probability (Z(A) ≡ Z(A,~0 ))
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for an even number 2n of variables. If P(2n) is the set of partitions of {i1, . . . , i2n} in pairs:
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Asymptotic behavior of some integrals, saddle point methods

Asymptotic series: the asymptotic behavior of some function f(z) when |z| → ∞:
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Most of the time, these series are divergent. Good approximations are obtained when the series is
truncated. A first method to derive the expansion is integration by parts when z is in a bound of
the integral defining f(z).

Steepest descent: let h(t;x) be a function that diverges when x → ∞ and has a single absolute
minimum tc(x) in [a, b], then the leading contribution for x→∞ is given by
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where hc(x) ≡ h(tc(x);x) and h′′c (x) ≡ h′′(tc(x);x). Discussion of the validity and corrections is done
case by case (several minima, boundary terms,. . . ).

Stationary phase approximation: with basically the same properties for h(t, x), one has to look for
all extrema (both minima and maxima), with a − sign for a maximum and a + sign for a minimum,
we have for each contribution when x→∞
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Laplace’s method: assuming that h(t) has a single absolute minimum at tc and close to which
(t→ t+c ) we have the following expansions
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Then (beware of the lower bound in the integral), for x→∞
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in which the cn can be expressed as a function of the an, bn, µ and β. For example
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