Gaussian integrals

One dimension: $\quad a>0, b$ real numbers

$$
\int_{-\infty}^{\infty} d x e^{-\frac{1}{2} a x^{2}+b x}=\sqrt{\frac{2 \pi}{a}} e^{\frac{b^{2}}{2 a}}, \quad \int_{0}^{\infty} d x x^{n} e^{-\frac{1}{2} a x^{2}}=\frac{1}{2}\left(\frac{2}{a}\right)^{\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right)
$$

d-dimension: $\quad \vec{x} \in \mathbb{R}^{d}, \vec{b} \in \mathbb{R}^{d}$ two column vectors, \mathbf{A} a $d \times d$ real matrix that is symmetric and positive (all eigenvalues are real and strictly positive):

$$
\begin{align*}
& Z(\mathbf{A}, \vec{b})=\int_{\mathbb{R}^{d}} d \vec{x} \exp \left\{-\frac{1}{2} \vec{x}^{\top} \mathbf{A} \vec{x}+\vec{b} \cdot \vec{x}\right\}=\sqrt{\frac{(2 \pi)^{d}}{\operatorname{det} \mathbf{A}}} \exp \left\{+\frac{1}{2} \vec{b}^{\top} \mathbf{A}^{-1} \vec{b}\right\} \tag{3.56}\\
& \tilde{Z}(\mathbf{A}, \vec{b})=\int_{\mathbb{R}^{d}} d \vec{x} \exp \left\{-\frac{1}{2} \vec{x}^{\top} \mathbf{A} \vec{x}+i \vec{b} \cdot \vec{x}\right\}=\sqrt{\frac{(2 \pi)^{d}}{\operatorname{det} \mathbf{A}}} \exp \left\{-\frac{1}{2} \vec{b}^{\top} \mathbf{A}^{-1} \vec{b}\right\} \tag{3.57}\\
& \bar{Z}(\mathbf{A}, \vec{b})=\int_{\mathbb{R}^{d}} d \vec{x} \exp \left\{\frac{i}{2} \vec{x}^{\top} \mathbf{A} \vec{x}+i \vec{b} \cdot \vec{x}\right\}=\sqrt{\frac{(2 \pi i)^{d}}{\operatorname{det} \mathbf{A}}} \exp \left\{-\frac{i}{2} \vec{b}^{\top} \mathbf{A}^{-1} \vec{b}\right\} \tag{3.58}
\end{align*}
$$

Wick's theorem: considering the Gaussian joint probability $(Z(\mathbf{A}) \equiv Z(\mathbf{A}, \overrightarrow{0}))$

$$
\begin{equation*}
p(\vec{x})=\frac{1}{Z(\mathbf{A})} \exp \left\{-\frac{1}{2} \vec{x}^{\top} \mathbf{A} \vec{x}\right\} \tag{3.59}
\end{equation*}
$$

for an even number $2 n$ of variables. If $\mathcal{P}(2 n)$ is the set of partitions of $\left\{i_{1}, \ldots, i_{2 n}\right\}$ in pairs:

$$
\begin{equation*}
\left\langle x_{i_{1}} \cdots x_{i_{2 n}}\right\rangle=\sum_{P \in \mathcal{P}(2 n)}\left\langle x_{i_{P(1)}} x_{i_{P(2)}}\right\rangle \cdots\left\langle x_{i_{P(2 n-1)}} x_{i_{P(2 n)}}\right\rangle \quad \text { with } \quad\left\langle x_{i} x_{j}\right\rangle=\left(\mathbf{A}^{-1}\right)_{i j} \tag{3.60}
\end{equation*}
$$

Asymptotic behavior of some integrals, saddle point methods

Asymptotic series: the asymptotic behavior of some function $f(z)$ when $|z| \rightarrow \infty$:

$$
\begin{equation*}
f(z) \sim \underbrace{L(z)}_{\text {leading term }} \times \underbrace{\sum_{n=0}^{\infty} \frac{a_{n}}{z^{n}}}_{\text {asymptotic series }} \tag{3.61}
\end{equation*}
$$

Most of the time, these series are divergent. Good approximations are obtained when the series is truncated. A first method to derive the expansion is integration by parts when z is in a bound of the integral defining $f(z)$.

Steepest descent: let $h(t ; x)$ be a function that diverges when $x \rightarrow \infty$ and has a single absolute minimum $t_{c}(x)$ in $[a, b]$, then the leading contribution for $x \rightarrow \infty$ is given by

$$
f(x)=\int_{a}^{b} d t e^{-h(t ; x)} \sim \sqrt{\frac{2 \pi}{h_{c}^{\prime \prime}(x)}} e^{-h_{c}(x)}, \quad f(x)=\int_{a}^{b} d t g(t) e^{-x h(t)} \sim \sqrt{\frac{2 \pi}{h_{c}^{\prime \prime}}} g\left(t_{c}\right) \frac{e^{-x h_{c}}}{\sqrt{x}}
$$

where $h_{c}(x) \equiv h\left(t_{c}(x) ; x\right)$ and $h_{c}^{\prime \prime}(x) \equiv h^{\prime \prime}\left(t_{c}(x) ; x\right)$. Discussion of the validity and corrections is done case by case (several minima, boundary terms,...).

Stationary phase approximation: with basically the same properties for $h(t, x)$, one has to look for all extrema (both minima and maxima), with $\mathrm{a}-\operatorname{sign}$ for a maximum and a $+\operatorname{sign}$ for a minimum, we have for each contribution when $x \rightarrow \infty$

$$
f(x)=\int_{a}^{b} d t e^{i h(t ; x)} \sim \sqrt{\frac{2 \pi}{\left|h_{c}^{\prime \prime}(x)\right|}} e^{i\left(h_{c}(x) \pm \frac{\pi}{4}\right)}, f(x)=\int_{a}^{b} d t g(t) e^{i x h(t)} \sim \sqrt{\frac{2 \pi}{\left|h_{c}^{\prime \prime}\right|}} g\left(t_{c}\right) \frac{e^{i\left(x h_{c} \pm \frac{\pi}{4}\right)}}{\sqrt{x}}
$$

Laplace's method: assuming that $h(t)$ has a single absolute minimum at t_{c} and close to which ($t \rightarrow t_{c}^{+}$) we have the following expansions

$$
\begin{array}{ll}
h(t)=h_{c}+\sum_{n=0}^{\infty} a_{n}\left(t-t_{c}\right)^{\mu+n} & a_{0} \neq 0, \mu>0 \\
g(t)=\sum_{n=0}^{\infty} b_{n}\left(t-t_{c}\right)^{\beta-1+n} & b_{0} \neq 0, \beta>0 \tag{3.63}
\end{array}
$$

Then (beware of the lower bound in the integral), for $x \rightarrow \infty$

$$
f(x)=\int_{t_{c}}^{b} d t g(t) e^{-x h(t)} \sim e^{-x h_{c}} \sum_{n=0}^{\infty} \Gamma\left(\frac{\beta+n}{\mu}\right) \frac{c_{n}}{x^{(\beta+n) / \mu}}
$$

in which the c_{n} can be expressed as a function of the a_{n}, b_{n}, μ and β. For example

$$
\begin{align*}
& c_{0}=\frac{b_{0}}{\mu a_{0}^{\beta / \mu}}, \quad c_{1}=\frac{1}{\mu a_{0}^{(\beta+1) / \mu}}\left[b_{1}-\frac{\beta+1}{\mu} \frac{a_{1} b_{0}}{a_{0}}\right] \tag{3.64}\\
& c_{2}=\frac{1}{\mu a_{0}^{(\beta+2) / \mu}}\left[b_{2}-\frac{\beta+2}{\mu} \frac{a_{1} b_{1}}{a_{0}}+\left((\beta+\mu+2) a_{1}^{2}-2 \mu a_{0} a_{2}\right) \frac{\beta+2}{2 \mu^{2}} \frac{b_{0}}{a_{0}^{2}}\right] \tag{3.65}
\end{align*}
$$

