
Chapter 6

Some basis of functions

6.1 Sturm-Liouville eigenvalue problems

6.1.1 Scalar product

Let w be a weight function, w(x) ≥ 0, defined over the support S = [a, b] with possibly a = −∞
and/or b = ∞. Let u and v two real functions, one defines the scalar product with respect to w,
denoted by 〈.|.〉w, as

〈v|u〉w =

∫ b

a
v(x)u(x)w(x)dx (6.1)

where dµ(x) = w(x)dx is called the measure of integration. The notation 〈v|u〉 stands for w = 1 or
corresponds to cases where there is no ambiguity in the presence of w.

Consider that you have a complete set (basis) of orthogonal functions {fn(x)} with respect to
〈.|.〉w. Then one can expand any function over S as

f(x) =
∑
n

〈fn|f〉w
〈fn|fn〉w

fn(x) (6.2)

6.1.2 Linear operator for Sturm-Liouville

Consider the following differential eigenvalue problem L̂y = −λy (sign is a convention) defined on S
with y(x) a real function that satisfies to given boundary conditions. We assume that L̂ is a linear
second-order differential operator of the form

L̂ = p(x)
d2

dx2
+ q(x)

d

dx
+m(x) (6.3)

where p, q,m are continuous functions and p′ exists and is also continuous.
A sufficient condition for L̂ to be hermitian (self-adjoint) with respect to the unweighted scalar

product 〈.|.〉 (i.e. 〈v|L̂u〉 = 〈L̂v|u〉) is that p′ = q and that the boundary terms [p(vu′ − v′u)]ba = 0
vanish, in which case one has:

L̂ =
d

dx

(
p(x)

d

dx

)
+m(x) . (6.4)

6.1.3 Making the operator Hermitian

Starting from a non-hermitian operator L̂, one can introduce a weight function w such that Ĥ = wL̂
is hermitian with respect to the weighted scalar product 〈.|.〉w and provided the boundary terms
[wp(vu′ − v′u)]ba = 0 vanish. The form of w is given by:

w(x) =
1

p(x)
exp

{∫ x q(x′)

p(x′)
dx′
}
. (6.5)

The required boundary conditions also ensures orthogonality of non-degenerate eigenfunctions.

43



6.1.4 Spectral theorem for regular Sturm-Liouville problems

A Sturm-Liouville problem put in the form Ĥy = −λwy is regular if: S is a finite interval (confine-
ment), p(x) > 0 and w(x) > 0, we have boundary conditions

c1y(a) + c2y
′(a) = 0 and d1y(b) + d2y

′(b) = 0 (c1, c2) 6= (0, 0), (d1, d2) 6= (0, 0), . (6.6)

In this case:

(i) eigenvalues λn are real and can be sorted in ascending manner: λ0 < λ1 < λ2 < . . .

(ii) eigenfunctions yn(x) are non-degenerate and have n− 1 zeros in S.

(ii) eigenfunctions {yn(x)} form an orthogonal basis with respect to the 〈.|.〉w scalar product.

Rk: if the support S is unbounded, degenerate and continuous eigenvalues can exist.

6.2 Orthogonal polynomials

6.2.1 Definition and notations

We assume that the weight function w is such that
∫ b
a x

mw(x)dx converges for all m ∈ N, and we
use it to define a scalar product. A set of polynomials {Pn(x)} is orthogonal with respect to w if
〈Pn|Pn′〉w = Nnδnn′ , with Nn = ‖Pn‖2w = 〈Pn|Pn〉w.
In what follows, n stands for the order (degree) of the polynomial. Any polynomial P of degree m
can then be decomposed as

P (x) =
m∑
n=0

〈Pn|P 〉w
〈Pn|Pn〉w

Pn(x) , (6.7)

i.e. on the subbasis of polynomials of degrees n ≤ m.

6.2.2 Recurrence relation

Let {Pn(x)} be a set of orthogonal polynomials, there exists three series of coefficients An, Bn, Cn
such that for n ≥ 1:

xPn(x) = AnPn+1(x) +BnPn(x) + CnPn−1(x) (6.8)

with AnCn 6= 0. Let ank be the coefficients of Pn, ie

Pn(x) =
n∑
k=0

ankx
k (6.9)

Then, we have

An =
ann
an+1
n+1

, Bn =
ann−1

ann
− an+1

n

an+1
n+1

, Cn =
an−1
n−1

ann

Nn

Nn−1
(6.10)

6.2.3 Generating function

Let G(x, t) be an analytic function over domain t ∈ D, it is the generating function of the {Pn(x)}
family when the Pn(x) are derived by taking the nth derivative of G with respect to t. We don’t give
a generic definition because it varies from one set to another, basically by an n-dependent prefactor.



6.3 Classical orthogonal polynomials

We consider a special where the orthogonal polynomials are eigenfunctions of a simple (possibly
regular) Sturm-Liouville problem.

6.3.1 General structure: Rodrigues formula

We start from the following Sturm-Liouville problem:

p(x)y′′(x) + q(x)y′(x) + λy(x) = 0 (6.11)

in which we choose p(x) and q(x) to be polynomials of second and first order respectively, i.e.

p(x) = αx2 + βx+ γ and q(x) = µx+ ν (6.12)

Clearly, looking for polynomial solutions by inserting a polynomial into the equation will work if
one solves for the recurrence relations between the coefficients. In particular, looking at the highest
coefficient of a polynomial of degree n provides the eigenvalues:

λn = −αn(n− 1)− µn (6.13)

The eigenfunctions are polynomials {Pn} that are orthogonal with respect to the 〈.|.〉w scalar
product, in which the weight function is given by (6.5).
The Rodrigues formula allows one to extract these polynomials as

Pn(x) = cn
1

w(x)

dn

dxn
(w(x)p(x)n) (6.14)

where cn is some coefficient that is chosen by convention. This relation allows one to construct
the generating function and then to obtain easily the recurrence relation. Otherwise, all properties
(orthogonality, recurrence relation, eigenvalues, coefficients,. . . ) can be derived/cross-checked by
hand.

6.3.2 Legendre Pn(x)

Differential equation (1− x2)y′′(x)− 2xy′(x) + n(n+ 1)y(x) = 0

Rodrigues formula: w(x) = 1 Pn(x) =
(−1)n

2nn!

dn

dxn
(1− x2)n

Parameters S = [−1, 1] , λn = n(n+ 1) , cn = (−1)n

2nn! , Nn = 2
n+1

Generating function G(x, t) =
1√

1− 2xt+ t2
=
∞∑
n=0

Pn(x)tn

Recurrence relation (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)



6.3.3 Laguerre Ln(x)

Differential equation xy′′(x) + (1− x)y′(x) + ny(x) = 0

Rodrigues formula: w(x) = e−x Ln(x) =
ex

n!

dn

dxn
(
xne−x

)
Parameters S = [0,∞[ , λn = n , cn = 1

n! , Nn = 1

Generating function G(x, t) =
e−xt/(1−t)

1− t
=
∞∑
n=0

Ln(x)tn

Recurrence relation (n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x)

6.3.4 Hermite Hn(x)

Differential equation y′′(x)− 2xy′(x) + 2ny(x) = 0

Rodrigues formula: w(x) = e−x
2

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

Parameters S =]−∞,∞[ , λn = 2n , cn = (−1)n , Nn = 2nn!
√
π

Generating function G(x, t) = e−t
2+2tx =

∞∑
n=0

Hn(x)
tn

n!

Recurrence relation Hn+1(x) = 2xHn(x)− 2nHn−1(x)

6.3.5 Chebyschev Tn(x)

Differential equation (1− x2)y′′(x)− xy′(x) + n2y(x) = 0

Rodrigues formula: w(x) = 1/
√

1− x2 Tn(x) =
(−1)n

(2n− 1)!!
(1− x2)1/2 dn

dxn
(1− x2)n−1/2

Parameters S = [−1, 1] , λn = n2 , cn = (−1)n

(2n−1)!! , N0 = π,Nn6=0 = π
2

Generating function G(x, t) =
1− t2

1− 2xt+ t2
= T0(x) + 2

∞∑
n=1

Tn(x)tn

Recurrence relation Tn+1(x) = 2xTn(x)− Tn−1(x)

6.4 Bessel functions

Not treated: they are not polynomials but have many common features with classical polynomials:
solution of a Sturm-Liouville problem (associated to the Laplacian in cylinder coordinates), orthogo-
nal basis of function associated to the weight function w(ρ) = ρ, they have simple generating function
and recurrence relations. . .



- Exercise 6.1 Darboux-Christoffel formula
Show that a set of orthogonal polynomials satisfy to the relation:

n∑
k=0

1

Nk
Pk(x)Pk(y) =

1

Nn

ann
an+1
n+1

Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x− y
(6.15)

- Exercise 6.2 Generating function of Legendre polynomials

1. Starting from the Rodrigues formula, find the expression of the generating function of Legendre
polynomials.

2. Infer the multipole expansion of 1/R in powers of a/r and polynomials of cos θ in the geometry
sketched below

z

a
θ r

R
P

Figure 6.1: Multipole expansion: definition of variables

3. From the generating function, infer the recurrence relation for Legendre polynomials.

- Exercise 6.3 Recurrence relation of Hermite polynomials
Using the generating function G(x, t), prove the recurrence relation of the Hermite polynomials.


