
Master Physics of Complex Systems Year 2018-2019

Test on Complex analysis and Fourier transform

60mins

Thursday October 25th

You are allowed to use your notes and the summaries that I distributed.
Many questions are independent and for the second exercice there is hardly no calculation to do.

Residues of order 2

1. Recall the formula allowing you to compute the residue of a pole z0 of order p of some function f(z).

2. Compute the following integral by choosing a good contour and specifying the poles and their order of
the corresponding complex function:

I =

∫ +∞

0

1

(x2 + 1)2
dx and F (k) =

∫ +∞

−∞

eikx

(x2 + a2)2
dx (a > 0) (1)

Mittag-Leffler expansion

We know that a rational fraction can be decomposed as a sum of its simple elements, say P (z)
Q(z) = polynom +∑

k

∑pk
n=1

cn,k

(z−zk)n with cn,k some coefficients, zk the poles associated to the zeroes of Q(z) and pk their order.
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Figure 1: Sketch of the contour CN of radius RN .

We are going to see that a similar decomposition holds for meromorphic functions, that we denote by f(z).
For sake of simplicity, we use the following assumptions and notations:

(i) f(z) has (up to an infinity of) simple poles (of order one) that we write zk.

(ii) the residues associated to these poles are denoted by rk = Res(f(z), zk).

(iii) these poles are labelled by ascending order and are all non-zero: 0 < |z1| ≤ |z2| ≤ . . .

(iv) the first N poles can be contained in a circular contour CN of radius RN (see Fig. 1) that does not touch
any pole.

(v) we assume that lim
RN→∞

1

RN
max
z∈CN

|f(z)| = 0.



1. We introduce the function I(z) =
1

2iπ

∮
CN

f(ζ)

ζ(ζ − z)
dζ (z being inside CN as in Fig. 1, ∀k, z 6= zk).

By applying the residue theorem, show that

I(z) =

N∑
k=1

rk
zk(zk − z)

+
f(z)

z
− f(0)

z
(2)

2. Taking the limit RN →∞, prove that f(z) can be expanded as

f(z) = f(0) +

∞∑
k=1

rk

(
1

z − zk
+

1

zk

)
(3)

3. Application: by considering the function f(z) = 1
sin z −

1
z and after checking that it satisfies to the

hypothesis, show the following two equalities

1

sin z
=
∑
k∈Z

(−1)k

z − πk
=

1

z
+ 2z

∞∑
k=1

(−1)k

z2 − (πk)2
(4)

A connection with Weierstrass factorization theorem

We now consider an entire function Z(z) that has only simple zeros zk with zk 6= 0. In particular, it means
that, focusing on zk, one can rewrite Z(z) = (z− zk)gk(z) with gk(zk) 6= 0 and gk(z) an holomorphic function.

4. Show that the function f(z) = Z ′(z)/Z(z) has simple poles at zk

5. Assuming that f(z) obeys the hypothesis (i-v), show that one can factorize

Z(z) = Z(0)eKz
∞∏
k=1

(
1− z

zk

)
(5)

with K a constant to be specified as a function of the zk and f(0). This constitutes a particular case of
Weierstrass factorization theorem. Consider integrating along a path in the complex plane from z = 0 to
z through a line not passing through any pole.

6. Application: By considering the function Z(z) = sin z
z , show that

sin z

z
=

∞∏
k=1

(
1− z2

k2π2

)
(6)

Bonus: discussion on Fisher’s zeros of partition functions

In 1964, Michael Fisher considered interpreting the non-analyticity of the free energy from the behavior the
poles of its generalization to the complex plane F (z) = − 1

β lnZ(z), in which the partition function of a system
of energies En can be extended to the complex plane by defining

Z(z) =
∑
n

e−zEn , z ∈ C (7)

Along the real axis, one usually writes z = β ∈ R the inverse temperature. Z(z) has zeros that are denoted zk
in the complex plane. We recall that phase transitions are signalled by non-analytic singularities of the free
energy as a function of temperature.

7. Where are non-analytical points of F (z) in the complex plane? We assume (5) applies.

8. Can zk ∈ R for a finite and discrete spectrum associated with a finite system?

9. Do you see a way to reconcile the existence of phase transitions and the answers to the first two questions?
One can draw a graph to help explain the emergence of phase transitions.
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