Test on Complex analysis and Fourier transform

60mins

Thursday October 25th

You are allowed to use your notes and the summaries that I distributed.
Many questions are independent and for the second exercice there is hardly no calculation to do.

Residues of order 2

1. Recall the formula allowing you to compute the residue of a pole z_{0} of order p of some function $f(z)$.
2. Compute the following integral by choosing a good contour and specifying the poles and their order of the corresponding complex function:

$$
\begin{equation*}
I=\int_{0}^{+\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x \quad \text { and } \quad F(k)=\int_{-\infty}^{+\infty} \frac{e^{i k x}}{\left(x^{2}+a^{2}\right)^{2}} d x \quad(a>0) \tag{1}
\end{equation*}
$$

Mittag-Leffler expansion

We know that a rational fraction can be decomposed as a sum of its simple elements, say $\frac{P(z)}{Q(z)}=$ polynom + $\sum_{k} \sum_{n=1}^{p_{k}} \frac{c_{n, k}}{\left(z-z_{k}\right)^{n}}$ with $c_{n, k}$ some coefficients, z_{k} the poles associated to the zeroes of $Q(z)$ and p_{k} their order.

Figure 1: Sketch of the contour C_{N} of radius R_{N}.
We are going to see that a similar decomposition holds for meromorphic functions, that we denote by $f(z)$. For sake of simplicity, we use the following assumptions and notations:
(i) $f(z)$ has (up to an infinity of) simple poles (of order one) that we write z_{k}.
(ii) the residues associated to these poles are denoted by $r_{k}=\operatorname{Res}\left(f(z), z_{k}\right)$.
(iii) these poles are labelled by ascending order and are all non-zero: $0<\left|z_{1}\right| \leq\left|z_{2}\right| \leq \ldots$
(iv) the first N poles can be contained in a circular contour C_{N} of radius R_{N} (see Fig. 1) that does not touch any pole.
(v) we assume that $\lim _{R_{N} \rightarrow \infty} \frac{1}{R_{N}} \max _{z \in C_{N}}|f(z)|=0$.

1. We introduce the function $I(z)=\frac{1}{2 i \pi} \oint_{C_{N}} \frac{f(\zeta)}{\zeta(\zeta-z)} d \zeta\left(z\right.$ being inside C_{N} as in Fig. $\left.1, \forall k, z \neq z_{k}\right)$. By applying the residue theorem, show that

$$
\begin{equation*}
I(z)=\sum_{k=1}^{N} \frac{r_{k}}{z_{k}\left(z_{k}-z\right)}+\frac{f(z)}{z}-\frac{f(0)}{z} \tag{2}
\end{equation*}
$$

2. Taking the limit $R_{N} \rightarrow \infty$, prove that $f(z)$ can be expanded as

$$
\begin{equation*}
f(z)=f(0)+\sum_{k=1}^{\infty} r_{k}\left(\frac{1}{z-z_{k}}+\frac{1}{z_{k}}\right) \tag{3}
\end{equation*}
$$

3. Application: by considering the function $f(z)=\frac{1}{\sin z}-\frac{1}{z}$ and after checking that it satisfies to the hypothesis, show the following two equalities

$$
\begin{equation*}
\frac{1}{\sin z}=\sum_{k \in \mathbb{Z}} \frac{(-1)^{k}}{z-\pi k}=\frac{1}{z}+2 z \sum_{k=1}^{\infty} \frac{(-1)^{k}}{z^{2}-(\pi k)^{2}} \tag{4}
\end{equation*}
$$

A connection with Weierstrass factorization theorem

We now consider an entire function $Z(z)$ that has only simple zeros z_{k} with $z_{k} \neq 0$. In particular, it means that, focusing on z_{k}, one can rewrite $Z(z)=\left(z-z_{k}\right) g_{k}(z)$ with $g_{k}\left(z_{k}\right) \neq 0$ and $g_{k}(z)$ an holomorphic function.
4. Show that the function $f(z)=Z^{\prime}(z) / Z(z)$ has simple poles at z_{k}
5. Assuming that $f(z)$ obeys the hypothesis (i-v), show that one can factorize

$$
\begin{equation*}
Z(z)=Z(0) e^{K z} \prod_{k=1}^{\infty}\left(1-\frac{z}{z_{k}}\right) \tag{5}
\end{equation*}
$$

with K a constant to be specified as a function of the z_{k} and $f(0)$. This constitutes a particular case of Weierstrass factorization theorem. Consider integrating along a path in the complex plane from $z=0$ to z through a line not passing through any pole.
6. Application: By considering the function $Z(z)=\frac{\sin z}{z}$, show that

$$
\begin{equation*}
\frac{\sin z}{z}=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2} \pi^{2}}\right) \tag{6}
\end{equation*}
$$

Bonus: discussion on Fisher's zeros of partition functions

In 1964, Michael Fisher considered interpreting the non-analyticity of the free energy from the behavior the poles of its generalization to the complex plane $F(z)=-\frac{1}{\beta} \ln Z(z)$, in which the partition function of a system of energies E_{n} can be extended to the complex plane by defining

$$
\begin{equation*}
Z(z)=\sum_{n} e^{-z E_{n}}, \quad z \in \mathbb{C} \tag{7}
\end{equation*}
$$

Along the real axis, one usually writes $z=\beta \in \mathbb{R}$ the inverse temperature. $Z(z)$ has zeros that are denoted z_{k} in the complex plane. We recall that phase transitions are signalled by non-analytic singularities of the free energy as a function of temperature.
7. Where are non-analytical points of $F(z)$ in the complex plane? We assume (5) applies.
8. Can $z_{k} \in \mathbb{R}$ for a finite and discrete spectrum associated with a finite system?
9. Do you see a way to reconcile the existence of phase transitions and the answers to the first two questions? One can draw a graph to help explain the emergence of phase transitions.

