
Fourier transform of the hyperbolic secant

1. There are only simple poles along the imaginary axis zn = (1/2 + n)i with n ∈ Z since cosh(it) = cos(t).

2. f(z) is holomorphic on and inside Γ that is simply connected so from Cauchy theorem IΓ = 0.

3. γ1: z = x, x ∈ [0, R]

γ2: z = R+ it, t ∈ [0, 1/2]

γ3: z = x+ i/2, x ∈ [R, ε]

γ4: z = i/2 + εeiθ, θ ∈ [0,−π/2]

γ5: z = it, t ∈ [1/2− ε, 0]

4. We have 2|cosh(π(R+ it))| =
∣∣eπR+iπt + e−πR−iπt

∣∣ ≥ ∣∣∣∣eπR+iπt
∣∣− ∣∣e−πR−iπt∣∣∣∣ = 2 sinh(πR) and

∣∣eiω(R+it)
∣∣ =

e−ωt so |f(z)| ≤ e−ωt/(2 sinh(πR)) which kills the integral on this finite domain. So I2 → 0 when R→∞.

5. With cosh(π(x+ i/2)) = i sinh(πx), one obtains Re(I3) = −e
−ω/2

2

∫ R

ε

sin(ωx)

sinh(πx)
dx → −e

−ω/2

2
J(ω).

Notice that the imaginary has a logarithmic divergence when ε→ 0.

6. Using the parametrization, we explicitly have when ε→ 0

I4 =

∫ −π/2
0

dθ iεeiθ
e−ω/2+iεeiθ

2 cosh(πi/2 + πεeiθ)
= e−ω/2

∫ −π/2
0

dθ
iεeiθ

2i sinh(πεeiθ)
= −e

−ω/2

4
(1)

By choosing a circle of radius ε with anti-trigonometric direction, the contour encircles the simple pole
z0 = i/2 so by applying the residue theorem, one has∮

�
f(z)dz = −2iπRes(f, i/2) = −2iπ

e−ω/2

2π sinh(πi/2)
= −e−ω/2 (2)

and then, assuming that ε→ 0 to make the integrand angle-independent, one has I4 = 1/4
∮
� f(z)dz

7. One gets that I5 = −i
∫ 1/2−ε

0

e−ωt

2 cosh(πt)
dt is a pure imaginary number.

8. From Re(IΓ) = 0, collecting the terms with Re{I1} = I(ω)/2 yields I(ω)− e−ω/2J(ω) =
e−ω/2

2
.

9. Since I(−ω) = I(ω) and J(−ω) = −J(ω), we have I(ω)+eω/2J(ω) =
eω/2

2
. Combining the two equations

yields

I(ω) =
1

2 cosh(ω/2)
and J(ω) =

1

2
tanh(ω/2) . (3)

10. One gets, after seeing that
∫ +∞
−∞

sin(ωx)
cosh(ax)dx = 0 and setting x′ = (a/π)x

F (ω) =
1√
2π

∫ +∞

−∞

cos(ωx)

cosh(ax)
dx =

1√
2π

π

a
2I
(π
a
ω
)

=
1

a

√
π

2
sech

( π
2a
ω
)

(4)

11. As the gaussian (and several other functions), the hyperbolic secant is its own Fourier transform up to
some rescaling factor.


