Fourier transform of the hyperbolic secant

1. There are only simple poles along the imaginary axis $z_{n}=(1 / 2+n) i$ with $n \in \mathbb{Z}$ since $\cosh (i t)=\cos (t)$.
2. $f(z)$ is holomorphic on and inside Γ that is simply connected so from Cauchy theorem $I_{\Gamma}=0$.
3. $\gamma_{1}: z=x, \quad x \in[0, R]$
$\gamma_{2}: z=R+i t, \quad t \in[0,1 / 2]$
$\gamma_{3}: z=x+i / 2, \quad x \in[R, \varepsilon]$
$\gamma_{4}: z=i / 2+\varepsilon e^{i \theta}, \theta \in[0,-\pi / 2]$
$\gamma_{5}: z=i t, \quad t \in[1 / 2-\varepsilon, 0]$
4. We have $2|\cosh (\pi(R+i t))|=\left|e^{\pi R+i \pi t}+e^{-\pi R-i \pi t}\right| \geq\left|\left|e^{\pi R+i \pi t}\right|-\left|e^{-\pi R-i \pi t}\right|\right|=2 \sinh (\pi R)$ and $\left|e^{i \omega(R+i t)}\right|=$ $e^{-\omega t}$ so $|f(z)| \leq e^{-\omega t} /(2 \sinh (\pi R))$ which kills the integral on this finite domain. So $I_{2} \rightarrow 0$ when $R \rightarrow \infty$.
5. With $\cosh (\pi(x+i / 2))=i \sinh (\pi x)$, one obtains $\operatorname{Re}\left(I_{3}\right)=-\frac{e^{-\omega / 2}}{2} \int_{\varepsilon}^{R} \frac{\sin (\omega x)}{\sinh (\pi x)} d x \rightarrow-\frac{e^{-\omega / 2}}{2} J(\omega)$. Notice that the imaginary has a logarithmic divergence when $\varepsilon \rightarrow 0$.
6. Using the parametrization, we explicitly have when $\varepsilon \rightarrow 0$

$$
\begin{equation*}
I_{4}=\int_{0}^{-\pi / 2} d \theta i \varepsilon e^{i \theta} \frac{e^{-\omega / 2+i \varepsilon e^{i \theta}}}{2 \cosh \left(\pi i / 2+\pi \varepsilon e^{i \theta}\right)}=e^{-\omega / 2} \int_{0}^{-\pi / 2} d \theta \frac{i \varepsilon e^{i \theta}}{2 i \sinh \left(\pi \varepsilon e^{i \theta}\right)}=-\frac{e^{-\omega / 2}}{4} \tag{1}
\end{equation*}
$$

By choosing a circle of radius ε with anti-trigonometric direction, the contour encircles the simple pole $z_{0}=i / 2$ so by applying the residue theorem, one has

$$
\begin{equation*}
\oint_{\circlearrowright} f(z) d z=-2 i \pi \operatorname{Res}(f, i / 2)=-2 i \pi \frac{e^{-\omega / 2}}{2 \pi \sinh (\pi i / 2)}=-e^{-\omega / 2} \tag{2}
\end{equation*}
$$

and then, assuming that $\varepsilon \rightarrow 0$ to make the integrand angle-independent, one has $I_{4}=1 / 4 \oint_{\circlearrowright} f(z) d z$
7. One gets that $I_{5}=-i \int_{0}^{1 / 2-\varepsilon} \frac{e^{-\omega t}}{2 \cosh (\pi t)} d t$ is a pure imaginary number.
8. From $\operatorname{Re}\left(I_{\Gamma}\right)=0$, collecting the terms with $\operatorname{Re}\left\{I_{1}\right\}=I(\omega) / 2$ yields $I(\omega)-e^{-\omega / 2} J(\omega)=\frac{e^{-\omega / 2}}{2}$.
9. Since $I(-\omega)=I(\omega)$ and $J(-\omega)=-J(\omega)$, we have $I(\omega)+e^{\omega / 2} J(\omega)=\frac{e^{\omega / 2}}{2}$. Combining the two equations yields

$$
\begin{equation*}
I(\omega)=\frac{1}{2 \cosh (\omega / 2)} \quad \text { and } \quad J(\omega)=\frac{1}{2} \tanh (\omega / 2) . \tag{3}
\end{equation*}
$$

10. One gets, after seeing that $\int_{-\infty}^{+\infty} \frac{\sin (\omega x)}{\cosh (a x)} d x=0$ and setting $x^{\prime}=(a / \pi) x$

$$
\begin{equation*}
F(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \frac{\cos (\omega x)}{\cosh (a x)} d x=\frac{1}{\sqrt{2 \pi}} \frac{\pi}{a} 2 I\left(\frac{\pi}{a} \omega\right)=\frac{1}{a} \sqrt{\frac{\pi}{2}} \operatorname{sech}\left(\frac{\pi}{2 a} \omega\right) \tag{4}
\end{equation*}
$$

11. As the gaussian (and several other functions), the hyperbolic secant is its own Fourier transform up to some rescaling factor.
