Test on Calculus of variations

60mins

Thursday October 3rd

Field theories

Elastic string – We consider a problem described by a scalar field $\psi(x, t)$ which equations of motion are obtained by the minimization of the action $\mathcal{S}[\psi]$, expressed in terms of the Lagrangian density \mathcal{L} as

$$\mathcal{S}[\psi] = \int_0^L \int_0^T dx \, dt \, \mathcal{L}(\psi, \partial_t \psi, \partial_x \psi) \,, \tag{1}$$

with L and T some fixed parameters.

- 1. Write down the Euler-Lagrange equation $\frac{\delta S}{\delta \psi(x,t)} = 0$ in terms of partial derivatives of \mathcal{L} .
- 2. We consider the Lagrangian density $\mathcal{L} = \frac{\rho}{2} \left((\partial_t \psi)^2 c^2 (\partial_x \psi)^2 \right)$ with ρ and c two constants. What is the equation of motion for $\psi(x,t)$? What is the physical meaning of c?

Non-linear Schrödinger equation – We now consider a **complex** field $\psi(\vec{x}, t)$ describing a quantum problem with $\psi^*(\vec{x}, t)$ its complex conjugate. The position variable \vec{x} is now in arbitrary dimension. One can take either the real and imaginary part of ψ as independent variables or, equivalently, use ψ and ψ^* as independent variables. Thus, the action and Lagrangian density takes the form

$$\mathcal{S}[\psi,\psi^*] = \int \int_0^T d\vec{x} \, dt \, \mathcal{L}(\psi,\psi^*,\partial_t\psi,\partial_t\psi^*,\vec{\nabla}\psi,\vec{\nabla}\psi^*) \,, \qquad (2)$$

with $(\vec{\nabla})_j = \partial_{x_j}$.

- 3. Write down the Euler-Lagrange equations for the field $\psi(\vec{x}, t)$.
- 4. We consider the following Lagrangian density with V(x) a potential and g a constant:

$$\mathcal{L} = i\frac{\hbar}{2} \left(\psi^* \,\partial_t \psi - \psi \,\partial_t \psi^*\right) - \frac{\hbar^2}{2m} \vec{\nabla} \psi \cdot \vec{\nabla} \psi^* - V(x) |\psi|^2 - g |\psi|^4. \tag{3}$$

What are the equations of motion for $\psi(\vec{x}, t)$? How are they related?

Optimal ski trajectory

We consider a skier going from point O to A (see Fig. 1) on a slope that makes an angle α with the horizontal plane. The skier is submitted only to the gravity field that corresponds to a potential energy $-xmg\sin\alpha$ with m its mass, g the gravity constant and O taken to be the origin of potential energy. We want to find the trajectory in the xy plane that minimizes the total time T to reach A such that the skier starts with zero velocity.

Figure 1: Geometry and notations for the ski slope.

- 1. Write down the total energy as a function of variables x, y and the velocity $\vec{v} = \left(\frac{dx}{dt}, \frac{dy}{dt}\right)$. What is the value of the total energy?
- 2. We introduce $y'(x) = \frac{dy}{dx}$. Show that the total time reads

$$T = \frac{1}{\sqrt{2g\sin\alpha}} \int_0^{x_A} dx \sqrt{\frac{1+y'^2}{x}} \tag{4}$$

- 3. Determine the differential equation of motion satisfied by y(x).
- 4. Show that the quantity $\frac{1}{x}\frac{dy}{dt}$ is independent of time.
- 5. Check that $x(\theta) = (1 \cos 2\theta)/(2C^2)$ and $y(\theta) = (2\theta \sin(2\theta))/(2C^2)$, with $\theta(t)$ a function of time, is a parametric solution for the curve and give the value of the constant C.
- 6. Find the $\theta(t)$ function.