Test on Calculus of variations

60mins

Thursday October 3rd

Field theories

Elastic string - We consider a problem described by a scalar field $\psi(x, t)$ which equations of motion are obtained by the minimization of the action $\mathcal{S}[\psi]$, expressed in terms of the Lagrangian density \mathcal{L} as

$$
\begin{equation*}
\mathcal{S}[\psi]=\int_{0}^{L} \int_{0}^{T} d x d t \mathcal{L}\left(\psi, \partial_{t} \psi, \partial_{x} \psi\right) \tag{1}
\end{equation*}
$$

with L and T some fixed parameters.

1. Write down the Euler-Lagrange equation $\frac{\delta S}{\delta \psi(x, t)}=0$ in terms of partial derivatives of \mathcal{L}.
2. We consider the Lagrangian density $\mathcal{L}=\frac{\rho}{2}\left(\left(\partial_{t} \psi\right)^{2}-c^{2}\left(\partial_{x} \psi\right)^{2}\right)$ with ρ and c two constants. What is the equation of motion for $\psi(x, t)$? What is the physical meaning of c ?

Non-linear Schrödinger equation - We now consider a complex field $\psi(\vec{x}, t)$ describing a quantum problem with $\psi^{*}(\vec{x}, t)$ its complex conjugate. The position variable \vec{x} is now in arbitrary dimension. One can take either the real and imaginary part of ψ as independent variables or, equivalently, use ψ and ψ^{*} as independent variables. Thus, the action and Lagrangian density takes the form

$$
\begin{equation*}
\mathcal{S}\left[\psi, \psi^{*}\right]=\iint_{0}^{T} d \vec{x} d t \mathcal{L}\left(\psi, \psi^{*}, \partial_{t} \psi, \partial_{t} \psi^{*}, \vec{\nabla} \psi, \vec{\nabla} \psi^{*}\right) \tag{2}
\end{equation*}
$$

with $(\vec{\nabla})_{j}=\partial_{x_{j}}$.
3. Write down the Euler-Lagrange equations for the field $\psi(\vec{x}, t)$.
4. We consider the following Lagrangian density with $V(x)$ a potential and g a constant:

$$
\begin{equation*}
\mathcal{L}=i \frac{\hbar}{2}\left(\psi^{*} \partial_{t} \psi-\psi \partial_{t} \psi^{*}\right)-\frac{\hbar^{2}}{2 m} \vec{\nabla} \psi \cdot \vec{\nabla} \psi^{*}-V(x)|\psi|^{2}-g|\psi|^{4} . \tag{3}
\end{equation*}
$$

What are the equations of motion for $\psi(\vec{x}, t)$? How are they related?

Optimal ski trajectory

We consider a skier going from point O to A (see Fig. 1) on a slope that makes an angle α with the horizontal plane. The skier is submitted only to the gravity field that corresponds to a potential energy $-x m g \sin \alpha$ with m its mass, g the gravity constant and O taken to be the origin of potential energy. We want to find the trajectory in the $x y$ plane that minimizes the total time T to reach A such that the skier starts with zero velocity.

Figure 1: Geometry and notations for the ski slope.

1. Write down the total energy as a function of variables x, y and the velocity $\vec{v}=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$. What is the value of the total energy?
2. We introduce $y^{\prime}(x)=\frac{d y}{d x}$. Show that the total time reads

$$
\begin{equation*}
T=\frac{1}{\sqrt{2 g \sin \alpha}} \int_{0}^{x_{A}} d x \sqrt{\frac{1+y^{\prime 2}}{x}} \tag{4}
\end{equation*}
$$

3. Determine the differential equation of motion satisfied by $y(x)$.
4. Show that the quantity $\frac{1}{x} \frac{d y}{d t}$ is independent of time.
5. Check that $x(\theta)=(1-\cos 2 \theta) /\left(2 C^{2}\right)$ and $y(\theta)=(2 \theta-\sin (2 \theta)) /\left(2 C^{2}\right)$, with $\theta(t)$ a function of time, is a parametric solution for the curve and give the value of the constant C.

6 . Find the $\theta(t)$ function.

