Field theories

Elastic string

1. $\frac{\partial \mathcal{L}}{\partial \psi}-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \psi\right)}-\frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}=0$
2. $\rho\left(-\frac{\partial}{\partial t} \partial_{t} \psi+c^{2} \frac{\partial}{\partial x} \partial_{x} \psi\right)=0$ so $\frac{\partial^{2} \psi}{\partial t^{2}}-c^{2} \frac{\partial^{2} \psi}{\partial x^{2}}=0$, d'Alembert equation with velocity c.

Non-linear Schrödinger equation

$\mathcal{S}\left[\psi, \psi^{*}\right]=\int_{0}^{L} \int_{0}^{T} d x d t \mathcal{L}\left(\psi, \psi^{*}, \partial_{t} \psi, \partial_{t} \psi^{*}, \vec{\nabla} \psi, \vec{\nabla} \psi^{*}\right)$,
with $(\vec{\nabla})_{j}=\partial_{x_{j}}$.
3. There are two Euler-Lagrange equations $\frac{\delta \mathcal{S}}{\delta \psi}=0$ and $\frac{\delta \mathcal{S}}{\delta \psi^{*}}=0$. One has, following the lecture,

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi}-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \psi\right)}-\sum_{j} \frac{\partial}{\partial x_{j}} \frac{\partial \mathcal{L}}{\partial\left(\partial_{x_{j}} \psi\right)}=0 \quad \text { and } \quad \frac{\partial \mathcal{L}}{\partial \psi^{*}}-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \psi^{*}\right)}-\sum_{j} \frac{\partial}{\partial x_{j}} \frac{\partial \mathcal{L}}{\partial\left(\partial_{x_{j}} \psi^{*}\right)}=0 \tag{2}
\end{equation*}
$$

4. we get, using $\vec{\nabla} \psi \cdot \vec{\nabla} \psi^{*}=\sum_{j}\left(\partial_{x_{j}} \psi\right)\left(\partial_{x_{j}} \psi^{*}\right)$ and $|\psi|^{2}=\psi \psi^{*}$

$$
\begin{align*}
i \frac{\hbar}{2}\left(-\partial_{t} \psi^{*}-\frac{\partial}{\partial t} \psi^{*}\right)+\frac{\hbar^{2}}{2 m} \sum_{j} \frac{\partial}{\partial x_{j}}\left(\partial_{x_{j}} \psi^{*}\right)-V(x) \psi^{*}-2 g \psi\left(\psi^{*}\right)^{2} & =0 \tag{3}\\
i \frac{\hbar}{2}\left(\partial_{t} \psi+\frac{\partial}{\partial t} \psi\right)+\frac{\hbar^{2}}{2 m} \sum_{j} \frac{\partial}{\partial x_{j}}\left(\partial_{x_{j}} \psi\right)-V(x) \psi-2 g \psi^{*} \psi^{2} & =0 \tag{4}
\end{align*}
$$

Both equations are actually related by complex conjugation and gives the non-linear Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(x) \psi+2 g|\psi|^{2} \psi \tag{5}
\end{equation*}
$$

Optimal ski trajectory

1. $E=\frac{1}{2} m \vec{v}^{2}-m g \sin \alpha x=0$ using the initial conditions at the point O.
2. We have $v=|\vec{v}|=\sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}}=\frac{d x}{d t} \sqrt{1+y^{\prime 2}}=\sqrt{2 g \sin \alpha x}$ since we take $d x>0$ and $d y>0$ to reach A. Then, the total time is a functional of $y(x)$ with

$$
\begin{equation*}
T[y]=\int_{0}^{T} d t=\frac{1}{\sqrt{2 g \sin \alpha}} \int_{0}^{x_{A}} d x \sqrt{\frac{1+y^{\prime 2}}{x}} \tag{6}
\end{equation*}
$$

3. Using Euler Lagrange equation, since there is no explicit dependence on y for $f\left(y, y^{\prime}, x\right)=\sqrt{\frac{1+y^{\prime 2}}{x}}$, we get

$$
\begin{equation*}
-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{y^{\prime}}{\sqrt{x\left(1+y^{\prime 2}\right)}}=0 \tag{7}
\end{equation*}
$$

A first integration leads to $y^{\prime}=B \sqrt{x\left(1+y^{\prime 2}\right)}$ with $B>0$ some constant. Then, we get $y^{\prime 2}=\frac{B^{2} x}{1-B^{2} x}$.
4. We have $\frac{1}{x} \frac{d y}{d t}=\frac{y^{\prime}}{x} \frac{d x}{d t}=\frac{y^{\prime}}{x} \sqrt{\frac{2 g \sin \alpha x}{1+y^{\prime 2}}}=B \sqrt{2 g \sin \alpha}$.
5. We have $\frac{\mathrm{d} x}{\mathrm{~d} t}=\sin 2 \theta / C^{2} \times \frac{\mathrm{d} \theta}{\mathrm{d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=(1-\cos (2 \theta)) / C^{2} \times \frac{\mathrm{d} \theta}{\mathrm{d} t}$ and $x=\sin ^{2} \theta / C^{2}$. Thus, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-\cos (2 \theta)}{\sin 2 \theta}=$ $\frac{2 \sin ^{2} \theta}{2 \sin \theta \cos \theta}=\tan \theta$ and $\frac{B^{2} x}{1-B^{2} x}=\frac{B^{2} \sin ^{2} \theta}{C^{2}-B^{2} \sin ^{2} \theta}=\tan ^{2} \theta$ provided $C=B$. This shows that this indeed is the solution.
6. We clearly see that $\frac{1}{x} \frac{d y}{d t}=2 \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=B \sqrt{2 g \sin \alpha}$ so that $\theta(t)=B \sqrt{2 g \sin \alpha} t / 2$. The curve is a branch of cycloid. The value of B is determined by the coordinates of the point A (not asked).

