Test on Calculus of variations and Complex analysis

60mins

Thursday October 21th

Sturm-Liouville variational problem

We consider the functional

$$
\begin{equation*}
F[y]=\int_{a}^{b} \mathrm{~d} x \frac{1}{2}\left(p(x) y^{\prime}(x)^{2}-m(x) y(x)^{2}\right) \tag{1}
\end{equation*}
$$

on a space of analytic functions y over $[a, b]$ and satisfying to the boundary conditions $y(a)=$ $y(b)=0$. The functions $p(x)$ and $m(x)$ are simple polynomials. We look for the extremalization of F under the constraint that y is normalized, ie such that

$$
\begin{equation*}
\int_{a}^{b} y^{2}(x) \mathrm{d} x=1 \tag{2}
\end{equation*}
$$

1. Show that the solutions y statisfy to the differential eigenvalue problem

$$
\begin{equation*}
\hat{L} y=-\lambda y \tag{3}
\end{equation*}
$$

in which \hat{L} is a second order differential operator and λ an eigenvalue. In particular, gives the expression of \hat{L} in terms of operators $\frac{\mathrm{d}}{\mathrm{d} x}$ and functions $p(x)$ and $m(x)$.
2. We take $p(x)=1-x^{2}$ and $m(x)=0$. Give the explicit form for \hat{L}.

A Fourier transform

Compute the following principal part of the Fourier transform

$$
\begin{equation*}
F(k)=\operatorname{PP} \int_{-\infty}^{\infty} \frac{e^{-i k x}}{x\left(1+x^{2}\right)} \mathrm{d} x \tag{4}
\end{equation*}
$$

Some complex gaussian integrals

We wish to compute the following integral

$$
\begin{equation*}
I(a, b)=\iint \frac{\mathrm{d} z \mathrm{~d} \bar{z}}{2 i \pi} e^{-a z \bar{z}-b \bar{z}-\bar{b} z} \tag{5}
\end{equation*}
$$

where $a \in \mathbb{C}$ with $\operatorname{Re}(a)>0$ and $b \in \mathbb{C}$. The notation $\mathrm{d} z \mathrm{~d} \bar{z}$ means integrating overs two infinite lines parametrized by $x, y \in \mathbb{R}$ such that $z=x+i y$ so that we have $\mathrm{d} z \mathrm{~d} \bar{z}=2 i \mathrm{~d} x \mathrm{~d} y$.

1. Rewrite $I(a, b)$ in terms of a double integral over x and y.
2. We see that we need to generalize the results on gaussian integrals. We will show that

$$
\begin{equation*}
I(a)=\int_{-\infty}^{\infty} e^{-a(x+c)^{2}} \mathrm{~d} x=\sqrt{\frac{\pi}{a}} \quad \text { with } \quad c=c^{r}+i c^{i} \in \mathbb{C} . \tag{6}
\end{equation*}
$$

a) First show the result for $c=0$. To do so, either consider the trick of writting $I^{2}(a)$ in polar coordinates or use a well chosen contour in the complex plane.

Figure 1: The contour γ to compute (6).
b) For $c \neq 0$, use the contour of Fig. 1 to prove (6).
c) Application to Fresnel integrals : infer the values of the integrals

$$
\begin{equation*}
F_{c}=\int_{-\infty}^{\infty} \cos \left(x^{2}\right) \mathrm{d} x \quad \text { and } \quad F_{s}=\int_{-\infty}^{\infty} \sin \left(x^{2}\right) \mathrm{d} x \tag{7}
\end{equation*}
$$

3. Finally compute the expression of $I(a, b)$ in (5) as a function of a and b.

Derivative of the principal part

We introduce the finite part FP defined as

$$
\begin{equation*}
\text { FP } \int_{-\infty}^{+\infty} \frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)^{2}} \mathrm{~d} x=\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{-\infty}^{x_{0}-\epsilon} \frac{f(x)}{\left(x-x_{0}\right)^{2}} \mathrm{~d} x+\int_{x_{0}+\epsilon}^{+\infty} \frac{f(x)}{\left(x-x_{0}\right)^{2}} \mathrm{~d} x-\frac{2 f\left(x_{0}\right)}{\epsilon}\right) \tag{8}
\end{equation*}
$$

What is the derivative $\frac{\mathrm{d}}{\mathrm{d} x_{0}} \mathrm{PP} \int_{-\infty}^{+\infty} \frac{f(x)}{x-x_{0}} \mathrm{~d} x$? Provide another expression involving $f^{\prime}(x)$ and a principal part.

