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The dynamics of filament assembly define
cytoskeletal network morphology
Giulia Foffano1, Nicolas Levernier2 & Martin Lenz1

The actin cytoskeleton is a key component in the machinery of eukaryotic cells, and it

self-assembles out of equilibrium into a wide variety of biologically crucial structures.

Although the molecular mechanisms involved are well characterized, the physical principles

governing the spatial arrangement of actin filaments are not understood. Here we propose

that the dynamics of actin network assembly from growing filaments results from a

competition between diffusion, bundling and steric hindrance, and is responsible for the range

of observed morphologies. Our model and simulations thus predict an abrupt dynamical

transition between homogeneous and strongly bundled networks as a function of the actin

polymerization rate. This suggests that cells may effect dramatic changes to their internal

architecture through minute modifications of their nonequilibrium dynamics. Our results are

consistent with available experimental data.
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T
he cytoskeleton of living cells is an extremely dynamic
system, of which actin is a vital component.
Actin monomers are continuously assembled during

polymerization; at the same time, actin filaments are bundled
together by crosslinkers to form a large variety of structures.
Tight bundles thus appear in filopodia, in stress fibres and in the
contractile ring involved in cell division, whereas homogeneous
networks are found in the cell cortex and in the lamella1.
Understanding the fundamental mechanisms that determine the
formation and the morphology of the actin cytoskeleton is thus
necessary to explain how the cell regulates its own shape, internal
structure and motility.

A tool of choice to characterize these structures is to isolate a
few essential ingredients and study the result of their interactions.
Bottom-up experiments thus put one type of crosslinker in
solution together with purified actin, resulting in in vitro
reconstituted actin networks2,3. As filaments grow and become
crosslinked into bundles, the morphology of the resulting
networks strongly depends on their assembly kinetics: different
protocols leading to the same filament number and lengths
through different kinetic pathways thus result in different
structures, demonstrating that the observed phases are out of
equilibrium4–6. The structure of keratin networks similarly results
from the competition between filament elongation and bundle
formation7. Despite the highly dynamic nature of these
experiments, theoretical attempts to describe such networks
have largely relied on equilibrium physics8–10, modelling
morphological transitions as the result of the competition
between crosslinker binding and thermal fluctuations. In many
cases, however, the bundling of two or more filaments by
hundreds of crosslinkers can involve energies of the order of
thousands of kBT11,12, indicating that equilibrium thermal
fluctuations alone cannot account for the presence of structural
disorder in the final networks.

Here we propose a theoretical framework to account for the
architecture of actin networks from the dynamics of their
assembly. We study the simplest situation of actin structures
assembling de novo from a fixed number of initially short
filaments, mirroring existing in vitro experiments4,5,7, as well as,

for example, cytoskeletal reassembly in a newly formed bleb13,
and actin recovery following drug treatment14. We consider a
system of polymerizing and diffusing filaments that tend to
bundle irreversibly when they come into contact (Fig. 1a), as
observed experimentally15. Bundling can however be sterically
blocked by the presence of other filaments (Fig. 1b) that becomes
increasingly likely as the filaments elongate. At early times, the
filaments are very short and diffusion is fast. Bundling thus
proceeds unimpeded by steric constraints, and the number of
bundles in the solution decreases over time as thicker bundles are
formed through the merging of thinner ones. As a result, blocking
becomes less likely and further bundling events are facilitated in a
positive feedback mechanism. As the filaments grow, diffusion
slows down and bundles come into contact more rarely. As a
consequence, blocking finally outpaces reaction and the system
becomes kinetically arrested. This basic mechanism allows us to
formulate simple, experimentally testable scaling predictions for
the bundle size and concentration, including an abrupt change in
system behaviour upon kinetic trapping. We numerically validate
these predictions in simulations of rod-like bundles over five
orders of magnitude in concentration and four orders of
magnitude in filament growth velocity, a much broader range
than is accessible to existing detailed simulations16. We thus
develop a robust, easily extendable framework to describe the
nonequilibrium physics of cytoskeletal network assembly.

Results
A model for kinetic arrest based on filament entanglement. We
model actin bundles as impenetrable, infinitely thin, rigid17 rods
in a homogeneous solution of crosslinkers. These rods grow at a
constant velocity v, and their diffusion coefficient is given by
D� kBT=ZL in the Rouse approximation18, where L¼ vt is the
length of a filament and Z is the viscosity of the surrounding
solution. When two rods come within a distance b of the order of
the size of a crosslinker, they react with a rate k to merge into a
rod-like bundle as in Fig. 1a. Note that the chemical rate constant
k is associated with the crosslinker binding rate and not the
filament merging time. Indeed, the latter is much shorter than
the typical filament reaction time, as further detailed in the
discussion. Although nonmerged bundles may be connected by a
few crosslinkers, such connections are short-lived (B1 s for
a-actinin12) and we neglect them over the timescale of minutes
involved in network formation. As a result, kinetic trapping in
our model arises from steric entanglement between densely
packed rods. This scenario is consistent with experimental
evidence that entanglement can induce kinetic trapping in actin
networks even in the absence of crosslinkers19.

Filament interactions involve several dynamical regimes. We
first develop a mean-field approach considering a homogeneous
solution of isotropically oriented rods of concentration c. This
concentration accounts for bundles of any thickness, including
single filaments, which we see as ‘one-filament bundles’, and
evolves according to

dc
dt
¼ � r c; Lð Þc; ð1Þ

where L¼ vt and r(c, L) is the rate with which one rod bundles
with any other.

In dilute systems, where the average distance between two rods
is much larger than their length (cL3oo1), r(c, L) is effectively
due to a two-body interaction. We denote it by r(2) and estimate it
separately in the case of reaction-limited and diffusion-limited
systems. In a reaction-limited system, two rods within interaction
range b bundle at a rate k. As the probability for a rod to be
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Figure 1 | Basic mechanisms of filament network assembly. (a) When

two actin filaments come into contact, they attempt a bundling reaction

(thin arrows). If there are no filaments in the surroundings, the attempt

results in a single bundle. (b) If other filaments are found on the path of the

bundling reaction (green surface), bundling is blocked because of steric

interaction (red crosses).
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within interaction range of another is BcbL2, the total two-body
rate of bundling is:

r 2ð Þ
react ¼ ArkcbL2; ð2Þ

where Ar is a dimensionless prefactor of order one. In the
diffusion-limited case, the orientation of the rods can rotationally
diffuse over the whole sphere in a much shorter time than it takes
them to come into contact with one another. The rate with which
one rod encounters any other through diffusion is thus given
by r 2ð Þ

diff � cDL (ref. 20). Therefore:

r 2ð Þ
diff ¼ Adc

kBT
Z
; ð3Þ

where Ad is another dimensionless prefactor. As evidenced by
the different L-dependences of r(2) in equations (2 and 3), while
the rods grow, diffusion slows down relative to reaction and the
dynamics transition from reaction limited to diffusion limited.
This happens at a critical length L� Lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=Zkb

p
.

In concentrated systems (cL3
\1) bundling is affected by the

presence of surrounding rods, yielding a rate:

r c; Lð Þ ¼ r 2ð Þ c; Lð Þ 1� Pb cL3
� �� �

; ð4Þ
where the rate r(2) at which bundling is attempted is given by
equations (2 and 3) and Pb is the probability for the attempt to be
blocked as in Fig. 1b. To determine the blocking probability,
we note that 1�Pb¼ (1� pb)N� 2, where pb is the probability for
an individual, randomly placed rod to block the attempt, and N is
the total number of rods in the system. To estimate pb, we
consider two rods with tangent vectors n̂ and n̂0 coming into
contact at their midpoints. Denoting with V the volume of the
system, with n̂00 the orientation of the third, potentially blocking
rod and letting a n̂; n̂0ð ÞL2=2 be the area of the bundling path
pictured in Fig. 1b, the probability that the third rod intersects
this path reads pb ¼

R
d2n̂00a n̂; n̂0ð ÞL3 n̂�n̂0ð Þ � n̂00j j=2V . In the

thermodynamic limit (N, V-N) this yields 1� Pb cL3ð Þ ¼R p=2
0 dy sin y exp � pcL3yð Þ, which we plot in Fig. 2b. The

blocking probability Pb becomes large at large concentration c,
accounting for the experimental observation that although

bundling speeds up with increasing c at low c (because of binary
collisions), the opposite trend is observed at higher concentra-
tions (when three or more body blocking becomes
predominant)4.

Mean-field dynamical scenarios and final morphologies. We
now use our model to predict the final structure of a system of
filaments. As shown in Fig. 2a, four different scenarios can
develop, depending on the initial bundle concentration c0, on
the reaction rate k and on the polymerization velocity v.
As L(t¼ 0)¼ 0, the system always starts off in the cL3oo1
reaction-limited regime, implying, through equations (1 and 2):

c tð Þ ¼ c0

1þ t=trð Þ3
; ð5Þ

with tr� 1= c0kbv2ð Þ1=3. This solution predicts a crossover from
c¼ c0 for t � tr to cpt� 3 for t � tr. Scenario (1) (Fig. 2a,
topmost line) applies to slow-reacting filaments (kbov),
for which blocking happens before this first transition. The
concentration c thus never departs from its initial value c0:
a homogeneous network of single filaments of concentration c0 is
formed.

For fast-reacting filaments (kb4v) blocking takes over at a
time larger than tr. Bundles thus form, and three possible
scenarios can develop depending on c0. Scenario (2) (Fig. 2a,
second line from the top) describes cases where substantial
bundling takes place before the system transitions from reaction
limited to diffusion limited, that is, trotc¼ Lc/v, or equivalently
c04cc ¼ v

kb ð
Zkb
kBTÞ

3=2. Equation (5) is thus valid for totc, and the
cpt� 3 decay is valid for trototc. As a result cL3 remains
constant while the rods grow, thus staving off blocking as long as
totc. At tc, the system becomes diffusion limited, and equations
(1 and 3) imply that the concentration decays as c� Z=kBTt as
long as cL3 � 1. Blocking then induces kinetic arrest for cL3B1,
implying L�Lb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=Zv

p
, or equivalently t�tb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=Zv3

p
,

yielding a final concentration cf � cb ¼ Z=kBTtb ¼ Zv=kBTð Þ3=2

independent of the initial concentration c0. Scenario (3)
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Figure 2 | Dynamical evolution of our mean-field model. (a) Numerical solutions of equations (1–4) for the four different scenarios (1) through (4)

described in the main text. Here the system transitions from reaction limited to diffusion limited through r(2)¼ r
2ð Þ

react for LoLc and r(2)¼ r
2ð Þ

difffor LZLc.

An alternative, smoother interpolation 1/r(2)¼ 1/r
2ð Þ

reactþ 1/r
2ð Þ

diff yields similar curves. Here kb/v¼0.1 for slow-reacting filaments (light grey (green) curve),

and kb/v¼ 1,000 for fast-reacting filaments (dark grey (blue) curves). The grey region materializes the condition cL341, where blocking is observed.

(b) Probability 1� Pb(cL3) that an attempted bundling event does not get blocked. (c) Final bundle concentration cf as a function of c0. The dashed line

materializes the final concentration of a homogeneous network of single filaments (cf¼ c0).
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(Fig. 2a, third line from the top) is relevant for cboc0occ. In this
regime tcotr and the bundle concentration thus transitions from
its initial plateau directly to the cpt� 1 diffusive regime. As in the
previous scenario, blocking occurs at t¼ tb, resulting in a final
concentration of the order of cb. Finally, scenario (4) (Fig. 2a,
bottommost line) is relevant for c0ocb. In that case, by the time
the filaments get into contact through diffusion at t� Z=kBTc0 the
system is already concentrated, and most bundling attempts are
therefore blocked, yielding cfBc0.

Our results regarding the final morphology of the networks are
summarized in Fig. 2c: in low-concentration (c0ocb) and/or
slow-reacting (kbtv) systems, no bundling takes place. The final
state is a homogeneous network of single filaments of concentra-
tion cfBc0. In contrast, in fast-reacting, high-concentration
systems (c04cb and kb4v), the system evolves to a network of
bundles with concentration cfBcb independent of c0 and a
characteristic number of filaments per bundle equal to c0/cfBc0/cb.
For c0Zcb, going from a slow- to a fast-reacting system produces
an abrupt shift from a homogeneous network of filaments to a
network of bundles with a concentration lower by several orders
of magnitude.

Brownian dynamics simulations. To assess the validity of our
homogeneous, isotropic, mean-field dynamical scenarios, we
conduct numerical simulations of our model. We simulate a
solution of initially very short, randomly oriented, impenetrable
rods and implement their growth as well as their standard
Brownian dynamics with diffusion coefficients D||¼ kBT=ZL,
D>¼D||/2 for their longitudinal and transverse translation,
respectively, and Dr¼ 6D||/L2 for their rotation18. For each time
step, the algorithm assesses the probability for each rod to react
with its closest neighbour (the ‘target’ rod) that is assumed to be
fixed (the fixed rod is itself moved in a separate step). To estimate
this probability, we write the Fokker–Planck equation describing
the stochastic dynamics of the distance d between the two rods in
the limit where dooL (cases that violate this condition are benign
in practice, as they yield a negligible reaction probability anyway):

@tP d; tð Þ ¼ D?@
2
dP d; tð Þ� 2kbd xð ÞP d; tð Þ: ð6Þ

Here P(d, t) is the probability distribution of dA[0, þN), and
the right-hand side includes a sink term representing reactions
between the two rods in the limit of a very short interaction
range b. Equation (6) assumes the convention

R1
0 d xð Þdx ¼ 1=2.

This yields a probability of reaction between the two rods initially
separated by d0 over one time step dt of the simulation:

Pattempt¼ erfc
d0

2
ffiffiffiffiffiffiffiffiffiffiffi
D?dt
p

� �
� e

kb d0 þ kbdtð Þ
D? erfc

d0þ 2kbdt

2
ffiffiffiffiffiffiffiffiffiffiffi
D?dt
p

� �
: ð7Þ

Note that equation (7) is and must be fully valid even in cases

where d0 is of the order of the typical diffusion and reaction
length scales

ffiffiffiffiffiffiffiffiffiffiffi
D?dt
p

and kbdt. The algorithm implements a
bundling attempt with a probability Pattempt.

In the case where bundling is indeed attempted, the algorithm
determines if any blocking rod is present in the bundling path
(Fig. 1). If there is one, bundling is aborted and the attempting
filament is moved in close proximity to the closest blocking rod. If
bundling is successful, the attempting rod is deleted, representing
its merging with the target rod. In the case where bundling is not
attempted, diffusion proceeds as in normal Brownian dynamics,
although with a reflecting boundary between rods to ensure their
impenetrability21. Note that a single blocking rod can never derail
bundling if it is not itself entangled with the rest of the network.
Indeed, if the blocking rod is free to move and bundle with the
attempting rod, they will do so within a few diffusion steps and
the bundling of the two first rods will then be allowed to proceed.
Thus, the transition to kinetic arrest is a true many-body effect in
our simulations.

Snapshots of the resulting dynamics are shown in Fig. 3 at
times corresponding to the four successive regimes of scenario (2).
The evolution of the concentration in our simulations confirms
the four predicted scenarios for the evolution of the rod
concentration (Fig. 4a). Consistent with Fig. 2c, they also show
that the final morphologies are either homogeneous networks of
single filaments or strongly bundled phases, with an abrupt
transition from one to the other (Fig. 4b) as a high-concentration
system goes from slow reacting to fast reacting. The final
structures do not display significant overall orientational order
(Fig. 4c), consistent with both our model and in vitro
observations4,5,7.

The good agreement between our theory and simulations
comes with one quantitative difference. Because of the more
complex geometry of the simulations, kinetic arrest there sets in
for a relatively large value of cL3 (C10), allowing more time for
bundling and thus driving the final concentration down. As seen
in Fig. 4a, this delayed blocking reveals an additional dynamical
regime with a slope steeper than � 1. In this regime, the rod
crosses over to a faster-than-diffusive exploration of space thanks
to its ballistic polymerization, leading to a speed-up of bundling
before blocking (see Methods and Fig. 6). Note however that this
regime can never fully develop if blocking is present, and thus
that the scaling scenarios described above remain valid in our
simulations, although with modified prefactors.

Discussion
The cytoskeleton of living cells is fundamentally out of
equilibrium, and is constantly shaped by two major active
processes: the operation of embedded molecular motors, and the
constant self-assembly of its components. Although the statistical

a b c d

L/Lb = 0.006 L/Lb = 0.04 L/Lb = 0.2 L/Lb = 30

Figure 3 | Snapshots of our Brownian dynamics simulations. The state of the system in each of the four different regimes identified in our mathematical

model are illustrated: (a) initial plateau cpt0, (b) reaction-limited regime cpt� 3, (c) diffusion-limited regime cpt� 1 and (d) blocked regime cpt0.

To facilitate visualization despite order of magnitude changes in filament concentrations, each of the four panels is taken from a different simulation with a

different box size, ensuring that between 100 and 1,000 rods are visible in each picture. The corresponding parameters and absolute concentrations can be

read off from the white-filled symbols in Fig. 4a. In this figure the cross-sectional area of each rod is proportional to the number of filaments within the

bundle.
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mechanics of the former is the subject of a substantial experimental
and theoretical literature22, our understanding of the collective
dynamics induced by the latter is very limited. Inspired by recent
experiments, we introduce a versatile theoretical framework to
investigate this problem, based on rate equations supplemented with
a mean-field, entanglement-induced kinetic trapping term. Brownian
dynamics simulations validate our theoretical assumptions, and show
that our results are robust to changes in the detailed interactions
between bundles.

We analyse our model in a simple situation consistent with
existing in vitro experiments4,5,7. Although quantitative
comparisons are impeded by technical challenges in resolving
single filaments and thin bundles in these specific studies, our
main qualitative predictions are all paralleled by the data. Bundle
densities thus vary over orders of magnitude upon changes in the
initial filament concentration c0, and the timescale required for
their formation decreases sharply upon an increase of c0 (ref. 4).
This is reminiscent of our predicted transition from the slowly
relaxing (cpt� 1 at early times) scenario (3) at low c0 to the faster
(cpt� 3) scenario (2) at larger c0. An increasing crosslinker
concentration (analogous to an increase in k in the model) further
induces a sharp transition from a homogeneous (scenario (1)) to
a bundled network (scenario (2) or (3)). An additional 10-fold
increase in crosslinker concentration however hardly modifies
the mesh size of the network, strongly reminiscent of our
abrupt transition from a slow-reacting to a fast-reacting system
of fixed concentration cb for c04cb (ref. 4). Our model also
predicts that an increased reaction rate is equivalent to a
decreased polymerization velocity through the dimensionless
parameter kb/v. Consistent with this, in ref. 5 an increase in v

through the use of the formin mDia1 causes the final
bundle concentration to rapidly increase, then plateau out.
More quantitatively, refs 4,5 use crosslinker a-actinin at
concentrations of the order of caE2 mM. Given the a-actinin–
actin binding rate kon¼ 5 mM� 1 s� 1 (ref. 23), we estimate that
two actin filaments within an interaction distance bE30 nm (the
size of an a-actinin molecule) bind with a rate k¼ konca¼ 10 s� 1.
For v¼ 10� 2 mm s� 1, this yields kb/vE30 for the typical initial
actin filament concentration c0E0.1 mM. This is consistent with
the formation of bundles observed under the aforementioned
experimental conditions, and suggests that those in vitro assays
can indeed transition between scenarios (1), (2) and (3) as their
parameters are varied. We moreover predict tcE370 s and
tbE2,000 s, comparable to the observed gelation time tE600 s.

These quantitative estimates further allow a discussion of the
domain of validity of our model’s main assumptions. We first
discuss our approximation that the merging between two bundles
is instantaneous. In general, the time required to merge two
filaments is the sum of the time for the two filaments to find each
other and form their first crosslink, plus a time tm required to
complete their merging. Direct measurements15 indicate that the
latter timescale is of the order of a few hundred milliseconds at
most. (This number is measured in the presence of large beads
that slow down the merging dynamics because of hydrodynamic
friction; the merging timescale tm is probably significantly
smaller in the situation considered here, where such beads
are not present.) This timescale is much shorter than the
typical evolution timescales tc and tb evaluated above. More
quantitatively, we estimate in Methods that the delay tm
to merging will have negligible effects on the final concen-
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Figure 4 | Dynamical evolution of our Brownian dynamics simulations. (a) Concentration of solutions of N¼ 103 rods as a function of their length for kb/

v¼0.1 (light grey (green)) and kb/v¼ 1,000 (dark (blue) symbols). The initial concentration (c0) and filament length (L0) for each simulation can be read

on the graph, and the white-filled symbols indicate the data points used for the snapshots of Fig. 3. The grey region materializes the condition cL3410,

where blocking is observed. (b) Final bundle concentration as a function of c0 for N¼ 104 rods of initial length L0/Lb¼0.1. Error bars give an estimate of the

relative uncertainty on the number of remaining filaments at the end of the simulation dln cfð Þ¼dNfinal=Nfinal¼1=
ffiffiffiffiffiffiffiffiffiffi
Nfinal

p� �
. For the most highly concentrated,

fast-reacting conditions investigated (c0/cb¼ 102 and kb/vZ1, marked with an asterisk), bundling is so strong that all rods in our simulations collapse into

one, terminating the dynamics for reasons independent of blocking. (c) Scalar nematic order parameter S¼h3ððn̂ að Þ � n̂Þ2� 1i for the data of (b) following

blocking. In the definition of S the index a refers to the a-th rod, and n̂ is the eigenvector corresponding to the largest eigenvalue of the tensorial order

parameter Qij¼3=2
P
a;b
ðn̂ að Þ

i n̂
bð Þ

j � dij=3Þ (ref. 32). Error bars show the s.e.m. associated with the determination of the average involved in the computation of

S, again indicating the error associated with small filament numbers. The nematic order parameter is not computed for final states where only one rod is

present (namely, for the data points with c0/cb¼ 102, kb/vZ1).
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tration provided that tm � c� 1=3
0 v� 1 ’ 25 s, confirming the

merging time can indeed be neglected.
Our model also neglects actin bending and crosslinking,

treating bundles as rigid rods throughout their dynamics. To
assess the domain of validity of this approximation24, we compare
the energetic incentive for two bundles entangled with the rest of
the network to merge over a fraction of their length and compare
it with the bending cost of doing so (Fig. 5). Guided by the
detailed simulations of ref. 25, we consider bundles of NC10
filaments with persistence length Lp � N2‘p, where ‘pC10 mm is
the actin persistence length, and assume that merging the two
bundles brings a free energy bonus EC4kBT per crosslinker with a
typical spacing between crosslinks of ‘CbC30 nm. As shown
in Fig. 5, these parameters imply that filament bending will
become prevalent for network mesh sizes of the order offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBTLp‘=E
p

C3mm. This estimate is in line with the final
morphologies observed in ref. 25, where bundles are bent on
length scales of the order of one to two mm, comparable to the
network mesh size. This estimate suggests that networks with
smaller mesh sizes, which include most cellular structures as well
as the structure-defining early stages of our simulations, will
undergo only moderate bundle bending, compatible with our
approach. In contrast, networks with larger mesh sizes, including
those studied in some in vitro assays, will undergo significant
bending and deformation, and may therefore not be well
described by our model. These deformations could facilitate the
collapse of entangled structures towards a more energetically
favourable (that is, more crosslinked) state. This could
compromise the mechanical integrity of these networks and
account for the formation of inhomogeneous structures with large
gaps as observed in refs 26,27.

The good agreement between our predictions and the
experiments of refs 4,5 suggests that topological entanglement
between filaments could be the major driver of kinetic arrest in
cytoskeletal systems. Depending on the system considered,

its action in regulating the thickness of actin bundles could be
complemented by other mechanisms. For instance, the build-up
of elastic strains28 has been proposed to regulate the width of
bundles crosslinked by the very short crosslinker fascin29,
although the importance of this mechanism is less clear in the
a-actinin bundles used in refs 4,5. Other effects ignored here,
for example, transient sticking between unbundled filaments or
the effective increase in length incurred by a bundle upon
coalescence with another, may thus not be essential to gain a first
understanding of the resulting network structures. Such effects
could however easily be included in our framework if warranted
by more precise experimental comparisons, as will the
physiologically important effects of spontaneous filament
nucleation or the coexistence of several crosslinker types with
different bundling behaviours30. Detailed simulations will also be
useful in assessing the influence of the addition of these and other
experimentally relevant features to our model. Although our
current solution-like model does not explicitly describe the
network’s mechanical properties, it does predict its typical mesh
size and bundle thickness, whose relationship to the network’s
mechanical response has been the subject of substantial modelling
efforts31. Finally, further experimental and theoretical work is
needed to elucidate the network structure in the biologically
relevant presence of depolymerization/severing that could give
rise to fundamentally nonequilibrium steady states.

Overall, our study provides a first theoretical account of the
nonequilibrium mechanisms responsible for the actin structures
observed in vivo and in vitro. It further illustrates that these
dynamical processes can lead to sharp transitions between
dramatically different network structures, hinting that cells need
only harness relatively modest changes in their internal
composition to generate the large variety of morphologies that
characterize the cytoskeleton.

Methods
Speed-up of bundling before blocking. Here we rationalize the speed-up of
bundling observed in our Brownian dynamics simulations just before the system

a

Unbent, no sticking Bent, with sticking

≈��

b

Figure 5 | Assessment of the bundles’ propensity to bend. We consider

two vertical bundles each blocked by the rest the network, with typical

mesh size x (a). Thermal fluctuations or internal network stresses may

cause the two filaments to deform and come into contact (b). Denoting

by E the binding free energy associated with the binding of a crosslinker and

by ‘ the typical distance between crosslinks, we assess whether such

configurations are energetically favourable by comparing the energy bonus

� xE=‘ due to crosslinker binding to the energy penalty EkBTLp/x because

of filament bending, where Lp is the persistence length of the bundle. The

latter exceeds the former for mesh sizes smaller than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTLp‘=E

p
, (C3mm

with the parameters of the main text). Our treatment of bundles as rigid is

thus justified in these networks.
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Figure 6 | Characterization of the L4Lb scaling regime in a system

without blocking. (a) Schematic of the situation considered for our scaling

argument, showing the rod of interest (solid line), the area explored by it in

a time t (coloured region) and the other rods intersecting the plane of the

figure (crosses). (b) Evolution of the concentration in a Brownian dynamics

simulation identical to that of Fig. 4a with blocking turned off. The predicted

� 2 slope regime is clearly visible for L4Lb. The absence of blocking

induces fast, unhindered decay of the filament concentrations towards zero,

attesting to the importance of blocking for the stabilization of the

cytoskeletal morphologies discussed above.
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becomes blocked in Fig. 4a. This speed-up is a signature of the system crossing over
to a new scaling regime for r(2) as L becomes larger than Lb, that is, as the
longitudinal growth of the rod becomes faster than its longitudinal diffusion.
In practice, this regime has little incidence on our model as bundling becomes
hindered by blocking precisely at L¼ Lb (in our mean-field discussion) or shortly
thereafter (in our simulations). Here we present a scaling argument showing
that cpt� 2 in this regime, and display numerical evidence to that effect.

Let us consider a rod of interest lying in the plane of Fig. 6a. As the rod diffuses
and grows, it encounters other rods that intersect the plane of the figure, and
attempts to bundle with them. In an homogeneous, isotropic solution, the typical
distance between two rods is x� cLð Þ� 1=2(ref. 31). The typical number of other
rods encountered by the rod of interest after a time t is n tð Þ�A tð Þ=x2, with A(t)
the typical area of the plane of the figure visited by the rod of interest within a
time t. The width of this area is of the order of

ffiffiffiffiffi
Dt
p

, with D� kBT= ZLð Þ the typical
diffusion coefficient of the rod (representing a combination of transverse and
rotational diffusion). Here we consider a diffusing and growing rod with length
L� Lb, implying that the rate of longitudinal diffusion of the rod (inducing a
displacement �

ffiffiffiffiffi
Dt
p

) is negligible in front of its growth rate (inducing a
displacement Bvt). As a result the length of the area grows as vt and
A tð Þ�

ffiffiffiffiffi
Dt
p
�vt. Combining these expressions and using L¼ vt we find that

n tð Þ� kBT=Zð Þ1=2v3=2ct2.
The typical reaction rate r(2) is the rate at which the rod of interest encounters

other rods, yielding r 2ð Þ � dn=dt� kBT=Zð Þ1=2v3=2ct. Applying equation (1) in the
absence of blocking we thus find

dc
dt
¼ � r 2ð Þc� � kBT

Z

� �1=2

v3=2c2t; ð8Þ

which yields in the long-time asymptotic limit

c � Z1=2

kBTð Þ1=2v3=2t2
; ð9Þ

This cpt� 2 scaling is indeed observed in our simulations in the absence of
blocking, as shown in Fig. 6b.

Incidence of delayed bundling on the final concentration. Here we assess the
effect of a finite bundle merging time tm on the final rod concentration. We place
ourselves in the diffusion-limited regime that, as described in Results, is the
important one when considering the transition to blocking. The rate of bundling
attempts is thus

r 2ð Þ
diff ¼ �

kBT
Z

c: ð10Þ

To account for the additional hindrance to bundling, we assume that two rods
that come into contact at a time t only complete their bundling at time tþ tm.
During this time interval, the two unbundled rods are linked together and thus
diffuse as a single object, implying that they count as a single rod in estimating the
concentration that enters the attempt rate of equation (10). However, as they are
not yet bundled they retain their full blocking power towards other bundling events
until tþ tm. Denoting by c(t) the number of independently diffusing objects at time
t, the full mean-field bundling rate thus reads:

r tð Þ ¼ � kBT
Z

c tð Þ 1�Pb c t� tmð ÞL3
� �	 


; ð11Þ

as the concentration of rods relevant for blocking at time t is identical to
the concentration of free rods at time t� tm. Finally, here we assume that the
bundling dynamics becomes abruptly blocked as cL3 exceeds one (note that this
approximation preserves all the scaling results derived in the Results section).

Rescaling time by tb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=Zv3

p
and concentration by cb ¼ Zv=kBTð Þ3=2, the

full dimensionless concentration equation becomes

d~c
d~t
¼ �~c2 1�H ~c ~t�~tmð Þ~t3

� �	 

; ð12Þ

where ~c ¼ ~c0 for ~t 	 0 and H is the Heaviside step function. The final solution of
this equation displays two regimes, depending on whether kinetic arrest takes over
before or after the first bundling event is completed:

~cf ¼
~c0= 1þ~c2=3

0

� �
if ~c0~t3

m41ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81x2 � 12
p

þ 9x
18

� �1=3
þ 2=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81x2 � 12
p

þ 9x

� �1=3
if ~c0~t3

m 	 1

8<
: ; ð13Þ

with x ¼ 1=~c0 �~tm.
These final concentrations are plotted in Fig. 7, along with their relative

deviation from the result at tm¼ 0. In practice, our results are insensitive to the
value of tm as long as ~tmo~c� 1=3

0 , tmoc� 1=3
0 v� 1, as discussed in the Results

section.

Data availability. The computer code used for this study as well as the data
generated and analysed are available from the corresponding author on request.
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