
Gooey tutorial 2: Correlated protein folding landscape

ICFP M2 – Advanced Biophysics

Protein folding involves a rugged landscape with multiple metastable states. As discussed for the
random energy model during the lectures, this may cause the dynamics to slow down considerably. This
prevents random amino acid sequences from folding reproducibly, while natural ones evade the slow-down
thanks to the minimal amount of frustration displayed by their native fold (a “fold” is a specific 3D
conformation of the protein).

The picture of complete lack of correlations displayed by the random energy model (sometimes ab-
breviated as REM) is however an overly pessimistic one. Indeed, it presents the energies of two folds
that differ by a single protein contact as completely independent variables, while common sense suggests
that they should have similar energies. Here we study a model, the so-called generalized random energy
model (GREM), which includes this feature and assigns similar energies to states with a high overlap in
the list of their contacts. We first study the entropy of a partially folded chain as a function of overlap in
Sec. 1. We then introduce the generalized random energy model in Sec. 2, and analyze the resulting energy
correlations as a function of overlap. Such correlations in energy make the folding free energy landscape
smoother than in the original random energy model. As a result, a native fold with a very low energy (as
prescribed by the minimal frustration principle) generates an energy “funnel” around itself, implying that
folding from a neighboring state is somewhat akin to sliding down a free energy slope (Sec. 3). Finally, we
propose an optional discussion of the effect of a rugged energy landscape on the coil-globule transition.

1 Entropy as a function of overlap

Consider a protein fold of reference with N residues. We additionally consider alternative folds, in which
a fraction q of the residues are in the same position as in the reference, and a fraction 1− q of the residues
deviate from it [Fig. 1(a)]. These deviations are composed of several “excursions” away from the reference
fold, and we denote their respective lengths (counted in numbers of residues) as `1, `2 etc.

1.1 Under the coarse approximation (justified in the optional question below) that excursion j is a
random walk of length `j that chooses one orientation among z at each step, how many possible
realizations are there for an excursion of that length? This approximation boils down to neglecting
both self-avoidance and the constraint for the chain to reconnect to the reference fold at the end of
the excursion.

1.2 Assuming that the positions and sizes of the excursions are fixed, show that there are z(1−q)N possible
realizations of such excursions under the aforementioned approximation.

1.3 Now consider that there are as many choices of excursion positions and sizes as there are choices of
(1− q)N detached monomers among N . Deduce that to dominant order in N →∞ the entropy of
the chain reads

S(q) = NkB[(1− q) ln z − q ln q − (1− q) ln(1− q)]. (1)

[Optional] Loop closure and the Poland-Scheraga model

A more sophisticated approach considers the closure constraint of each excursion. Denoting the swelling
exponent of the chain by ν, show using a scaling reasoning that the number of possible realizations of
an excursion of length ` under this constraint is proportional to z`/`3ν . Now instead of considering the
thermodynamic ensemble where the total number of reference monomers qN and of excursion monomers



Figure 1: Representations of partially overlapping folds in real space and in energy space. (a) Excursion
model representing a reference protein fold in black. A second fold of the same protein is represented
as a red ribbon; a fraction q of its residues overlaps with the black fold (hatched red ribbon), and a
fraction 1 − q departs from it (unhatched ribbons). This non-overlapping fraction can be composed of
one or several separate “excursions”. (b) Energy landscape in the vicinity of a reference fold with low
energy (the downward peak), where the horizontal axes are a metaphorical representation of the degrees
of freedom of the protein. In this horizontal plane, the radial coordinate is 1 − q, i.e., folds that have a
large overlap with the reference fold are close to the center of the plot.

(1 − q)N are fixed, introduce the fugacities r and w associated with these numbers. and show that the
resulting partition function is Z(r, w) =

∑+∞
k=0R(r)k+1E(zw)k, where

R(r) =
+∞∑
`j=1

r`j and E(zw) =
+∞∑
`j=1

(zw)`j

`3νj
, (2)

are the partition functions associated with a regular segment and with an excursion, respectively. In the
case where the excursions behave as polymer globules (ν = 1/3), compute the values of r and w associated
with the limit N → +∞ with fixed q. Deduce that the error committed by using Eq. (1) is negligible in
the limit of large N .

This model has been widely used to determine the statistics of opening double-stranded DNA. In this
context, the regular fractions represent double-standed segments while the excursions stand for so-called
DNA bubbles where the two strands separate. The ratio w/r can then be interpreted as a Boltzmann
factor e−βε, where ε is the DNA pairing energy per base pair. Show that this model has a phase transition
towards the opening up of a macroscopic fraction of the DNA strand for finite ε that is second order for
1 < 3ν 6 2 and first order for 3ν > 2.

2 Energy distribution as a function of overlap in the GREM

Now that we are equipped with an expression for the entropy associated with the collection of folds with
overlap q, we study a model for the distribution of their energies. In this generalized random energy
model, we index all possible contact between two residues j and k by an integer µ. Therefore µ ≡ {j, k}
and so µ ∈ [1..N(N − 1)/2]. A randomly chosen energy εµ is assigned to each of these possible contacts,
and a protein fold is characterized by the list of all {∆µ}µ∈[1..N(N−1)/2], where ∆µ = 1 if contact µ is
realized (i.e., residues j and k are in contact in the fold considered), and ∆µ = 0 otherwise. As a result,
the Hamiltonian of the system reads

H(∆) =

N(N−1)/2∑
µ=1

εµ∆µ, (3)

where ∆ denotes the set of all ∆µ. We only consider globular states of the protein, and assume that
each residue interacts with z neighbors in such a configuration, which implies that for all configurations
considered there are exactly Nz/2 values of µ for which ∆µ = 1 (thus

∑
µ ∆µ = Nz/2 for any ∆).
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In the spirit of the random energy model, the values of the contact energies are independent random
variables whose distributions are identical and given by

∀µ P (εµ) =
1√

2πb2
e−ε

2
µ/2b

2
. (4)

2.1 Consider a single protein fold with contacts ∆. Show that the distribution of the energies of the
fold takes the same form as in the random energy model, yielding the density of states

ρ∆(E) =
1√

πNzb2
e−E

2/Nzb2 . (5)

To do so you may write ρ∆(E) = 〈δ[E−H(∆)]〉, and express the Dirac delta as δ(x) =
∫ +∞
−∞

dλ
2π e

iλx.

2.2 Now consider two folds a and b with contacts ∆a and ∆b respectively. We define their overlap q as
the fraction of contacts that they have in common, i.e.,

q =
2

Nz

∑
µ

∆a
µ∆b

µ. (6)

This definition is not identical to the one used in Sec. 1, but we nonetheless combine the results
from these two slightly different approaches in Sec. 3. We denote the probability that the energy
of fold a is between Ea and Ea + dEa and that the energy of b is between Eb and Eb + dEb as
ρ∆a,∆b(Ea, Eb) dEa dEb. Show that the joint density of states for the energies of a and b reads

ρ∆a,∆b(Ea, Eb) = 〈δ[Ea −H(∆a)] δ[Eb −H(∆b)]〉

=
1

πNzb2
√

1− q2
exp

{
− 1

2Nzb2

[
(Ea − Eb)2

1− q
+

(Ea + Eb)
2

1 + q

]}
(7)

2.3 Using Bayes’ theorem [i.e. P (B|A) = P (A,B)/P (A)], prove that the conditional density of states
is given by

ρ∆a,∆b(Eb|Ea) =
1√

πNzb2(1− q2)
exp

[
− (Eb − qEa)2

Nzb2(1− q2)

]
. (8)

Comment on the q → 0 and the q → 1 limit. Show that the average energy of a fold that has an
overlap q with fold a reads

〈E(q)〉 = qEa. (9)

[Optional] The REM as the many-body interactions limit of the GREM

The model presented above is actually a special case of the generalized random energy model. The more
general version assigns an energy not to a single inter-residue contact, but to a combination of p contacts,
where p ∈ N∗. The Hamiltonian then reads

H(∆) =
∑

µ1<µ2<...<µp

εµ1,µ2,...,µp∆µ1∆µ2 ...∆µp (10)

In other words, the contribution εµ1,µ2,...,µp is added to the energy of the fold if and only if contacts
µ1, µ2, ..., µp are all realized at the same time. Such contributions are distributed according to

P (εµ1,µ2,...,µp) =

√
(Nz/2)p−1

2πb2p!
exp

[
−
(
εµ1,µ2,...,µp

)2 (Nz/2)p−1

2b2p!
,

]
(11)

which ensures that the energy of the chain remains extensive and that the single-fold density of state is
still given by Eq. (5). The case studied previously corresponds to p = 1. Compute the joint energy density
ρ∆a,∆b(Ea, Eb) as a function of Ea, Eb and q, and show that the random energy model is recovered in
the p→ +∞ limit. Use this result to comment on the effect of many-body interactions on the physics of
protein folding.
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3 Funneling and the mean folding landscape

The situation studied in Secs. 1 and 2 is intuitively similar to the picture of Fig. 1(b). To understand
this, consider a reference fold with a low energy Ea, as is the case for a minimally frustrated native fold.
Now consider a fold that has an overlap q with the reference fold. The larger the overlap, the smaller the
average energy of the fold [as in Eq. (9)]. There are fluctuations in the energy around this average, and
therefore points in Fig. 1 with the same radial coordinate (i.e., the same q) can have different energies,
as described by Eq. (8). Folds that are close to but different from the reference fold thus tend to slide
towards it down the energy slope as if guided by a funnel. In the presence of thermal agitation, the sliding
is however hindered by the abundance of states with a small overlap, implying that small overlaps are
entropically favored as shown in Eq. (1).

3.1 Write down and plot the average free energy landscape F (q) as a function of the overlap q. How
low does the energy Ea have to be for the landscape to be tilted towards the reference state?

3.2 Show that if q is a continuum variable, then the reference state is never a local energy minimum.
Remembering that a fold has a finite number of contacts, argue that a situation where F (1−2/Nz) >
F (1) does funnel the protein all to way towards folding.

3.3 What is the condition on Ea for this situation to occur? Discuss this condition in view of the
discussion of minimal frustration in the main lecture.

Note that the glass transition in the generalized random energy model is more complex than in the
random energy model: as the temperature is lowered, the configuration space first becomes fragmented
into basins within which the configurations have a high overlap. Transitions between basins are frozen
out, but transitions within them aren’t. As the temperature is lowered further the basins gradually shrink
and the systems eventually becomes completely glassy.

[Optional] When is a molten globule actually glassy?

We now go back to a random energy model with energy distribution

ρ(E) =
Ω√

2πzNb2
exp

[
(E −Nε)2

2zNb2

]
with Ω = eNsg . (12)

In this equation, ε and sg denote the average energy per residue in the globule state and the entropy
per residue in an interaction-less globule. Assuming the energy per residue in the coil state is zero and
that the entropy per residue is given by s0 = sg + kB, compute the temperature Tc at which the protein
transitions from a coil (T > Tc) to a globule (T < Tc). Using the expression for the glass temperature
from the main lecture, plot a phase diagram showing the regions where the protein is a coil, a globule and
a glass as a function of temperature as well as its effective “flexibility” s0. Discuss which values of s0 are
the most amenable for protein folding.
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