
Gooey tutorial 3: Aggregation

ICFP M2 – Advanced Biophysics

1 Length distribution of actin filaments

Here we consider the growth and shrinkage of actin filaments, a type of protein fiber used by the cell to
regulate its mechanics. We use it as an example of the breaking of the detailed balance condition on the
system’s statistics.

In our simplified model, we concentrate on a single filament composed of L monomers. The filament
is surrounded by monomers in solution with a fixed chemical potential µ, and individual monomers may
attach to or detach from the filament, implying changes in the length of the type L → L ± 1 (Fig. 1).
When the protein cofilin is present in the solution, the filament may additionally break at a randomly
chosen location along its length. The subsequent step is conditioned by the asymmetry of the filament:
its ends are distinct, and known as the “barbed” and “pointed” end respectively. The monomer located
at the barbed end is in a different state than all the others due to an internal nonequilibrium dynamics
involving the hydrolysis of the cellular fuel ATP. This special state largely protects the barbed end from
disassembly. When cofilin breaks the filament, a new barbed end is created that does not benefit from
this protection. The filament portion associated with this new barbed end thus disassembles quickly and
turns back to monomers.

1.1 Assuming that the energy of a bond between two monomers is ε and that the chemical potential of
a monomer in solution is µ, show that the equilibrium length distribution for the filament is

P eq(L) =
[
eβ(ε−µ) − 1

]
eLβ(µ−ε) for L ∈ N∗ (1)

1.2 Now consider kinetics of filament elongation: starting from a filament of length L, monomers are
stochastically added at a rate 1, and removed at a rate q. Using Eq. (1), compute the value of q
that satisfies the detailed balance condition

∀(L,L′) P eq(L)kL→L′ = P eq(L′)kL′→L, (2)

where kL→L′ is the rate at which the system transitions from length L to length L′.

1.3 Write a computer program based on the Gillespie algorithm that simulates the time evolution of the
filament.

Figure 1: Illustration of the actin filament dynamics described in the text. Left: monomer attachment
or detachment. Right: filament breakage at the location of the red arrow induced by cofilin. The hatched
monomers are associated with ATP (in real actin several monomers may simultaneously be associated
with ATP, but they do tend to be located in the vicinity of the barbed end).



1.4 Plot the time evolution of the length to make sure everything is going OK, then plot the histogram
of the lengths over the course of the simulation. Be careful to assign a statistical weight to each
length that is proportional to the time spent with that length.

1.5 Compare the resulting length distribution with Eq. (1). Find a regime where you can collect good
statistics within a reasonable computation time. You may assess the quality of your statistics by
running the simulation several times and plotting the histogram representing the length distribution.
The histogram must be reproducible from one run to the next, and hopefully consistent with the
theoretical prediction.

1.6 Now add a new transition to the program to represent the action of cofilin: each bond within the
filament now breaks with a rate k. Following this event, keep the part of the filament associated
with the original barbed end and destroy the other.

1.7 Argue that the resulting distribution cannot be described by an equilibrium distribution of the type
of Eq. (1), even by introducing an effective bond energy.

1.8 Keeping the severing transition, introduce a new transition in the dynamics of the filament that
restores the detailed balance condition Eq. (2). This transition may be viewed as an idealization of
the coalescence of two filaments in the absence of the ATP-induced filament cap.

1.9 Show numerically that the introduction of this transition restores the equilibrium statistics.

2 Gelation transition: number of aggregates of size k

Here we derive the coefficient Nk introduced in the main lecture as the number of tree-like aggregates
made of k particles each carrying z reaction sites. To this effect we assume that we hold one dangling
(unreacted) bond in our hand, and compute the number wk of aggregates of size k that can be built
starting from this bond. As we will see below wk 6= Nk because of a multiple-counting subtlety.

2.1 First establish the recursion equation

wk = zδk,1 + z(z − 1)wk−1 + z
(z − 1)(z − 2)

2

∑
i1+i2=k−1

wi1wi2 + . . .+ z
∑

i1+i2+...+iz=k−1
wi1wi2 . . . wiz ,

(3)
where the trick is to notice that there are only few ways to make a k-sized aggregate out of smaller
aggregates, as illustrated below for z = 3:

if k = 1

k	− 1
=k

k	− 1 i1 i2

+ + otherwise

where dangling black lines picture unreacted bonds and grey circles stand for unspecified aggregates
of the size specified in the circle. The different bonds on a monomer are regarded as distinguishable.

2.2 Introducing the generating function g(x) =
∑+∞

k=1 x
kwk, use the recursion relation to prove that

g(x) = zx [1 + g(x)]z−1 . (4)

2.3 Solve this equation in the case z = 3 and prove that

g(x) =

+∞∑
k=1

(2k)!

k!(k + 1)!
(3x)k. (5)
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2.4 Noting that our procedure of growing an aggregate from one of its dangling bonds counts k-sized
aggregates as many times as they have dangling bonds, argue that

Nk =
(2k)!

k!(k + 2)!
3k. (6)

3 Gelation transition: equilibrium fragmentation rate

From this point on we go back to working with a system with arbitrary z.

3.1 Denoting the energy of a reacted bond by ε and using the results from the main lecture, show that
the equilibrium concentration of aggregates of size k is

ceqk = Nk

(
c1e

βε
)k
e−βε (7)

3.2 Assuming the dynamics of the system is governed by the Smoluchowski equation with rates defined
as in the main lecture, show that a system with an equilibrium dynamics must satisfy

Fij = Kij
NiNj

Ni+j
e−βε. (8)

3.3 From this point on now assume a system where all functional groups have the same affinity regardless
of their size, imposing

Kij = σiσj , (9)

where σi = 2 + i(z − 2) is the number of dangling bonds of a size-i aggregate, as discussed in the
main lecture. Deduce from Eq. (8) that the breaking rate of a single bond is

F11 = 2e−βε (10)

3.4 Use a physical reasoning (rather than a difficult calculation) to argue that for such a system∑
i+j=k

Fij = 2(k − 1)e−βε (11)

3.5 Show that this condition is equivalent to∑
i+j=k

(σiNi)(σjNj) = 2(k − 1)Nk (12)

and propose a combinatorial interpretation for this equation

4 Gelation transition: extent of reaction equation

We introduce the Ansatz

ck(t) = Nk

(α
z

)k−1
(1− α)σk , (13)

where α(t) is the extent of reaction, i.e., the probability that a randomly chosen bond is reacted at time
t. Note that we chose units of volume such that

∑+∞
k=1 kck = 1.

4.1 By recognizing the number of unreacted bonds per unit volume, use a physical argument to show
that

+∞∑
k=1

σkck = z(1− α) (14)
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4.2 If the aggregate concentration satisfies our Ansatz, express the product

Ni+j

NiNj

cicj
ci+j

(15)

as a function of z and α.

4.3 Insert the Ansatz into Smoluchowski’s equation and show that it is a solution of the problem if only
monomers are present at t = 0 and

α̇ = z(1− α)2 − e−βεα. (16)

Interpret this equation in terms of the reactivity of the bonds.

[Optional] Full solution of the aggregation-fragmentation problem

Solve Eq. (16) to deduce a fully analytical expression for the aggregate concentrations over time. Note
that this solution is only valid for the case of bonds with equal reactivity starting from a pure solution
of monomers. For other cases, a numerical approach is usually required, for instance using the direct
simulation Monte-Carlo method.
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