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ABSTRACT
We have reanalyzed the rich plethora of ground state configurations of the asymmetric Wigner bilayer system that we had recently published
in a related diagram of states [Antlanger et al., Phys. Rev. Lett. 117, 118002 (2016)], comprising roughly 60 000 state points in the phase space
spanned by the distance between the plates and the charge asymmetry parameter of the system. In contrast to this preceding contribution
where the classification of the emerging structures was carried out “by hand,” we have used for the present contribution machine learning
concepts, notably based on a principal component analysis and a k-means clustering approach: using a 30-dimensional feature vector for
each emerging structure (containing relevant information, such as the composition of the configuration as well as the most relevant order
parameters), we were able to reanalyze these ground state configurations in a considerably more systematic and comprehensive manner than
we could possibly do in the previously published classification scheme. Indeed, we were now able to identify new structures in previously
unclassified regions of the parameter space and could considerably refine the previous classification scheme, thereby identifying a rich wealth
of new emerging ground state configurations. Thorough consistency checks confirm the validity of the newly defined diagram of states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166822

I. INTRODUCTION

Scientists nowadays are often confronted with huge datasets,
may it be images or written text of any kind, scattering data from
particle detectors, geometric data of lattice structures (i.e., particle
arrangements) generated by experiments, theoretical frameworks,
or via computer simulations.1 Analyzing such datasets is usually a
task far from being trivial, especially in high-dimensional spaces:
let a dataset, X = {x1, . . . , xN}, consists of N data elements (or,
equivalently, data points), termed xi (with i = 1, . . . , N); then each
data element can be viewed as a vector, xi = {x1, . . . , xN f} (also
referred to as feature vector), which contains a large number of
so-called features, xj (with j = 1, . . . , N f ); examples for such fea-
tures are the values of different pixels of an image, the different
channels of the measurement of a particle collision experiment or

the coordinates, orientations and/or order parameters of a particle
arrangement of a (lattice) structure. Under certain circumstances, a
few clear signals in the data (i.e., a few characteristic features, xj, in
the feature vectors, xi, of a data set X) may allow us to categorize
the elements of a dataset, for instance, into different structural fam-
ilies with well-defined, characteristic order parameters. However,
the shear size of typical datasets and the often immense complex-
ity of the involved features usually render a classification scheme
intractable to be manually carried out by a human being. In such
cases and in an effort to obtain a more comprehensive picture of
the properties of the underlying data, in general, it is highly advis-
able to use methods from unsupervised machine learning.1–5 For
example, an approach based on neural network potentials was used
for local structure detection in polymorphic systems6 and dimen-
sionality reduction techniques were successfully utilized for crystal
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classification.7 Very recently, an unsupervised topological learning
approach was proposed for identifying atomic structures8 and crys-
tal nucleation9 without a priori knowledge of the underlying physical
system.

In this contribution, we reconsider and reanalyze the diagram
of ground state configurations (occurring at vanishing tempera-
ture) of the so-called asymmetric Wigner bilayer system. In such a
system, point charges form on each of the oppositely charged, con-
fining planar walls (L1 and L2) ordered particle configurations; the
respective surface charges of the plates, σ1 and σ2, which are sep-
arated by a reduced, dimensionless distance η are not necessarily
identical—hence, the system is termed asymmetric; the ratio of the
surface charge densities is defined as A = σ2/σ1 (with A ∈ [0, 1]). The
entire system is charge neutral. Depending on the location in the
parameter space (spanned by A and η) the system assumes ground
state configurations that are characterized by the composition of the
system x = N2/N (with N2 being the number of particles occupying
L2). Thus, for a given pair (A, η), the ground state configuration
is specified by the value of x and by the lattices formed on the two
layers (e.g., in terms of the respective lattice vectors). In preceding
contributions,10–13 these ground state configurations were deter-
mined via suitably adapted optimization tools (based notably on
evolutionary algorithms),14–18 limiting—for numerical reasons—the
number of particles per unit cell to N = 40. In a subsequent step, the
emerging ground state configurations were classified in terms of the
emerging structures, based on suitably defined order parameters.19,20

This classification procedure, which was realized by “hand,” has led
to a highly intricate diagram of states, where in total 14 different
structures could be identified.

This “manual” scheme is of course prone to fail when aiming at
an exhaustive classification of the emerging structures. To overcome
this drawback, we have reanalyzed in this contribution the available
set of data by utilizing dimensional reduction and clustering algo-
rithms to automatically collect the corresponding data elements into
distinct subgroups that share similar (structural) features. By apply-
ing these basic tools to a complex set of structural data, we want
to demystify the involved concepts of unsupervised machine learn-
ing. Even more we want to encourage interested readers to actively
use these approaches21 as a versatile toolbox for extensive analysis of
structural data.

We start the related analysis by defining a suitable feature vec-
tor (with length Nf) that captures for each specific lattice structure
the relevant information: in our case, we choose Nf = 30 features;
the related vector contains as elements the composition of the sys-
tem, a selected choice of order parameters, and some information
about the radial distribution function.22,64,65 These feature vectors
are vectors in the Nf-dimensional feature space. The ultimate aim of
this procedure is to identify in this space “spatially” separated clus-
ters that collect similar data elements, i.e., a specific cluster contains
similar (structural) data elements.23 Starting off with the feature vec-
tors, we reduce in a first step the complexity of the problem via
a so-called principal component analysis (PCA),24,25 which maps
in this dimensional reduction step the huge amount of data into
a lower dimensional latent space representation, thereby captur-
ing and preserving the relevant aspects (or features) of each data
element, while discarding the rather irrelevant information. Based
on this reduced information, we then start to sort the different
structures into clusters via the k-means algorithm.26–29

Thus, in this contribution, we use a rather simple (and therefore
presumably the most applied) form of unsupervised machine learn-
ing,1 namely clustering algorithms,1,30,31 in order to organize datasets
of lattice structures into families of structures. In the language of
clustering algorithms, the procedure of categorizing data elements
via a suitably defined similarity measure between data points in the
feature space into different clusters is usually denoted as clustering
or labeling: each of the N elements of a dataset is labeled by an iden-
tifier, which assigns each of its element to one of the categories (or
clusters) identified by the clustering algorithm.32

Of course one might argue that other, possibly more refined
machine learning based algorithms are available (notably auto-
encoders33,34) that might have been used for our purpose. We justify
our decision in a rather length discussion, which we have shifted to
the supplementary material, Sec. III.

In a first step, we have applied the above-outlined two-step pro-
cedure to the case of the symmetric Wigner bilayer system, where
the charge densities on L1 and L2 are equal. We find that the
principal component analysis indicates that only a five-dimensional
latent space is required. We recover—not surprisingly, as antici-
pated by the exact results35,36—that the emerging structures can
be classified into the five well-known clusters, each representing
one of the well-known ordered ground state structures. With this
confirmation of our procedure in mind, we proceed to the asym-
metric Wigner bilayer system, where the aforementioned “by hand”
classification11–13 has led to 14 structural classes. Using the same
30-dimensional feature vector the principal component analysis
provides evidence that the feature space can be mapped into a
nine-dimensional latent space. Based on this reduced representa-
tion, we then perform the k-means clustering step of the structural
data. Eventually and performing numerous consistency checks of
this classification scheme, we end up with a reliable classification of
the structural data into 32 clusters, which (i) identifies new, so far
unclassified structures and (ii) does not leave any white regions in
the diagram of states. We thereby demonstrate that even very basic
tools from unsupervised machine learning can be utilized as a suc-
cessful classification scheme of unlabeled structural data that can
even be considerably more reliable (and systematic) as when done
“by hand.”

This manuscript is organized as follows: in the subsequent
section, we briefly summarize the essential features of the asymmet-
ric Wigner bilayer system and outline how the energy of the ordered
configurations can be evaluated with high numerical accuracy. Fur-
thermore, we define in this section the order parameters that we
have used to characterize the emerging structures; we introduce
our machine learning-based methods of how to identify structural
similarities in our unlabeled set of data of ordered structures: the
principal component analysis and the k-means algorithm. In Sec. III,
the discussion of the results starts with a brief discussion of the orig-
inally derived diagram of states and the specific steps of how the
unsupervised clustering algorithm is applied to the Wigner bilayer
system. We then discuss the emerging results with the previously
known exact results of the symmetric Wigner bilayer and then pro-
ceed to the asymmetric case, where particular focus is laid on the
emerging new insights. The body of the manuscript is closed with
a conclusion. Five appendices and three supplementary material
sections close the manuscript: they are dedicated to conceptual
details as well as to in-depth discussions of particular features of
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the machine learning-based approaches and provide more detailed
background information.

II. MODEL AND METHODS
A. Model

In the Wigner bilayer system, classical, negative point charges
q = −e (e being the elementary charge) are confined between two
parallel plates (L1 and L2) that are separated by a distance d.
The plates carry uniform, positive surface charge densities, eσ1
and eσ2, which are not necessarily equal. The total system is
electro-neutral.

Being interested in the ground state configurations of the
system, the energetically most stable configurations that the parti-
cles form at vanishing temperature T, we can rely on Earnshaw’s
theorem,37 which states that the particles have to be located on the
plates. For a schematic view of the setup, we refer to Fig. 1.

The system is thus characterized by two parameters:

(i) the ratio of the surface charge densities, A,

A =
σ2

σ1
,

which—without loss of generality—can be assumed to lie
within the interval [0, 1]; a Wigner bilayer system with A ≡ 1
is termed symmetric, while otherwise it is called asymmetric;

(ii) the distance between the plates, d, which—for
convenience—is reformulated via a dimensionless parameter
η, defined as

η = d
√

σ1 + σ2

2
.

Assuming that N particles populate the unit cell, we denote
by N1 and N2 the number of particles that populate L1 and
L2, respectively; obviously, N = N1 +N2 and we define the
composition of the system x via x = N2/N. The surface parti-
cle number density is defined by ρ = (σ1 + σ2)/2. Since 1/√ρ
only sets the length scale in the system, its particular value is
irrelevant for our ground-state problem. For simplicity, and
without loss of generality, we set ρ = 1 in numerical calcula-
tions, i.e., 1/√ρ can be considered as the unit length of our
investigations.

FIG. 1. Schematic view of the classical Wigner bilayer system: confined between
two parallel plates, which are separated in the z-direction by the distance d, clas-
sical point charges (colored in blue and red) form ordered configurations on these
plates (carrying homogeneous surface charge densities eσ1 and eσ2). The x- and
y-directions of the Cartesian coordinate system are indicated.

B. Energy calculations
In the classical Wigner bilayer system, the point charges inter-

act via the long-range Coulomb interaction with each other and
with the uniformly charged plates. Furthermore, there is a distance-
dependent, but otherwise, constant plate-to-plate interaction con-
tributing to the total (internal) electrostatic energy of the unit cell of
a bilayer structure, E(rN ; A, η), which is given in Gauss units by11–13

E(rN ; A, η) =
N

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎣

N

∑
j=1
∑
Sn

∗ e2

∣ri − rj + Sn∣
− 2πe2

(σ1 − σ2)zi

⎤
⎥
⎥
⎥
⎥
⎦

+const.

(1)

rN
= (r1, . . . , rN) is the set of position vectors ri = (xi, yi, zi) of the

N point charges in the unit cell, zi = 0 or zi = d (∝ η) specifies
if particle i occupies L1 or L2; finally, Sn is a symbolic notation
for periodic images of the unit cell in the x- and y-directions used
to carry out the lattice summation.38 In Eq. (1), the symbol ∑∗

indicates that for Sn = (0, 0, 0) the sum is carried out only for j > i
to avoid double counting within the unit cell (see Refs. 11–13 for
details). For convenience, we chose the dielectric constant, ϵ, of the
medium into which the particles are immersed, as well as the dielec-
tric constant of the two plates, ϵ1 and ϵ2, to be equal; henceforward,
we set this value to unity, i.e., ϵ = ϵ1 = ϵ2 = 1. Following Ref. 11, we
employ Ewald summation techniques39—specifically implemented
for quasi-2D bilayer geometries11,38—to numerically evaluate the
long-range electrostatic energy of the system in a highly reliable and
computationally efficient manner.

Searching for a given pair of η and A for the global ground
state configuration of the asymmetric Wigner bilayer system boils
down to identifying simultaneously the correct number of particles
per unit cell (N), to finding the optimal arrangement of the par-
ticles on the two plates, rN , and to identifying the correct unit cell
geometry; from the positions, rN , one can extract N1 and N2 and
thus the composition x. The components a11, a21, and a22 of the vec-
tors a1 = (a11, 0, 0) and a2 = (a21, a22, 0) that define the unit cell are
subject to the structure optimization problem under the constraint
of keeping the area of the unit cell, S0 = a11a22, constant; the vec-
tor a3 = (0, 0, d) is fixed by the plate separation distance d. With all
this in mind, we minimize in our search for the ground state config-
uration the total energy per particle, E(rN ; A, η)/N, as specified in
Eq. (1).

Henceforward, we collect all these variational parameters via
the following short-hand notation:

X ≡ (rN , a1, a2). (2)

In this spirit, we can also write E(rN ; A, η) ≡ E(X ; A, η) to param-
eterize the energy. If—at one occasion or the other—the particular
values of A and η are not of relevance for the discussion, we then sim-
ply write E(X ) or even drop the argument of the energy completely,
i.e., we simply use E.

The accuracy required for the evaluation of the energies
of competing structures is tremendously high: anticipating that
E/(N√ρe2

) ≈ −1, thus setting the energy of the system, we note that
relative differences in the energies of competing structures down to
the sevenths or eighths digit are quite frequent. In view of these
accuracy requirements, the search for the ground state configura-
tions thus becomes a very delicate optimization problem in a high
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dimensional search space; the first attempt to solve this challenge has
been successfully carried out in Refs. 11–13 with the help of memetic
evolutionary algorithms.

The computational cost for exploring the high-dimensional
search space can be reduced since the energy, E/N, defined in Eq. (1),
can be split into a (i) structure-dependent, but A-independent con-
tribution and into an (ii) A-dependent, but structure-independent
contribution. Following Refs. 11–13, we first define the reduced
energy per particle as

E∗(rN ; A, η)
N

≡
E(rN ; A, η)

N√ρe2 . (3)

We then identify the structure-independent contribution to E∗ as

E∗A(A, η, x)
N

= 23/2πη
A

(1 + A)2 [A − 2x(1 + A)], (4)

thus leading to

E∗(rN ; A, η)
N

=
1
N
[E∗(rN ; A0, η) − E∗A(A0, η, x) + E∗A(A, η, x)] (5)

with the reference asymmetry parameter A0 (which, without loss
of generality, we set to A0 = 0) and the composition x introduced
above. With this reformulation of E∗, the computational cost of
the identification of ground state configurations can be substantially
reduced but remains nevertheless quite high.

Using the above separation of the internal energy, the ground
state configurations have been identified in Ref. 11 via indepen-
dent evolutionary searches at a fixed value of A(= 0) for different,
numerically tractable values of the composition, x, on a fixed grid
for the plate separation distance parameter η (≥ 0). The resulting
set of structural ground state configurations obtained for differ-
ent compositions, identified at A = 0 but for a particular value of
η, provides all necessary information to identify subsequently the
ground state configuration for any state point (η, A); in this manner,
the approach becomes highly efficient. Limiting for computational
reasons the number of particles per unit cell to N = 40, one can
calculate40 that at each value of η the total number of possible com-
positions is Ntot = 401.41 Further and following Ref. 11, we chose
in our numerical analysis a uniform grid of Nη = 141 different
values for η ∈ [0, 1] (resulting in Ntot ×Nη = 56 541 different evo-
lutionary optimized structures in total) and specify a uniform grid
of NA = 201 values for the asymmetry parameter A ∈ [0, 1]. The
numerical values for the grid in η and A are thus Δη = 10−2

/
√

2 and
ΔA = 5 × 10−3.

For given values of η and A, the configuration that minimizes
E∗(X )/N is considered as the related ground state configuration
and we denote the ground state energy as E∗GS(A, η)/N. Hencefor-
ward, we usually drop the arguments of the energy—unless we want
to emphasize its dependency on certain arguments—and we synony-
mously use E∗/N for the expression given in Eq. (5) and E∗GS/N for
the ground state energy, respectively.

C. Order parameters
The identification of the ordered ground state configurations

was based in Refs. 11–13. In this contribution, we specifically make

use of the composition of the system, x, and on bond-orientational
order parameters (BOOPs) Ψν = Ψν(X ). In their most elementary
version, these parameters are defined as

Ψν(X ) =
1
N

N

∑
i=1

RRRRRRRRRRR

1
N i

N i

∑
j=1

exp [ıνϕij]

RRRRRRRRRRR

. (6)

For a tagged particle with index i, the angles ϕij are enclosed by
the bond of particle i to one of its N i neighboring particles j and
some reference axis êref; thus, the angles ϕij are given by cos ϕi j

= r̂i j ⋅ êref, with r̂i j = (r j − ri)/∣r j − ri∣. The neighbors are identi-
fied via a standard Voronoi construction42,43 using an open-source
software package.44

The orientational symmetry of the neighborhood of particle i
is characterized by the (integer) variable ν: the ν-fold BOOP Ψν(X )
assumes the value one if the angles between neighbors are multi-
ples of 2π/ν and attain values close to zero for a disordered particle
arrangement or if there is no ν-fold symmetry.

Due to small, inherent numerical inaccuracies, the lattices that
we deal with are never perfect; consequently, the exact number of
nearest neighbors can be strongly influenced by minute changes in
the particle positions, making the actual evaluation of the BOOPs
numerically unstable. In an effort to guarantee better numerical sta-
bility in the evaluations of BOOPs, we modify via a simple remedy
the BOOPs specified in Eq. (6) by including a weight factor that is
related to the polygon side length, lij, that neighboring particles (with
indices i and j) share45

Ψν(X ) =
1
N

N

∑
i=1

RRRRRRRRRRR

1
Li

N i

∑
j=1

lij exp [ıνϕij]

RRRRRRRRRRR

, (7)

where Li = ∑
N i
j=1 li j ; the lij are again extracted from the Voronoi

construction.
Henceforward, we usually drop the argument, X , and often

simply write Ψν ≡ Ψν(X ), unless the explicit indication of a
particular realization of a structure, X , is required for the discussion.

The above definition of the BOOPs has been extended by con-
sidering separately particles in different layers (or combinations
thereof). Following Refs. 11–13, we use the following four variations
of BOOPs:

(1) Ψ(1)ν , quantifying ν-fold bond-orientational order of particles
in L1;

(2) Ψ(2)ν , quantifying ν-fold bond-orientational order of particles
in L2;

(3) Ψ(3)ν , quantifying ν-fold bond-orientational order of particles
of both layers projected onto the same plane;

(4) Ψ(4)ν , quantifying ν-fold bond-orientational order of particles
of layer two, considering only layer one particles (projected
onto the same layer) as neighbors.

For convenience, we introduce here a short-hand notation
for addressing a set of ui = u1, . . . , un different BOOPs, Ψ(ui)

ν j , of
different bond-orientational order, νj = ν1, . . . , νm, via Ψ(u1 ,...,un)

[ν1 ,...,νm]
= {Ψ(u1)

ν1 , . . . , Ψ(u1)
νm , Ψ(u2)

ν1 , . . . , Ψ(u2)
νm , . . . , Ψ(un)

ν1 , . . . , Ψ(un)
νm }; if only

one lower index is used, e.g., [ν], the lower brackets may also be
omitted and we may write Ψ(u1 ,...,un)

ν = {Ψ(u1)
ν , . . . , Ψ(un)

ν }.
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D. Identifying similarities in unlabeled data:
Clustering algorithms
1. General remarks

In this contribution, we are ultimately interested to analyze
systematically the ground state configurations of the asymmetric
Wigner bilayer system in terms of families (or clusters) of similar
(or related) structures, with the configurations being character-
ized notably via their composition and their order parameters. We
emphasize that there is no prior information in our data set that
relates the different data elements (i.e., the different structures) to
certain crystalline phases; thus, our task is to classify unlabeled
data. In an effort to achieve the above goal, we have used cluster-
ing algorithm techniques from unsupervised learning that follow
the objective of (automatically) grouping the elements of huge data
sets into distinct subgroups, i.e., clusters, that share similar features,
and have thus received a rapidly growing share of interest in recent
years.

We introduce a data set X = {x1, . . . , xN} that consists of
i = 1, . . . , N data elements xi. Each such feature vector xi may con-
tain a large number (Nf) of features xi, i.e., xi = {x1, . . . , xNf}; the xi
are elements in the Nf-dimensional feature space. Thus, X can also
be viewed as an (N ×Nf)-matrix. The huge size and the complexity
of the features of typical data sets stored in X usually render a con-
ventional classification scheme of these data in terms of families or
clusters of data intractable to be manually carried out by a human
being. To obtain a more comprehensive picture of the properties of
the underlying data, it has turned out to be advantageous to involve
concepts from unsupervised machine learning.1–5

Here, we use the possibly simplest form of unsuper-
vised machine learning, namely (unsupervised) clustering
algorithms;1,30,31 we will show that such an approach turns
out to be very helpful to organize data sets of lattice structures
of the classical Wigner bilayer system into families of structures
in an unsupervised manner, i.e., without prior knowledge about
structure- or feature-dependent relations in our unlabeled data set.

We will introduce the two basic concepts that help us to imple-
ment our approach: (i) the principal component analysis (PCA)
and (ii) the k-means clustering. More specifically, we utilize PCA to
identify the characteristic features in our data set in an effort to effec-
tively reduce the dimensionality of the features for the subsequent
k-means clustering with the aim to improve the performance and
stability of the latter. As our data set builds upon order parameters,
the particular choice of dimensional reduction and clustering tools46

allows us to directly provide physical insight via the characteris-
tic features and the identified phases (cf., supplementary material,
Secs. I and II).

2. Principal component analysis (PCA)
In an effort to reduce the dimensionality of the Nf-dimensional

feature space to a considerably smaller, Nℓ-dimensional latent space,
we use the PCA. Thus, we transform a data set X = {x1, . . . , xN}

∈ RN×Nf into a low-dimensional latent space representation,
L = PXL(X) = {l1, . . . , lN} ∈ RN×Nℓ ; the li ∈ RNℓ are the latent space
representations of the xi. While the mapping PXL(X) is not bijective
for Nℓ < Nf, it is crucial that the low-dimensional representation of
the data in L is able to address the essential correlations of the fea-
tures of the original X. In short, local structures in the feature space

representation should be conserved as good as possible in the latent
space representation, a requirement that is fulfilled by the popular
PCA.1

In describing the PCA, we first assume—without loss of
generality—zero empirical mean and unit variance of the xi along
the columns of X. We consider the data set X as an (N ×Nf)

“design” matrix, whose rows are the N data points and whose
columns are the Nf features and then construct the (Nf ×Nf),
symmetric, positive-semidefinite covariance matrix, Σ(X), defined
via

Σ(X) = 1
(N − 1)

XTX, (8)

where superscript “T” denotes the transpose of the matrix. The diag-
onal elements of Σ(X) measure the variance of features and the
off-diagonal elements measure the covariance between features i and
j. Σ(X) can be diagonalized as follows:

Σ(X) = VΛVT. (9)

It is assumed that the (real-valued, positive) eigenvalues λi,
i = 1, . . . , Nf of the diagonal matrix Λ are arranged in descending
order. The related eigenvectors are denoted by vi.

Λ can now be used for dimensional reduction: large values
of λi label along the associated eigenvectors vi directions of high
variance in the feature space, i.e., those directions that contain the
relevant information of the data. In contrast, directions associated
with small values of λi are usually related to noise and can potentially
be ignored. The eigenvector vi with the largest (second largest, . . .)
eigenvalue λi is referred to as the first (second, . . .) principal com-
ponent,1 denoted in the following as PC (hence the term “principal
component analysis”).

Often, only very few of the λi have a significant value. Selecting
the Nℓ largest eigenvalues and the associated eigenvectors provides
us with an effective way to project the original data points into a low-
dimensional (but representative) latent space L = PXL(X), where the
transformation PXL is simply a linear projection from RN f onto RNℓ .
To quantify the amount of information encoded in each PC direc-
tion vi, we rely on the percentage of the explained variance (PEV),
defined as

λ(e)i =
⎛

⎝

Nf

∑
j=1

λj
⎞

⎠

−1

λi. (10)

For a more comprehensive discussion of the PCA, see, e.g., Refs.
3, 4, and 47.

3. k -means clustering
Probably, the simplest form of unsupervised learning is clus-

tering algorithms, whose objective is to identify groups in unla-
beled data according to similarity or distance measures of one
kind or another.1,30,31 In the following, we introduce the k-means
algorithm,26–29 which we have used for our problem.

Starting again from N data points, X = {x1, . . . , xN}, in an Nf-
dimensional feature space, xi ∈ RNf , the objective is to distribute
a certain number of K cluster centers, called the cluster means
K = {μ1, μ2, . . . , μK} with μk ∈ R

Nf , in the feature space, such that
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FIG. 2. Diagram of states of the ground state configurations of the asymmetric Wigner bilayer system in the (A, η)-plane, redrawn from Refs. 11–13. Colored and labeled
regions denote the 14 phases that have been identified “by hand” according to the specifications summarized in Table I. The corresponding structures are shown in separate
panels, specified by the same labeling and the same color code. In these panels, layer one (L1) particles are colored in blue and layer two (L2) particles are colored red;
the thick black frames indicate the unit cells of the bilayer structures. The cyan lines in the main panel highlight the phase boundaries. Structures within the white region have
not been classified, yet.

data points assigned to the different clusters minimize the following
cost function:

C(X, K) =
K

∑
k=1

N

∑
i=1

rik(xi − μk)
2. (11)

In this relation, the assignment of data point i to cluster k is realized
via the binary variable rik = 1 (and rik′ = 0 for all k′ ≠ k). ∑N

i=1 rik =

Nk defines the size of cluster k, i.e., the number of data points asso-
ciated with it. The set of assignments k = {rik} is also called labeling
or clustering of the data points.

Minimizing Eq. (11) can be interpreted as finding K and assign-
ing via the rik the N data points to different clusters, k, such that the
(scaled) variance of each cluster,∑N

i=1 rik(xi − μk)
2, is minimized. In

practice, this task is performed in a two-step procedure:1

1. Equation (11) is minimized with respect to μk given a set of
assignments {rik}, i.e., (∂ C/∂μk)∣{rik} = 0, yielding the update
rule for μk = N−1

k ∑
N
i=1 rikxi; thus, μk is the geometric center of

the members rikxi of cluster k;

2. given the cluster means K, we want to find the assignments
k = {rik} that minimize Eq. (11) by assigning each data point
to its nearest cluster-mean: rik = 1 if k = arg [mink′(xi − μk′)

2
]

and rik = 0 otherwise.

These two steps are performed in an alternating manner until
some convergence criterion is met: this can, for instance, be the case
if the change of the object function, given by Eq. (11), between two
iteration steps, is smaller than a predefined threshold value.

The k-means algorithm scales linearly with the size of the data
set and can therefore be used for a large amount of data. However,
Eq. (11) is in general a non-convex function and the result for the
minimization may largely depend on the initial (random) choice
of the means K and the assignments k = {rik}. In practice, the k-
means algorithm is therefore applied several times with different
(random) initial conditions that may result in different assignments
(see discussion in Subsection III D and Appendix D). Eventually, the
particular assignment with the minimal value of C(X, K)—as com-
pared to all other assignments—is chosen to be the “best” solution
to the clustering problem.
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TABLE I. List of the 14 ordered ground state configurations as identified in Refs. 11–13 “by hand” (see also Fig. 2): short-
hand notation of the respective configurations (left column), short description of the characteristic features (central column),

and specification in terms of the composition of the system, x, and order parameters Ψ(u)ν (right column). Note that all
structures—except for structure I which refers to a monolayer—are bilayer structures.

Characteristic features Composition and order parameters

I Hexagonal monolayer x = 0
II Rectangular bilayer x = 1

2 , Ψ(1,2)
4 = 1, 0 < Ψ(1,2)

6 < 1
III Square bilayer x = 1

2 , Ψ(1,2)
4 = 1, Ψ(1,2)

6 = 0
IV Rhombic bilayer x = 1

2 , 0 < Ψ(1,2)
4 < 1, 0 < Ψ(1,2)

6 < 1
V Hexagonal bilayer x = 1

2 , Ψ(1,2)
4 = 0, Ψ(1,2)

6 = 1

Ix Trihexagonal (layer one) 0 < x < 1
3 , Ψ(3)6 > 0.9

H Honeycomb (layer one) x = 1
3 , Ψ(3)6 > 0.9

IIx Modified rectangular bilayer 1
3 < x < 1

2 , Ψ(3)6 > 0.9
Vx Hexagonal bilayer 0 < x < A

1+A , (1 − x)Ψ(1)6 + xΨ(2)6 > 0.9
S1 Snub square (layer one) x = 2

6 , Ψ(1)5 > 0.7, Ψ(2)4 > 0.9

S2 Snub square like (layer two) x = 2
6 , Ψ(2)5 > 0.45

P1 Pentagonal type two 1
3 < x < 1

2 , Ψ(2)5 > 0.45
P2 Pentagonal holes 1

3 < x < 1
2 , Ψ(4)5 > 0.9

P3 Pentagonal holes 0 < x < 1
3 , Ψ(4)5 > 0.9

III. RESULTS
A. The original diagram of states

The original diagram of states of the asymmetric Wigner bilayer
system, presented in Refs. 11–13, has been redrawn in Fig. 2. The
indicated 14 ordered configurations have been identified “by hand”
according to the criteria summarized in Table I, based on the com-
position x and the BOOPs Ψ(1,2,3,4)

[4,5,6] . From Fig. 2, it is obvious that
quite extended regions in the (A, η)-plane remain unidentified with
this classification scheme.

B. Unsupervised clustering algorithms applied to the
Wigner bilayer

The huge amount of data accumulated in Refs. 11–13 in the
search for equilibrium structures and the fact that—despite consid-
erable efforts—white regions still remain in the diagram of states
has motivated us to revisit and to reanalyze this data set with the
help of a tool that is able to perform such a classification in a more
systematic and more efficient manner as one could possibly do “by
hand.” To this end, we have introduced a more systematic clas-
sification scheme based on unsupervised clustering (as introduced
in Sec. II D).

In order to apply this unsupervised clustering algorithm
scheme, we first have to define the Nf-dimensional feature vector
x(X ), which is built up by the following components:

● the set of BOOPs, originally used in Refs. 11–13, Ψ(1,2,3,4)
[4,5,6] ,

has been extended by the set Ψ(1,2,3,4)
[3,8,10,12] (using the short-

hand notation introduced above); this new set of in total 28

BOOPs offers now the possibility to identify structures with
eightfold, tenfold, or twelvefold symmetries;

● the composition x = x(X );
● in an effort to quantify the ratio of the average nearest

neighbor distance in L1, r(1)nn (X ), and the average near-
est neighbor distances in L2, r(2)nn (X ), for a certain bilayer
configuration, X , we define the “intralayer nearest neighbor
ratio” order parameter, rg(X ), via

rg(X ) =
r(1)nn (X )
r(2)nn (X )

. (12)

The values of rg(X ) are not bound to a maximum value;
however, we find empirically an upper limit of ≃1.07 for all
considered bilayer ground state configurations.

With the 28 BOOPs, the values for x and rg(X )we end up with
a feature vector that has Nf = 30 components fi(X ),

x(X ) = { f1(X ), . . . , fNf=30(X )}. (13)

In the following, we will reanalyze the classification scheme of
phases used in Refs. 11–13 with the help of unsupervised machine
learning techniques in order to automatically identify different fam-
ilies of structures directly from the feature vector, x, given in Eq. (13).
To be more specific: (i) we first perform a principal component
analysis24,25 (PCA) on the feature vectors of all structures from Refs.
11–13, which defines our basic data set. This allows us to identify
directions of large variance in the data set, which capture the most
relevant information among the different features. To this end, we
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transform the data set of feature vectors to unit-variance and zero-
mean coordinates; this technique is termed “whitening” in literature
and is used to decouple the PCA from the relative scales of different
features.1 (ii) We then apply the k-means26–29 clustering algorithm to
the latent space representation of the data set, which is spanned by
the leading PCs. This will help us to identify new, previously unclas-
sified phases that are potentially hidden in the huge set of the original
structural data.

As a benchmark for this approach, we start our analysis with
the simplest problem within the topic of Wigner bilayers, namely,
with the symmetric Wigner bilayer system (as considered in Refs. 35
and 36), where σ1 = σ2 or, equivalently, A ≡ 1.

C. The symmetric Wigner bilayer system—A
benchmark

For the symmetric case, the identification of the ground state
configurations has been solved completely and analytically in Refs.
35 and 36 with five emerging structures, labeled I through V; these
phases are depicted in the top row of Fig. 2. Furthermore, the exact
η-values where the transitions between these phases occur as well
as the nature of the related transitions could be identified with high
accuracy in the above contributions: the hexagonal monolayer (I) is
stable only at η = 0 and transforms for an infinitesimally small value
of η into a rectangular bilayer, termed II. This structure is stable
within the range 0 < η ≲ 0.263 and then transforms via a second-
order transition into a square bilayer (III), which is stable within
the range 0.263 ≲ η ≲ 0.621. This structure then turns—again via
a second order transition—into a rhombic bilayer phase (IV), sta-
ble within 0.621 < η ≤ 0.728. Eventually, a hexagonal bilayer (V)
emerges at η ≃ 0.728 via a first-order transition [see also the line
(A = 1) in Fig. 2].

As a first step, we have tested our clustering approach for this
particular case knowing that we have the exact solution already
at hand. As detailed in Appendix A, we first perform a principal
component analysis (PCA) (cf. Subsection II D 2) on the set of
the (unit-variance and zero-mean) feature vectors, X(sym), of the
Nsym = 141 ground state configurations that were identified via the
memetic evolutionary algorithm in Refs. 11–13 for different values
of η ∈ [0, 1] and for A ≡ 1.

The percentage of the so-called explained variance (PEV),
defined in the Eq. (10), quantifies the amount of information
encoded in each PC direction. This measure provides a threshold
in the expressive quality of the PCs so that we can safely restrict
our further analysis to the five leading PCs; in terms of the PEV,
the PCs of order six (and higher) contribute by orders of magnitude
less information as compared to the leading five ones (cf., Appendix,
Fig. 8).

Next, we apply the k-means clustering algorithm (cf. Subsec-
tion II D 3) to the now (Nℓ = 5)-dimensional latent space represen-
tation L(sym) of the data X(sym) and assign to all i = 1, . . . , Nsym data
points a cluster label ci ∈ {1, . . . , K}, defining thereby the labeling
(or clustering) k(sym)

= {c1, . . . , cNsym} of the data set. In the particu-
lar case of the symmetric Wigner bilayer system we already know the
number of phases and therefore set K = 5. The emerging k-means
clustering k(sym) of the data is in excellent agreement with the phase-
assignment known from literature,35,36 as can be seen in Fig. 9 in the
Appendix.

D. The asymmetric Wigner bilayer system
Now that we know from the symmetric case of the Wigner

bilayer system we can firmly rely on the analysis approaches detailed
in Subsection II D, we proceed to the asymmetric case; this struc-
tural database was generated for the preceding contributions11–13 by
independent evolutionary structure optimization of configurations
with up to 40 particles per unit cell and considering all related possi-
ble values of the composition, x, on an A- and η-grid as specified in
Subsection II B. We perform the same analysis—i.e., first a PCA and
then a subsequent k-means clustering—on the set of feature vectors,
X(asym)

= (x1, . . . , xNasym) with the xi ∈ RN f =30 being taken initially
from the entire set of Nasym ∼ 56 541 configurations considered in
the asymmetric Wigner bilayer system.

1. Principal component analysis (PCA)
Via the PCA, we first transform the data set X(asym) to a

latent space representation L(asym)
= (l1, . . . , lNasym) of the data (for

which we again assume unit-variance and zero-mean coordinates):
li( ∈ RNℓ) is the projection of the data point xi ∈ RN f into the latent
space of dimension Nℓ(≤ N f ); note that the actual value of Nℓ has
not been fixed, yet. In Fig. 3, we present the PEVs, λ(e)j , defined in
Eq. (10), for each of the Nf = 30 PCs of the feature vectors, X(asym),
of the structures considered in Refs. 11–13. We conclude from the
PEVs that—similar to the symmetric case (cf. Fig. 8)—only very few
principal components are expected to carry relevant information,
i.e., will have significant λ(e)i -values. Thus, we restrict our analy-
sis to the leading nine principal components, located left of the
(second) “elbow”48 occurring for i-values larger than i = 9, whose
λ(e)i -values are larger than 0.02; hence, we set Nℓ = 9 in what
follows.

In Fig. 4, we present the leading nine PCs, v1, . . . , v9, which
are vectors in the feature space spanned by x = ( f1, . . . , fN f ). The
30 elements of each PC indicate the direction of the PC in fea-
ture space; we refer to the values of these elements of PCs as
feature weights. Large positive or large negative values of certain
feature weights of a particular PC indicate important features that
quantify information in the data set with directions of high vari-
ance. These characteristic features of PCs can be used to identify
important order parameters—or combinations of order parameters
if several feature weights are dominant in a particular PC. On
the other hand, feature weights close to zero indicate less rele-
vant directions (see the supplementary material, Sec. I, for more
details).

From the data presented in Fig. 4, we see that the first PC,
v1, exhibits large positive feature weights of the six- and twelvefold
order parameters Ψ(1,3,4)

[6,12] and medium to large negative weights of

Ψ(1,3,4)
[4,5,8,10], rg , and x. The PCs v2 and v3 exhibit medium to large fea-

ture weights distributed over a range of order parameters that makes
them more difficult to interpret than the feature weights of v1. From
the fourth PC (v4) onward, single (or very few) directions in feature-
space are relevant: this applies, for instance, for Ψ(2)[10,12] in the case of

v4 and for Ψ(1)[10,12] in the case of v5. Furthermore, we learn from Fig. 4
that for all PCs the feature weights for the intralayer nearest neighbor
order parameter, rg , and for the composition, x, are strongly cor-
related. Thus, one could interpret our results such that the nearest
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FIG. 3. Percentage of the explained variance (PEV), λ(e)
i [as defined in Eq. (10)], of the principal components (PCs) of the data, set X(asym) of feature vectors of all

Nasym = 56 541 configurations of the asymmetric Wigner bilayer system, considered in Refs. 11–13 (blue dots); the leading nine PCs (with the PEV λ(e)
j > 0.02) are shown in

orange. We also present (via green crosses) the PEV of the PCs of the data set X(∗ ), i.e., the data set that contains all data points of X(asym) except for those which correspond
to hexagonal monolayer configurations (i.e., where x = N2/N = 0). It should be noted that structures with x = 0 can uniquely be characterized as trigonal monolayers, i.e.,
phase I, in the investigated data set. Thus, the PEV results emphasize that the PCA is only marginally affected by the large proportion of phase I structures in the data set.
The gray inset shows the related data in a semi-logarithmic presentation.

FIG. 4. Leading nine PCs, v1, . . . , v9 ∈ RN f =30, of the (whitened) data set X(asym) represented in the feature space spanning x = ( f1, . . . , fN f
) [cf. Eq. (13)]. The features

f1, . . . , f30 are listed along the horizontal axis and represent the order parameters used to evaluate X(asym) from the structural database of the asymmetric Wigner bilayer
system from literature;11–13 the respective 30 elements of the PCs, vj , related to the directions of fj are presented via the color-coding specified by the color bar on the
right-hand side: large positive (negative) values of feature weights are emphasized by dark purple (orange) coloring, while values close to zero are colored in white. It should
be noted that prior to the PCA, all features are separately scaled to zero mean and unit variance (i.e., the data are “whitened”). Thus, even positive valued features, such as
r g and x, can have negative feature weights in the corresponding principal components.

neighbor distances, rg , of particles in both layers are largely gov-
erned by the composition x for low energy configurations of the
system. This, in turn, might suggest that the particles tend to be dis-
tributed in ground state configurations of the system as uniformly
as possible [constraint by the (A, η)-specific lattice formation] in
both layers.

To provide a first impression of the descriptive power of the
PCA, we present in Fig. 5 the revised diagram of states of the ground
state configurations of the asymmetric Wigner bilayer system in
the (A, η)-plane in a new [R, G, B]-scheme, which is now based
on the leading three PCs: to this end, we consider the latent space
representations, lg , of the feature vectors, xg , which correspond to
the suggested ground state configurations, X g , of the asymmetric
Wigner bilayer system for different values of the system parameters,
A and η. For each of these data points, lg = (vg1, . . . , vgNℓ), we
use the first three coordinates, [v g1, v g2, v g3], i.e., the coordinates
of lg associated with the first three PCs v1, v2, and v3, to define
the relative contribution of the colors red, green, and blue to the
color of each pixel in the (A, η)-plane. Moreover, we have trans-

formed the values of the related coordinates to the interval [0, 1]
via v̂gi =

1
2 [tanh (vgi) + 1]. This first, admittedly simplistic view49

demonstrates that the phase boundaries as suggested in Refs. 11–13
nicely correlate with the values of the PCs; however, we can also
spot out regions in the (A, η)-plane, which call for a closer inspec-
tion: for instance, the region of phase Ix is likely to have a more
sophisticated internal structure than previously assumed, as indi-
cated by the different greenish (i.e., dominant v2) and bluish (i.e.,
dominant v3) regions, a feature that we will further investigate in
the following.

We can see from Fig. 5 that phase I can uniquely be identified
via the black color. Furthermore, the leading three principal compo-
nents of structures II, IIx, H, and Ix are clearly different from those of
the pentagonal structures P1, P2, P3, and S2: (i) the former structures
(i.e., II, IIx, H, and Ix) are characterized by large [G, B]-values (asso-
ciated with the second and third PCs), thus indicating large values
of the latent space coordinates into directions v2 and v3; the corre-
sponding bilayer structures have the property that—when projecting
the particle positions onto a single plate—a hexagonal monolayer is

J. Chem. Phys. 159, 204112 (2023); doi: 10.1063/5.0166822 159, 204112-9

Published under an exclusive license by AIP Publishing

 05 January 2024 08:25:39

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 5. Left: Diagram of states of the ground state configuration of the asymmetric Wigner bilayer system in the (A, η)-plane, colored via an [R, G, B]-scheme that is
based on the first three PC vectors v1, v2, and v3 of the data set X(asym): for every (A, η)-pair, we define the relative amount of red, green, and blue color [R, G, B]
of the corresponding pixel in the (A, η)-plane by the coordinates, [v̂g1, v̂g2, v̂g3], of the latent space data point, lg = (vg1, . . . , vgNℓ

), of the associated ground state
configuration of the asymmetric Wigner bilayer system, using the database available in literature;11–13 the values of the coordinates v gi are transformed to the interval [0, 1]
via v̂gi = 1

2
[tanh (vgi) + 1], to establish an [R, G, B]-scheme for the entire range of v gi -values. The light gray lines indicate phase boundaries taken from Refs. 11–13.

Phases from the above references are labeled according to the classification of the 14 phases summarized in Table I. Right: t-SNE50 analysis (see also Refs. 1 and 40),
mapping the (Nell = 9)-dimensional latent space representation of all bilayer configurations from the literature database11–13 onto a two-dimensional t-SNE manifold spanned
by “t-sne 1” and “t-sne 2.” Each point represents a structure from the database embedded into the two-dimensional t-SNE plot and is colored according to the labeling given
in Table I (unknown phases are omitted).

formed; (ii) in contrast, the pentagonal structures (P1, P2, and P3)
are throughout more complicated to interpret. Still, we can see that
their symmetry (cf. Fig. 4) is either dominated by the first principal
component v1 (red) or by combinations of v1 and v2 (yellow, which
is generated by adding red and green in the [R, G, B]-notation).
Furthermore, structures in the Vx region show strong signals either
from the third principal component v3 (blue) or from combinations
of v1 and v3 (where red and blue become magenta); in that way, they
can be distinguished from the (red and yellow) pentagonal region
in the diagram of states depicted in Fig. 5. Summarizing we note
that the region in the diagram of states depicted in Fig. 5, where the
latent space representation of the related ground state structures are
dominated either by v1 or by combinations of v1 and v2, largely cor-
responds to the unclassified white region occurring in Fig. 2. In an
effort to obtain an even more profound insight into the so far hid-
den structures, we apply in a subsequent step a k-means clustering
analysis of the data.

Before proceeding in this direction, we note that our set of data
has also been inspected with the “t-stochastic neighbor embedding”
(t-SNE)50 method (see the right panel of Fig. 5), which represents
another quite useful non-linear technique for visually representing
a set of data from a high-dimensional feature space in a low-
dimensional latent space, while preserving the local structure of the
data in a few embedding coordinates; for details, we refer the inter-
ested reader to Refs. 1 and 40. The coloring of the depicted t-SNE
embedding in the right panel of Fig. 5 corresponds to the phase clas-
sification from literature11–13 and indeed some spatially separated

clusters of the t-SNE can be associated with these structural phases.
However, in our t-SNE analysis of the entire database of poten-
tial ground state structures from the asymmetric Wigner bilayer
system, no clear (i.e., visual) separation of structural families into
spatially separated clusters (which could be further analyzed with
the DBSCAN method,51 for instance) could be identified in the two
t-SNE dimensions.

In a next step, we have analyzed our structural data with the
k-means algorithm, thereby identifying the optimum value for the
number of clusters, K. We have shifted the details of this rather
technical procedure to Appendix B. As specified there in detail, we
eventually come up with K = 32 as the optimal number of structural
clusters.

E. New insights to the Wigner bilayer system from
unsupervised learning

The preceding PCA provides already clear evidence that so far
unexplored and unidentified ground state phases are hidden in the
incredibly rich plethora of ordered bilayer structures in the asym-
metric Wigner bilayer system. A step toward a more systematic
analysis of the ground state configurations can be realized by apply-
ing a subsequent k-means clustering analysis (see Subsection II D 3)
of the representation of the data set in terms of the nine leading
principal components (for more details on the precise way how
we applied k-means clustering to the structural database of the
asymmetric Wigner bilayer system, we refer to Appendix B).
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FIG. 6. Ground state phase diagram of the asymmetric Wigner bilayer system (see Refs. 11–13) in the (A, η)-plane as identified by the K∗ = 32-means clustering algorithm;
the respective 32 families of structures, k∗c

32 , are color-coded in different gray scales, ranging from white to black. The presentation of the ground state families of this phase
diagram was subdivided into four (A, η)-subpanels (a)–(d) by symmetry arguments of the respective occurring ground states (see discussion of the subpanels in the text). In
each subpanel, we highlight the respective parameter regions in bright colors (cyan, yellow, green, orange, red, magenta, or purple—in no particular order) where certain k∗c

32
families form the ground state; archetypical structures of the respective k∗c

32 families are shown as insets. In each panel, these structures are labeled by the corresponding
value of c = (1, . . . , 32) in the upper left corner to address their association to a certain family k∗c

32 . For convenience, the frames of the insets are color-coded in the same
way as the ground state regions of the respective k∗c

32 family in the phase diagram. Particles in L1 (L2) are always colored blue (red) and connections between nearest
neighbors in each layer are drawn. Special tiles and features of the different structures are highlighted by colored shapes and the respective unit cell of each structure is
emphasized by a thick black frame. The phase-boundaries, as documented in literature11–13 (cf. also Fig. 2) are indicated by opaque white lines in each panel; furthermore,
the corresponding phases (known from literature) are labeled by their acronyms in circles, which are associated with the considered parameter region of the different panels.
Colored, disk-shaped labels in subpanels (a) to (d) indicate that archetypical structures of the corresponding k∗c

32 families are displayed as insets in the respective panels, while
gray, disk-shaped labels (i.e., I through V and H) indicate that the corresponding structures are not shown (although the phases have been identified by the k∗32 − clustering
algorithm).
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We first replace the original diagram of states (cf. Fig. 2) with a
diagram of states based on the k∗32 − clustering results, summarized
in Fig. 6. Indeed, the 32 families of structures provide informa-
tion about new, so far unidentified ground state configurations: we
observe that some regions (such as the ones originally occupied
by the Ix or Vx phases) are obviously subdivided into sub-regions,
indicating the emergence of so far unclassified phases. For each
of these families (and except for the “trivial” phases I through V
and H), we present in Fig. 6 typical examples of ground state con-
figurations of the system for different values of A and η, based
on the k∗c

32 clustering. In an effort to obtain a better overview of
the different structures, we have split in Fig. 6 the presentation
of the diagram of states into four qualitatively different subpanels
[labeled (a) to (d)]:

● in panel (a), we focus on the region that hosts the phases
Ix, II, IIx, and H, occurring at small to medium values of
η (i.e., 0 < η ≲ 0.4) and medium to large values of A (i.e.,
0.4 ≲ A ≤ 1); the ground state structures in this region have
in common that they form a hexagonal monolayer if all
particles were projected onto the same layer;

● in panel (b), we collect structural families that feature
pentagonal tiles in L1, i.e., configurations that belong
to the broader family of pentagonal structures: suggested
ground states candidates that belong to this category are
P1, P2, P3, and S2, the associated range of the system
parameters can be roughly given by 0.3 ≲ η ≲ 0.7 and
0.4 ≲ A ≲ 0.9;

● in panel (c), we address k∗c
32 families that have tilings in L1

that are similar to the snub-square structure, S1, which, in
turn, can potentially give rise to ground state configurations
with a global twelvefold symmetry (see Refs. 52–54);

● eventually, in panel (d), we present k∗32 − clustering results
that can be related to the Vx region in the parameter space
of the asymmetric Wigner bilayer system, i.e., at large plate
separation distances (η ≳ 0.7) and covering a large range of
A.

A comparison of the identified phases of the asymmetric
Wigner bilayer system via methods from literature11–13 (see Fig. 2)
and via labeling by unsupervised k∗32 − clustering techniques (see
Fig. 10 in the Appendix) shows—on one hand—an excellent agree-
ment for several structural families: not only the symmetric cases
(i.e., phases I through V), but also more complex configurations such
as IIx, H, S1, S2, P1, P2, and P3 are faithfully reproduced. On the
other hand, the clustering technique is able to reveal that for several
regions in the parameter space (such as the regions of the phases Ix
and Vx) a reanalysis of the data is in order; this will be done in the
following.

(a) phase Ix: based on the clustering (see Fig. 6), we can indeed
identify a rich variety of phases within this region, which is cor-
related with the dodecagonal Ψ(4)12 “hole” BOOP; note in this
context, in particular the blue region within the Ix phase near
the boundary to the H phase and the relatively large region
populated by the k∗29

32 family [see panel (a) of Fig. 6, marked
in cyan];

(b) pentagonal phases: regions that were declared in the origi-
nal diagram of states to be populated exclusively by the P3

structure (see Fig. 2) now show—as a consequence of the
more refined analysis of the clustering approach—a consid-
erably more complex internal structure: we can see from
panel (b) of Fig. 6 that not only the k∗14

32 and the k∗27
32 fam-

ilies but also the S2 configuration (represented by the k∗32
32

family) form similar patterns in L2 (notably distorted rect-
angles and triangles organized in a distorted snub-square
vertex); however, the decoration of the L2 tiles with parti-
cles in L1 becomes increasingly complex: more particles of
L1 are involved per tile in L2 the more we approach the
boundary to phase I in the parameter space. The structure
in L1 thus approximates a trigonal lattice when approach-
ing the phase boundary of the I phase and exhibits only
pentagonal defects around the x, y-locations of L2 particles.
Interestingly, the structural families k∗27

32 and k∗14
32 appear to

belong to a family of increasingly complex super-structures of
the top panel of family k∗32

32 , i.e., the original S2 phase. This
might hint at the existence of a low-energy quasi-crystalline
structure of this family in the asymmetric Wigner bilayer
system.

(c) phases S1 and S2: with the help of the clustering analysis,
we are now able to classify also the previously unclassified
structures in the (A, η)-regions in the vicinity of phases S1
and S2 (cf. related white regions in Fig. 2) by several differ-
ent structural families, as illustrated in panel (c) of Fig. 6:
these structures have in common that their basic tiles (such
as equilateral triangles and squares arranged in a snub-square
vertex) form in L1 a structure that might indicate the exis-
tence of a quasicrystalline state with a global dodecagonal
symmetry.52,53,55

(d) phase Vx: eventually, in the Vx region of the diagram of states,
some interesting new structural families are identified as a con-
sequence of the k∗32 − clustering procedure, as can be seen in
panel (d) of Fig. 6. Characteristic values and boundaries of the
order parameters and of the corresponding principal compo-
nent representation of all newly identified structural families
k∗c

32 depicted in Fig. 6 are collected in Subsection 3.1.7 of Ref.
40 (which also provides more detailed information about the
symmetries of these structural families).

For more details on characteristic values of the order para-
meters and principal components for the families of structures
described by the k∗32 − clustering, see the supplementary material,
Sec. II.

IV. CONCLUSIONS
In this contribution, we have reanalyzed the ordered ground

state configurations of the asymmetric Wigner bilayer system
where identical point charges are immersed into the space con-
fined between two parallel plates of opposite charge. The ratio
of the (not necessarily equal) surface charges of the two plates
(σ1 and σ2), i.e., A = σ2/σ1 and the reduced, dimensionless dis-
tance η between the plates uniquely define each state point of
the system. A previous classification scheme of the emerging
configurations11–13 into structural families, was done by “hand”:
such an approach is not only a tedious, possibly hopeless task, but
it is also—and even more relevant—prone to faulty analysis, pre-

J. Chem. Phys. 159, 204112 (2023); doi: 10.1063/5.0166822 159, 204112-12

Published under an exclusive license by AIP Publishing

 05 January 2024 08:25:39

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

venting thereby a faithful identification and sorting of the emerging
structures.

In an effort to overcome these drawbacks, we have reanalyzed
this huge set of data (comprising ∼60 000 data points) and have used
instead machine learning based tools, notably on the principal com-
ponent analysis and a subsequent k-means clustering algorithm. In
a first step, we have assigned to each emerging structure a feature
vector with 30 entries: (i) predominantly suitably defined order para-
meters that characterize the ground state configuration, (ii) the com-
position of the system, and (iii) further structural information based
on the radial distribution function. With the help of a principal com-
ponent analysis, we have extracted from this representation the most
relevant information by projecting the underlying 30-dimensional
feature space on a reduced representation in the so-called latent
space; in our case, we found out that a dimension of nine of the
latent space is sufficient to capture the relevant features. Eventually,
we have classified this reduced information via a k-means algo-
rithm and have collected ground state configurations into families
of structures that occupy “neighboring” regions in this latent space.
Applying different types of thorough internal consistency checks we
eventually found that the sorting of the emerging structures into 32
families provides the most reliable and most consistent classification
scheme of these structures, as compared to 14 structural fami-
lies that were identified in the preceding, “by hand” classification
approach.11–13

In view of the achieved results presented in this contribution,
we can righteously conclude that with our machine learning based
tool at hand we are now able to provide a systematic, reliable, and
thorough classification scheme for the emerging structures. The new
insights into the diagram of states comprise now particle configu-
rations that were previously hidden (or even not accessible) in the
zoo of structures in the database of Refs. 11–13: (i) within the region
that was originally assigned to the Ix structure we could identify a
rich variety of phases that are characterized by a dodecagonal Ψ(4)12
bond order parameter; (ii) the region that was originally thought to
be populated exclusively by the P3 structure has a very rich inter-
nal structure and other configurations could be identified that are
formed by distorted rectangles and triangles, organized in a dis-
torted snub-square vertex; (iii) it could be shown that the previously
unclassified (“white”) regions in the vicinity of phases S1 and S2 are
populated by several different structural families; all these structures
have in common that their basic tiles arrange in L1 into a struc-
ture that might possibly indicate the existence of a quasicrystalline
state with global dodecagonal symmetry; (iv) eventually, the huge,
and previously unexplored region populated by the Vx structure
reveals the existence of quite a few interesting subtle new struc-
tural families. With all these new findings, we conclude that the
reanalyzed diagram of states is bare of any white (i.e., unexplored)
regions.

Apart from a more systematic and thorough classification of the
structures, our approach offers several other attractive features that
turned out to be very useful.

A particular challenge when identifying the ground state con-
figurations for our system is the issue of degeneracy: this applies
to structures that were obtained in Refs. 11–13 via evolutionary
algorithms, involving different numbers of particles per unit cell

but characterized by the same composition; they eventually end
up as identical structures with the same (i.e., degenerate) ener-
gies but parameterized by different (but equivalent) unit cells. In
our previous “by hand” classification scheme, it was very difficult
to prove the structural equivalence of two such particle configu-
rations, while with the clustering-based labeling of the available
structural database as it has been used in this contribution, such
degenerate configurations are automatically grouped into the same
structural family via the information emerging from the feature
vectors.

Another advantage of our approach is that we easily obtain
within each structural family an energy-based ranking of the struc-
tures: thus, for a given state point [defined by a pair (A, η)], we
have clear information about an energy-based ranking of the struc-
tures, starting at the lowest level with the ground state configuration.
In this manner, we can identify those structures that energy-wise
are sometimes very close to the ground state configuration, but
which possibly are structure-wise distinctively different from the
latter one; such a ranking was essentially inaccessible in our previ-
ous approach, while in our present approach, they are automatically
labeled. With this information at hand, we can then focus in a sub-
sequent step on different structural families, where we have direct
access to the properties of the energetically competing families of
structures for any (A, η)-state (see a more in-depth discussion in
Appendix C).

From a more formal point of view, it should be mentioned
that, in general, clustering of structural data using PCA and k-
means clustering (or any other, suited clustering algorithm or
classification algorithm) provides us with an additional attractive
feature: PCA is a linear transformation from the feature space to
the latent space and k-means is a mapping of a data point in
the latent space to a cluster label. Once the clustering algorithm
is trained (i.e., once it has converged), it can be used as a clas-
sification model56,67 and we can ask the following questions for
an arbitrary structure: “what family would it belong to?,” “where
would it appear in the phase-diagram,” and “what would be its
characteristic features?”; see Appendix A.1.2 of Ref. 40 for related
numerical details on the characteristic features of the here employed
k∗32 − clustering classification scheme of the structural data from
Refs. 11–13.

When re-exploring the data set of configurations of the asym-
metric Wigner bilayer system, we also encountered situations where
particular numerical care had to be taken: this applies in partic-
ular when exploring regions where first-order transitions between
competing structures have to be identified, characterized by dis-
tinct discontinuous changes in order parameters. In an effort to
locate the transition point accurately, particular numerical care
has to be taken. Even more challenging are second-order phase
transitions (such as those between phases II → III and III →
IV) where some of the features (order parameters, etc.) change
continuously.

Summarizing, we can righteously state that the clustering tools
discussed in this contribution represent an indispensable help in
classifying complex emerging structures and undoubtedly offer a
deeper insight into the complexity of the phase diagram of the
asymmetric Wigner bilayer system.
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SUPPLEMENTARY MATERIAL

In the supplementary material, we provide further physical
and conceptual insights into the unsupervised learning approach
put forward in this manuscript. First, we specifically visualize in
supplementary material Sec. I the relative contributions and the
expressed physical symmetries of all characteristic features (i.e.,
order parameters) to the most relevant principal components (PCs)
of the structural data set of the asymmetric Wigner bilayer system.
Second, we present in supplementary material Sec. II the character-
istic values of the order parameters and of the principle components
related to each family of ground state structures of the asymmetric
Wigner bilayer system that is either known from literature or has
been newly discovered with the methods presented in this contribu-
tion. Third, we provide a discussion about alternative dimensional
reduction and clustering tools and a justification for opting for
PCA and k-means clustering in this manuscript in supplementary
material Sec. III.
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and L. Šamaj are supported by the Slovak Grant Agency with
Projects VEGA Grant Nos. 2/0144/21 and 2/0092/21, respectively.
The computational results presented have been achieved (in part)
using the Vienna Scientific Cluster (VSC).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Benedikt Hartl: Conceptualization (lead); Data curation (lead);
Formal analysis (lead); Funding acquisition (equal); Investigation
(lead); Methodology (lead); Resources (equal); Software (lead);
Validation (equal); Visualization (lead); Writing – original draft
(equal); Writing – review & editing (equal). Marek Mihalkovič:
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APPENDIX A: THE SYMMETRIC WIGNER BILAYER
SYSTEM—A BENCHMARK

For the symmetric case, the identification of the ground state
configurations has been solved analytically,35,36 with five emerging
structures, labeled I through V; these phases are depicted in the top
row of Fig. 2 (of the main text) and Fig. 7, respectively. Further-
more, the exact η-values where the transitions between these phases
occur as well as the nature of these transitions could be identified
with high accuracy in the above contributions: the hexagonal mono-
layer (I) is stable only at η = 0 and transforms for an infinitesimally
small value of η into a rectangular bilayer, termed II. This structure
is stable within the range 0 < η ≲ 0.263 and then transforms via a
second-order transition into a square bilayer (III), which is stable
within the range 0.263 ≲ η ≲ 0.621. This structure then turns—again
via a second order transition—into a rhombic bilayer phase (IV),
stable within 0.621 < η ≤ 0.728. Eventually, a hexagonal bilayer (V)
emerges at η ≃ 0.728 via a first-order transition (see also the line
(A = 1) in Fig. 2.

We now test the clustering approach for this particular case
where we have the solution already at hand. These calculations are
based on the Nsym = 141 ground state configurations that were iden-
tified via the memetic evolutionary algorithm in Refs. 11–13 for
different values of η ∈ [0, 1] and for A ≡ 1.

We first perform for all structures a principal component anal-
ysis (PCA)25 on the set of the (unit-variance and zero-mean) feature
vectors, X(sym), defined in main-text Eq. (13) with Nf = 30. The
data set is then transformed into an Nℓ-dimensional latent space
representation, L(sym)

= {l1, . . . , lNsym} with li = (vi1, vi2, . . . , viNℓ)

∈ RNℓ and Nℓ ≤ Nf. The actual value of Nℓ defines how many
leading PCs are considered in the latent space representation of
the data.

When investigating the Nsym data points as a function of the
first three PCs (corresponding to the data points xi projected onto
the first three latent space directions v1, v2, and v3) one can already
distinguish the different phases by eye: structures belonging to a spe-
cific phase form clusters in such a representation, which are spatially
separated from each other (data not shown here, cf. top panel in
Fig. 3.5 of Ref. 40).

In Fig. 8, we present the percentage of the explained variance
(PEV), λ(e)i defined in Eq. (10), contained in each PC with index
i. The PEV quantifies the amount of information encoded in each
PC direction vi. We see that the values of λ(e)i quickly drop from
λ(e)1 ∼ 1/3 to λ(e)6 < 0.05, and further on by several orders of
magnitudes such that the higher PC (i.e., for i ≳ 6) are insignif-
icant as compared to the leading ones. Thus, we can safely
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FIG. 7. Phases I through V representing the ground state configurations of the symmetric Wigner bilayer system.35,36 Blue and red symbols represent particles from layers
L1 and L2, respectively. The respective unit cells are indicated by black frames.

FIG. 8. Percentage of the explained variance, λ(e)
i , for each PC i as defined in main text [Eq. (10)] for all 30 PCs (blue) of the symmetric Wigner bilayer system. The leading

five principal components are shown in orange. Inset: same data as in the main plot but with linear scale for λ(e)
i for the first 15 PCs.

restrict ourselves to the five leading PCs and set in the following
Nℓ = 5.

We now apply the k-means clustering algorithm (cf. Subsec-
tion II D 1) to the (Nℓ = 5)-dimensional latent space representation
L(sym) of the data X(sym) and assign to all i = 1, . . . , Nsym data points a
cluster label ci ∈ {1, . . . , K}, defining thereby the labeling (or cluster-
ing) k(sym)

= {c1, . . . , cNsym} of the data set. In the particular case of
the symmetric Wigner bilayer system, we already know the numbers
of phases and therefore set K = 5.

Results are shown in Fig. 9. It can be seen that the emerg-
ing k-means clustering k(sym) of the data is in excellent agree-
ment with the phase-assignment known from literature,35,36 w(sym)

= {C1, . . . , CNsym}; here, the Ci (=1 through 5) label the correspond-
ing phases (I through V), respectively, for every data point i (as
specified in Table I). It should be noted that the particular numerical
values that associate the data points with a certain cluster are usu-
ally arbitrarily chosen by the k-means algorithm; however, they are
unique: in Fig. 9, we see that the clusters related to phases I through
V are, respectively, labeled by ci. Furthermore, the assignment of the
data points into the different clusters is almost perfect and the labels
ci can be redefined to match the numerical values of Ci by mapping
Ci(= Ł1, 2, 3, 4, 5)↔ ci(= Ł5, 1, 3, 4, 2), respectively.

In an effort to test the reliability of the partitioning of a data
set, we use the so-called mutual information score, introduced and
discussed in Appendix E. For this particular case, we report an
(adjusted) mutual information score of IK(k(sym), w(sym)

) = 0.95, as
defined in Eq. (E2) in Appendix E, between the clustering k(sym) and

the phase-assignment from literature w(sym).35,36 The small discrep-
ancies arising from two data points (denoted in Fig. 9 as outliers) are
discussed below.

Usually, the results from the k-means clustering depend on the
initial conditions of the algorithm such as (i) the initial (and usually
arbitrary) placement of the K different cluster centers in the latent
space of the data set X(sym) and (ii) the initial data point assignments
to the clusters. To justify the results shown in Fig. 9, we thus perform
100 independent runs of k-means clustering (labeled with an index
l) on the leading five principal components of the data set X(sym). We
find that all corresponding labels, k(sym)

l , share the same adjusted
mutual information score, IK(k(sym)

l , w(sym)
) = 0.95 with the results

w(sym) being known from literature.
Furthermore, we also increased the number of leading PCs

from five to 30 without observing significant changes in the results;
however, when using less than five principal components, the
results become unreliable. These observations confirm that the clus-
tering shown in Fig. 9, indeed, represents the optimal k-means
clustering to group the data points of X(sym) into the phases I
through V.

In Fig. 9, two outlier structures are highlighted by arrows that
are located at η-values close to transition boundaries from phase
II to phase III as well as from phase III to phase IV, respec-
tively. The reason that these structures are, erroneously, attributed
by the k-means algorithm to phase III lies in the fact that for the
respective η-values both a rectangular bilayer structure (phase II)
or a rhombic bilayer structure (phase IV) can righteously be con-
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FIG. 9. Labeling w(sym)35,36 of the ground state configurations of the symmetric Wigner bilayer system, i.e., I: 1, II: 2, III: 3, IV: 4, and V: 5 (with symbols color-coded according
to Fig. 7), and labeling k(sym) by the k-means clustering (black symbols) for each of the Nsym data points of the data set X(sym) identified in Ref. 11 for different values of
η ∈ [0, 1] at A = 1. Note that the numerical value of a particular cluster label ci (=1 through 5) assigned by the k-means algorithm to all data points belonging to one particular
cluster is arbitrary but unique. An adjusted mutual information score, IK(k(sym), w(sym)) = 0.95 [as defined in Eq. (E2) in Appendix E], is realized. The two outliers (highlighted
by the arrows) are discussed in the text. The vertical dashed lines mark the η-values where phase transitions from phase I through V occur: from left to right, η = 1/141
represents the emergence of phase II (given the discrete steps in η), while η = 0.263, η = 0.621, and η = 0.728 mark the transitions from phase II to III, III to IV, and IV to V,
respectively.

sidered (within numerical accuracy) as “nearly” square structures
(phase III).

We point out that small numerical variations in the data, which
are often related to artifacts (such as noise), can trigger undesired
effects in clustering approaches and may lead to an artificial par-
titioning of data in a clustering or classification task. Therefore, a
proper preparation of the data with, for instance, PCA can help to
reduce the effects of noise on the outcome of a clustering approach
of a particular data set. On the other hand, sometimes small varia-
tions in the data do have a physical meaning such as, for instance,
when continuous phase transitions occur; in such a case, particular
caution has to be taken for correctly distinguishing between different
clusters of data points.

APPENDIX B: k -MEANS CLUSTERING OF
STRUCTURAL DATA

As detailed in Subsection III D, the PCA provides clear evidence
that so far unexplored and unidentified ground state phases are hid-
den in the incredibly rich plethora of ordered bilayer structures in
the asymmetric Wigner bilayer system. A step toward a more sys-
tematic analysis of the ground state configurations can be realized
by applying a subsequent k-means clustering analysis (see Subsec-
tion II D 3) of the representation of the data set in terms of the nine
leading principal components.

Before proceeding, three comments are in order:

(i) first, we have to fix the actual parameter of the k-means clus-
tering, namely, the number of clusters, K, which is not known
a priori;

(ii) when applying the k-means algorithm the choice of the initial
location of the K different clusters is usually arbitrary; how-
ever, the final result may depend on the particular choice of
the initial cluster coordinates and on the initial assignment
of the different data points to these clusters. It is there-
fore good practice to apply the k-means clustering several
times with independent initial conditions. The results of these

independent clustering (termed k1, k2, . . .) can then be ana-
lyzed, for instance, in terms of adjusted mutual information,
IK(ki, kj) (as defined and discussed in Appendix E); in our
investigations, we have used 40 independent clustering for a
given K-value; the detailed results of these investigations are
presented in Appendix D;

(iii) to simplify the analysis, we have reduced the data set X(asym)

by eliminating those trivial data points that are hexagonal
monolayers and which are unambiguously characterized by
x = 0. Ruling out these data points [which cover a large por-
tion of the (A, η)-plane] leads to the data set X∗, which
thus covers all data points of the original data set except for
those feature vectors of hexagonal monolayers. This elimi-
nation of data reduces the size of data but does not have
any influence on the PCA part of our approach, as shown
by the results obtained for the explained variance PEV,
λ(e)i (see Fig. 3). Henceforward, all quantities based on the
reduced data set, X∗, are specified by an asterisk and we refer
to the k-means clustering of the data set X∗ as k∗-means
clustering.

With the PCA results for the available structures at hand, we
can now proceed to the obvious subsequent steps: we have to find
an appropriate value for K for the k-means classification of the
structural data for which we have to analyze the results of several
independent clustering in order to identify an accurate labeling of
the data.

In practice, we proceed as follows: first, we define a reason-
able range of K values, ranging in our case from 14 to 42 in integer
steps. For each K-value, we then perform 40 independent cluster-
ing from which we choose the most suitable one; the rather lengthy
procedure of how to compare the different clustering and how to
select the “best” labeling for a given K-value has been deferred
to Appendix D. This results in a set of “best” clustering, one for
each K-value. In an effort to identify the most appropriate num-
ber of clusters (or, in our case, the number of structural families),
K, we compare the clustering of this set of K-dependent “best”
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FIG. 10. Labeling the ground state configurations of Refs. 11–13 into K = 14 (top row), K = 32 (middle row), and K = 42 (bottom row) families by k-means (left) and k∗-means
(right) clusters. The color scheme is arbitrary, and white lines indicate phase boundaries as specified in Refs. 11–13. While there are clearly differences in the clustering
between the left and right columns for a given value of K and K∗, respectively, we emphasize that these are not relevant for the discussion here.

clustering in an analogous procedure as described in Appendix D:
instead of comparing the results of independent clustering for a
given value of K, we now compare the “best” clustering for different
K-values (for more details, see also Ref. 40). The “best” clustering of
the latter step is then labeled as the “best” k-means (or k∗-means)
clustering of the data set X (or X∗) and represents our revised

mapping of the structural data set of Refs. 11–13 into families of
structures.

In an effort to visualize the impact of the value of K on the
k- (or k∗-)means results, we briefly summarize in the following the
results obtained for three selected values of K, namely, K = 14, 32,
and 42 (for a more detailed and graphical representation, we refer to
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Ref. 40). To this end, we have redrawn in Fig. 10 the diagram of states
of our system for these three values of K, showing the respective
phase labeling as suggested by the best clustering results of several
k-means (left panels) and k∗-means (right panels) clustering pro-
cedures; note in this context that the color-coding of the different
families is arbitrary. From the panels, it is obvious that the actual
value of K has a major impact on the final k-means (or k∗-means)
results.57

The value K = 14 corresponds to the number of phases that
have been identified in Refs. 11–13 and that are specified in
Table I; the corresponding clustering are shown in the top row of
Fig. 10. Already for K = 14, most of the phases specified so far in
literature11–13 are correctly identified. Phases I through V are clearly
visible with (almost) correct boundaries; also the honeycomb phase
H, the phase IIx, as well as phase P3 are identified essentially in a
correct manner. Furthermore, the phase boundary of the Vx phase
is resolved with good accuracy. However, a total number of K = 14
(or K∗ = 14) clusters is definitely too small to resolve appropriately
further details of the phases S1, S2, P1, and P2; it also becomes obvi-
ous that the vast white regions of so far unclassified structures (see,
e.g., Fig. 2) and/or the rich variety of yet unidentified substructures
in phases Ix and Vx call for a closer and more refined analysis; thus,
a value K = 14 is definitely not appropriate to reach these goals.

Proceeding to K = 32 we find that—and, admittedly, for the
time being at the qualitative level—our above requirements are met
at a more satisfactory level. By a careful inspection of the related pan-
els of Fig. 10, it seems that a set of 32 structural families is able to
capture the variety of emerging structures: on one hand, this clus-
tering does indeed accurately resolve the different phases identified
in Refs. 11–13 (such as phases I through V as well as the phases IIx,
H, P1, P3, and S2); on the other hand, a value of K = 32 provides
clear evidence of a rich variety of substructures in phases Ix and Vx
that have not been classified so far in Refs. 11–13 and that are not
captured by a (K = 14)-clustering, either.

Eventually, a value of K = 42 was—from the conceptual point
of view—considered as the upper limit: increasing further the value
of K has led to the emergence of “new” phases that were—after
all—only an artificial subdivision of well-defined phases. However,
a closer comparison of the information contained for (K = 42)-
and for (K = 32)-structure families—via an analogous procedure
as described in Appendix D—reveals that the former one does not
provide more substantial information on the emerging structure
families than the latter one (we again refer to Ref. 40 for details).

Thus, we eventually select the “best” k∗-means clustering (cf.,
Appendix D) for a total number of (K = 32) clusters as the “best”
labeling of the structural data set from literature11–13 of the asym-
metric Wigner bilayer system into structure families. We hence-
forward refer to this result as k∗32 − clustering results and to the
c = (1, . . . , 32) different clusters (i.e., to the different categories of
structural families) as k∗c

32 families, respectively.

APPENDIX C: ANALYZING PHASE-BOUNDARIES BY
COMPARING ENERGETICALLY DEGENERATE BUT
GEOMETRICALLY DIFFERENT FAMILIES OF
STRUCTURES ACROSS THE PHASE DIAGRAM

In this Appendix, we discuss in more detail and on a more
quantitative level how our combined approach (of a PCA and a

subsequent k-means clustering) can cope with the issue of possibly
degenerate structures emerging in the database of structures of our
Wigner bilayer system.

As noted in the body of the text, the main challenge is to
identify for a given pair of (A, η)-values the energetically most
favorable configuration: if such an identification is made “by hand”
the following implications have to be expected: (i) extremely small
energy differences between competing structures might occur and
(ii) the fact that the genetic algorithm produces energetically degen-
erate structures, which are characterized by different unit cells that
describe an equivalent lattice. These implications are discussed in the
following.

The clustering algorithm helps us to classify at each (A, η)-
point all the structures provided by the evolutionary algorithm
within a certain number of structure families (in our case—and as
argued in the body of the text—we have chosen 32 families). In
Fig. 11, we display in a color-coded manner the energy difference
between the energetically most favorable structure (i.e., the energy
of the ground state, termed E∗GS) and the structure that pertains to
the structure family with the energetically second best structure.58

Thus, dark-colored areas (notably in black and purple) in Fig. 11
highlight regions in the diagram of states where the energetically
best and second best structures exhibit very small differences in their
energies (going down to values as small as 10−8 in relative units);
note that this feature is particularly pronounced at phase bound-
aries. In contrast, orange to yellow areas in the (A, η)-plane indicate
a large energetic gap between the ground state and energetically
subsequent, competing structure.

An alternative view on the dataset provided in literature11–13

via the structural families (as obtained via the clustering algorithm)
is shown in Fig. 12: here, we display—again via a color code—the
number of k∗c

32 families whose energetically most favorable structure
lies within an energy interval ΔE∗/N above the energy of the respec-
tive ground state, i.e., E∗GS/N. Assuming different values of ΔE∗/N,
ranging in relative units from 10−5 down to 10−7 (as labeled) to
the ground state energy, some two or three structures of competing
families have been identified with the genetic algorithm. These find-
ings indicate, in turn, the high numerical accuracy that is required
to distinguish between energetically competing structures (see also
discussion in Refs. 11–13).

APPENDIX D: ON THE RELIABILITY OF THE
CLUSTERING ALGORITHM

In Fig. 13, we present the adjusted mutual information,
IK(k∗i , k∗j ), of Nc = 40 independent clustering results (with i, j
= 0, . . . , Nc − 1) of the k∗-means clustering algorithm for K = 14 and
K = 32 clusters, respectively.

For a smaller number of clusters (i.e., K = 14), the algorithm
is more stable: many samples exhibit a perfect score of the adjusted
mutual information, i.e., IK(k∗i , k∗j ) ≃ 1 (cf. yellow pixels in the left
panel of Fig. 13), indicating that the algorithm has identified the
same results several times. For a larger number of clusters (i.e.,
K = 32), the situation is more complicated since the number of
possible clustering results grows rapidly with the number of clusters.

For both values of K, there is evidence of qualitatively different
clustering results to the clustering problem as depicted in Fig. 13.
In order to elucidate this issue, we present in Fig. 14 histograms of
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FIG. 11. Difference, ΔE∗GS/N = (E
∗/N − E∗GS/N), between the energy (per particle), E∗/N, of the energetically most favorable structure amongst all non-ground state

structural families with respect to the respective ground state energy (per particle), E∗GS/N, of the asymmetric Wigner bilayer system for the data set taken from Refs. 11–13
for every state point in the (A, η)-plane. Opaque white lines indicate phase boundaries as presented in literature (see also Fig. 2). In the proximity of the boundaries of the
H and Ix phases and within the Ix region, we observe very small values of ΔE∗GS/N (ranging typically from ≈10−8 to 10−6), corresponding to nearly degenerate competing

structures of different structural families; the related structures exhibit large values of the twelvefold symmetric order parameter Ψ(4)
12 .12,40 This region corresponds to the

newly identified ground state candidate family k∗29
32 illustrated by the top left inset structure and in the cyan-emphasized area in the (η, A)-plane of Fig. 6(a); the details of

this family of structures are summarized in Subsection III E and will be discussed in more detail in a forthcoming contribution.

the adjusted mutual information score, IK(k∗i , k∗j ) (as depicted in
Fig. 13 for selected clustering samples), some of which share little
information with other clustering results (dark regions in Fig. 13 and
orange distributions in Fig. 14) and others with a more consistent
clustering result (bright regions in Fig. 13 and green distributions in
Fig. 14).

Furthermore, and in order to compare the quality of
different clustering results, we present in the bottom panels
of Fig. 14 the column-wise average value, i.e., ⟨IK(k∗i , k∗j )⟩ j

= ∑
Nc
j=0 IK(k∗i , k∗j )/Nc, and the median (analogously defined) of the

adjusted mutual information score of each clustering sample, k∗i ,
with all other clustering, k∗j≠i, and mark both the maximum of
the mean and the median. For K = 14, the clustering sample i = 31
seems to be a good choice for the final clustering result (cf. left
panels of Figs. 13 and 14). However, for a larger number of clus-
ters, e.g., K = 32, it is harder to decide what the optimal clustering
might be: both samples (i.e., for i = 0 and i = 38) appear to have
qualitatively similar traits as can be seen in the right panels of
Figs. 13 and 14.

However, there is another ingredient that we can include in
our analysis to bias the adjusted mutual information score into a
physically motivated direction, namely, the ground state solutions
of the symmetric Wigner bilayer system, which also shows up in the

phase-diagram of the asymmetric Wigner bilayer system at A = 1.
We can identify the fraction of the data points in the data sets
X(asym), which correspond to the ground state solutions of the sym-
metric Wigner bilayer system and collect them in a separate data set
X(sym). We assign all data points in X(sym) to the phases I through
V following the Table I 35,36 and collect the corresponding phase
labels in the set w(sym). Analogously, we collect in the set k(sym)

i
the particular clustering labels from the clustering result ki (per-
formed on the full data set X(asym) after PCA), which correspond
to the data points in X(sym). Hence, the adjusted mutual infor-
mation score IK(w(sym), k(sym)

i ) quantifies the overlap between the
clustering result, k(sym)

i , and the analytically known labeling, w(sym)

(i.e., the amount of commonly labeled data points), of the data set,
X(sym), of the feature vectors of the ground states of the symmetric
case. We now define the biased adjusted mutual information score,
S(ki, kj∣w(sym)

), via

S(ki, kj ∣w(sym)
) = IK(ki, kj) ×

√

IK(w(sym), k(sym)
i )

×

√

IK(w(sym), k(sym)
j ), (D1)
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FIG. 12. Color-coded plot (cf. color bars on the right-hand side) of the numbers of families (K = 32) that show an energy difference of at most ΔE∗/N with respect to the
respective ground state candidates of the asymmetric Wigner bilayer system (suggested by Refs. 11–13) in the (A, η)-plane. The values of ΔE∗/N, range from 10−7 to
10−2, and are chosen separately for each panel (as labeled). Light-gray regions visualize regions where only one structure is identified within the respective ΔE∗/N-interval;
the colors according to the color bar emphasize the level of “ΔE∗/N-degeneracy” at a given pair of the system parameters, i.e., the number of k∗c

32 families that exhibit an
energy difference to the ground state—at a given (η, A)-pair—of at most ΔE∗/N. Phase boundaries from Refs. 11–13 (cf. Fig. 2) are emphasized by white lines.

FIG. 13. Adjusted mutual information score, IK(k∗i , k∗j ), as defined by in Eq. (E2) of 40 different and randomly initialized k∗-means clustering results with K = 14 (left) and
K = 32 (right) clusters, respectively. Values of I(k∗i , k∗j ) close to unity (bright, yellow regions) identify large overlap between the different clustering, k∗i and k∗j , while smaller
values, i.e., I(k∗i , k∗j ) ≈ 0.8 (black and purple) indicate less consistent results. Note that IK(k∗i , k∗j ) = IK(k∗j , k∗i ).
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FIG. 14. Top-left panel: Column-wise histogram of IK(k∗i , k∗j ), as defined by Eq. (E2), of clustering samples k∗i=15 (blue), k∗i=29 (orange), and k∗i=31 (green) for the K = 14
clustering results shown in the left panel of Fig. 13. Top-right panel: Column-wise histogram of IK(k∗i , k∗j ) of clustering samples k∗i=0 (blue), k∗i=1 (orange) and k∗i=38 (green)
for the K = 32 clustering results shown in the right panel of Fig. 13. Bottom panels: mean (blue) and median (orange) of the adjusted mutual information score, IK(k∗i , k∗j ),
for each of the 40 clustering samples, k∗i , with respect to all other 39 clustering samples, k∗j≠i shown in Fig. 13 for K = 14 (left) and K = 32 (right) clusters (i.e., column-wise
average and mean of the data shown in Fig. 13). Maxima of the mean and median of the adjusted mutual information score, IK(k∗i , k∗j ), as a function of the 40 sample
indices are indicated by filled circles that emphasize clustering results that potentially share the most information with other results on average (or represent the maximum
median thereof).

which weighs the adjusted mutual information, IK(ki, kj), of dif-
ferent k-means (or analogously k∗-means59) clustering results, ki
and kj, with the square root of the respective adjusted mutual
information scores of k(sym)

i and k(sym)
j with w(sym).

In our case, the biased adjusted mutual information score,
S(ki, kj∣w(sym)

), is an important measure for the quality of the
clustering results ki and kj since we demand of a corresponding
labeling to be as accurate as possible, especially for the fraction
of the data, X(sym), that can be labeled analytically via w(sym). In
Fig. 15, we present the biased adjusted mutual information score,
S(k∗i , k∗j ∣w(sym)

), of the same selected samples as used in Fig. 14
and we also present the corresponding mean and median values
of all biased sample scores [i.e., S(ki, kj∣w(sym)

)] as we have already
shown for the unbiased case [i.e., IK(k∗i , k∗j )] in the bottom panels
of Fig. 14.

By comparing the biased, S(k∗i , k∗j ∣w(sym)
), and the unbiased

scores, IK(k∗i , k∗j ), we see that in general scaling the adjusted
mutual information according to Eq. (D1) leads to smaller values
of S(k∗i , k∗j ∣w(sym)

) score as compared to IK(k∗i , k∗j ). Especially the
diagonal terms, S(k∗i , k∗i ∣w(sym)

), whose adjusted mutual informa-
tion scores are IK(k∗i , k∗i ) = 1 by definition (cf. Fig. 13), are now
weighed by IK(w(sym), k(sym)

i ) ≤ 1, accounting for the quality of the
clustering result with respect to the labels of the ground states
of the symmetric case. Consequently, the scaling of the adjusted
mutual information score, I(k∗i , k∗j ), via Eq. (D1) also causes an
additional bias to larger values of the S(k∗i , k∗j ∣w(sym)

) score for clus-
tering results with large respective overlaps between k(sym)

i , k(sym)
j

and w(sym) (i.e., commonly labeled ground states of the symmetric
case); results with corresponding smaller overlaps of k(sym)

i , k(sym)
j ,

and w(sym) are biased toward smaller values of S(k∗i , k∗j ∣w(sym)
) (cf.

rightmost bins of sample 0 and sample 38 in the top right panel of
Figs. 14 and 15).

We now assume that “good” clustering results, which are biased
toward large values of the S(ki, ki∣w(sym)

) score by labeling the sym-
metric part in the data set as well as possible, occur frequently and
perform similarly in terms of the overall quality of the clustering.
For such good clustering too, the mean (and the median) of the
S(ki, ki∣w(sym)

) scores are biased toward larger values while being
biased toward smaller values for qualitatively poor clustering results.
We define the mean value, k̄i, of the biased adjusted mutual infor-
mation score, S(ki, ki∣w(sym)

), of the i, j = 0, . . . , (Nc − 1) different
clustering samples (cf. Fig. 13), by

k̄i =
1

Nc

Nc−1

∑
j=0

S(ki, kj ∣w(sym)
). (D2)

With k̄i, we have a reasonably good measure for comparing
different clustering results for one given number of clusters, K: we
here rely on k̄i to quantify the quality of a clustering result, k∗i , of
assigning the total number of K clusters correctly, given Nc inde-
pendent clustering results (cf. Fig. 14). We evaluate k̄i separately for
all independent k-means and k∗-means clustering for several differ-
ent values of K = 14 to K = 43: for a given value of K, the one sample
from the respective i = 0, . . . , (Nc − 1) clustering with the maximum
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FIG. 15. Top and bottom rows: same as Fig. 14 but now for the biased adjusted mutual information score, S(k∗i , k∗j ∣w(sym)), defined in Eq. (D1).

value of k̄i, given by Eq. (D2), is considered as the best clustering
results.

APPENDIX E: ADJUSTED MUTUAL INFORMATION

Here, we provide a tool that is able to test the reliability of the
partitioning of a data set, X = {x1, . . . , xN}, of N data elements, into
subsets, UR

= {U1, U2, . . . , UR}, with the following requirements:
∪

R
i=1Ui = X and Ui ∩Uj = ∅ for all i ≠ j.60

Commonly used clustering algorithms, such as k-means clus-
tering or DBSCAN,51 are, on the one hand, applicable in a variety
of problems, but, on the other hand, not unique in their predictions:
the final result of such algorithms usually depends on the clustering
algorithm (such as the initial—usually random—choice of assigning
data points to clusters, etc.), on the choice of the parameters of the
algorithm, or on noise in the data.61

It is thus of particular relevance to comparing the results of dif-
ferent clustering of a given data set X. Thus, we want either (i) to
compare the results emerging from different clustering algorithms
or (ii) to compare the results of the same algorithm but with different
initial conditions. Assuming two different partitioning of a data set
X, i.e., U ≡ UR

= {U1, U2, . . . , UR} and V ≡ VC
= {V1, V2, . . . , VC}

(satisfying both the above requirements), we want to quantify their
overlap or, in other words, quantify the shared information of the
two different clustering.

A fundamental class of techniques for comparing cluster-
ing of labeled data sets is based on information theoretic mea-
sures.60 In our contribution, we use the concept of adjusted mutual
information.60,62

In a first step, we define the (R × C)-dimensional contingency
table M = [ni j]

i=1...R
j=1...C (see Table II), whose elements, nij = ∣Ui ∩Vj∣,

quantify the number of common objects in Ui and Vj. The mutual

TABLE II. Contingency table between two different clustering, UR

= {U1, U2, . . . , UR} and VC = {V1, V2, . . . , VC}, with nij = ∣Ui ∩ Vj ∣ being
the number of common objects in clustering Ui and Vj ; further ai = ∑C

j=1 ni j and

b j = ∑R
i=1 ni j .

UR/VC V1 V2 . . . VC Sums

U1 n11 n12 . . . n1 C a1
U2 n21 n22 . . . n2 C a2

⋮ ⋮ ⋮
. . . ⋮ ⋮

UR nR1 nR2 . . . nRC aR

Sums b1 b2 . . . bC ∑ijnij = N

information, IM(U, V), of two different clustering, U and V, is
defined as60,62

IM(U, V) =
R

∑
i=1

C

∑
j=1

PUV(i, j) log
PUV(i, j)

PU(i)PV( j)
, (E1)

where PUV(i, j) = ∣Ui ∩Vj∣/N is the probability that a (random)
data point belongs to both clusters Ui (in U) and Vj (in V);
PU(i) = ∣Ui∣/N and PV(j) = ∣Vj∣/N denote the probabilities that
randomly chosen data points fall into the cluster Ui and Vj, respec-
tively. In that way, IM(U, V) quantifies the information that is
shared between two clustering and thus can be interpreted as
a similarity measure for clustering; notably, the upper bounds
of IM(U, V) are the quantities H(U) = −∑R

i=1 PU(i) log PU(i) and
H(V) = −∑C

j=1 PV( j) log PV( j).60

The adjusted mutual information, IK(U, V), corrects the
information–theoretic measures of mutual information agreement
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of clustering for chance (see Refs. 60, 62, and 63 for details) and can
be given by

IK(U, V) =
IM(U, V) − EMI(U, V)

max [H(U), H(V)] − EMI(U, V)
, (E2)

where the expected mutual information, EMI(U, V), between two
(random) clustering is defined by

EMI(U, V) =
R

∑
i=1

C

∑
j=1

min (ai ,bj)
∑

nij=max (1,ai+bj−N)

nij

N
log(

N nij

aibj
)

×
ai !bj !(N − ai) !(N − bj) !

N !nij !(ai − nij) !(bj − nij) !(N − ai − bj + nij) !
,

(E3)

with ai = ∑
C
j=1 ni j and b j = ∑

R
i=1 ni j being the partial sums over the

contingency table M[ni j]
i=1...R
j=1...C defined in Table II.

A value of IK(U, V) = 1 indicates perfect overlap between two
different clustering (i.e., the two clustering label the data equivalently
but potentially use different numerical values to label the differ-
ent clusters), a value smaller than one indicates differences in the
clustering.
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