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Abstract
We study analytically the relaxation eigenmodes of a simple Monte Carlo
algorithm, corresponding to a particle in a box which moves by uniform ran-
dom jumps. Moves outside of the box are rejected. At long times, the system
approaches the equilibrium probability density, which is uniform inside the
box. We show that the relaxation towards this equilibrium is unusual: for
a jump length comparable to the size of the box, the number of relaxation
eigenmodes can be surprisingly small, one or two. We provide a complete
analytic description of the transition between these two regimes. When only
a single relaxation eigenmode is present, a suitable choice of the symmetry
of the initial conditions gives a localizing decay to equilibrium. In this case,
the deviation from equilibrium concentrates at the edges of the box where the
rejection probability is maximal. Finally, in addition to the relaxation analysis
of the Master equation, we also describe the full eigen-spectrum of the Master
equation including its sub-leading eigen-modes.
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1. Introduction

Random sampling techniques of the Monte Carlo type allow to solve both deterministic and
stochastic problems. While the original Metropolis–Hastings algorithm was introduced in the
context of classical many-body statistical physics [1], generalizations of this approach are now
employed in a wide range of topics from basic sciences to planning and forecast in economy or
epidemiology [2–11]. Markov chainMonte Carlo techniques [12, 13] provide a class of simple
yet powerful algorithms, where the target probability distribution is obtained as a sequence of
samples from a randomwalk with appropriate transition probabilities. In Metropolis–Hastings
algorithms, some of the attempted moves can be rejected in which case the state of the system
remains unchanged during an iteration step. The probability of rejection is set to ensure detailed
balance [2, 3, 13]. The ratio between rejected and acceptedmoves impacts the convergence rate
of the algorithm and depends on the probability distribution of the attempted jumps. A widely
accepted empirical rule is that the acceptance probability for the attempted moves be close
to 50% for parameters ensuring optimal convergence [3, 14–16]. A number of mathematical
results have been proven for the relaxation rates of the Metropolis algorithm, however those
mainly hold close to the diffusive limit of small jumps [17–20] where powerful mathematical
techniques based on micro-local analysis have been developed [21–23] allowing to obtain
exact results on the relaxation rate.

The evolution of the probability distribution with the number of algorithmic steps is in
general described by a linear Master equation. When detailed balance is enforced, the target
probability distribution can be shown to be an invariant eigenfunction of the Master equation.
While general theorems then guarantee convergence to the desired steady state [24, 25], little
is known about the complete eigenspectrum of Master equations and its eigenfunctions and
the available results are mainly numerical [26, 27]. For Markov chains on a finite number of
states, the number of eigenvalues is given by the number of states and the relaxation rate is
determined by the eigenvalue with the largest absolute value |λ|< 1 (λ= 1 being associated to
equilibrium/steady state). However, Markov chain Monte Carlo algorithms often involve con-
tinuous variables (for example particle coordinates in configuration space), and in such cases
there exists no general theorem on the structure of the eigenspectrum. In [28], we showed
that the balance between acceptance and rejection for continuous variables can lead to a trans-
ition in between two regimes. In addition to the standard situation where the relaxation rate
is ruled by the leading eigenvalue of the Master equation, there appears a new regime, as a
function of the typical jump length, where the relaxation is instead governed by the maximal
possible rejection probability. In this regime, the difference to the expected steady state of the
algorithm progressively localizes around the points where the rejection probability is max-
imum, in a way somewhat reminiscent of the zero-temperature Monte Carlo dynamics [29].
This analogy led us to describe the transition between the two regimes as a localization trans-
ition, yet without a complete analytical understanding. In this article, we analyze a simple
continuous Markov process for which the eigenspectrum and eigenfunctions can be computed
analytically, allowing to describe analytically the full spectrum of eigenvalues/eigenfunctions
and thus to investigate the localization transition in depth. We define in section 2 the random
walk confined in a box that underlies the Monte Carlo dynamics considered, and discuss the
generic relaxation behavior that ensues. A key quantity is the amplitude of the random jumps
attempted, and depending on its value, different regimes govern the long-time evolution of
the system. They are described in section 3 for large jumps, where the number of relaxa-
tion eigenmodes is smallest, and then for smaller jumps in section 4. An original scenario for
relaxation ensues, where the difference between the long-time and the equilibrium solutions
becomes ‘pinned’ at the edges of the box. In section 5, we summarize our spectral findings,

2



J. Phys. A: Math. Theor. 56 (2023) 255003 A D Chepelianskii et al

and their connections to relaxation. Conclusions are presented in section 6. In the appendix we
present a detailed comparison between the analytical calculations and numerical simulations
investigating the relaxation of the Metropolis algorithm through direct numerical experiments
or through numerical simulations of the Master equation with excellent agreement between
analytical results and numerical simulations.

2. The setup: Master equation and relaxation dynamics

2.1. The Metropolis rule

In this paper, we focus on a simple randomwalk confined in a box [−L,L]: at each discrete time
step, the walker attempts a jump from position xn−1 to xn = xn−1 + ηn, where ηn is a random
variable drawn from the distribution wη). The jump ηn is accepted provided−L⩽ xn ⩽ L, see
figure 1. This process leads to the following Master equation for the probability distribution
function (PDF) Pn(x) of the random walker:

Pn(x) =
ˆ L

−L
Pn−1(x

′)w(x− x ′)dx ′ +R(x)Pn−1(x). (1)

The first term on the right-hand side describes the net probability flux to the position x at step
n from other positions x

′
at step (n− 1). The second term describes the probability that the

particle is at position x at step (n− 1) and does not move from this position at the next step.
The term:

R(x) = 1−
ˆ L

−L
w(x ′ − x)dx ′ (2)

describes the probability that the attempted move from x is rejected. The function P0(x) gives
the initial PDF of the random walker and sets the initial condition for the Master equation.

We can check some general properties of this Master equation. By integrating equation (1)
over x, it can be verified that the total probability at each step n is conserved. Another general
check is that P∞(x) = 1/(2L) for x ∈ [−L,L] is a fixed point solution of equation (1), irrespect-
ive of the jump PDF w(η = x− x ′). Thus at long times, the system will approach this fixed
point as its stationary ‘equilibrium’ solution. Since the jump distribution function is symmet-
ric, equation (1) is directly self-adjoint and will have real eigenvalues in (−1,1] (interestingly,
this property is also true for a general U(x) due to detailed balance [28, 30]).

2.2. The convergence rate and long-time evolution

An information of central interest deals with the speed with which δPn ≡ Pn−P∞ goes to
zero, as time n increases. The convergence rate can be defined from the large time limit of the
deviation from equilibrium of some observable O(x):

logΛ = max
{O(x),P0(x)}

lim
n→∞

1
n
log

∣∣∣∣ˆ O(x)δPn(x)dx

∣∣∣∣ (3)

where the maximum is taken over all possible functions O(x) and initial distributions P0(x).
If Λ< 1, the probability distribution Pn(x) converges exponentially fast to the equilibrium
distribution for large n, i.e. |Pn(x)−P∞(x)| ∝ Λn ∝ e−n/τ where τ =−(logΛ)−1 denotes
the decorrelation time (in number of Monte Carlo algorithmic steps). The convergence rate
− log(Λ)> 0 is the figure of merit of the algorithm; the smaller the Λ, the larger the relax-
ation rate. If the relaxation of the Master equation (1) is governed by its eigenspectrum,
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Figure 1. A particle (shown by the filled disk) in a box [−L,L] attempts to jump at each
discrete time by a random displacement η drawn independently from a symmetric and
continuous distribution w(η). If the attempted jump takes the particle outside the box
[−L,L], the move is rejected (as shown schematically by the blue dotted line with a red
cross forbidding it) and the particle stays at its current position. If however the jump
takes the particle to a new position within the box [−L,L], the jump is allowed and the
particle moves to the new position (allowed displacements shown by the dotted green
lines).

Λ =max |λ| where the maximum is taken over all the eigenvalues λ ̸= 1 of the Master
equation. On the other hand, the algorithm relaxation rate can also be limited by rejection
events: Λ =maxx∈[−L,L]R(x). For the box potential, the rejection probability is maximum at
the boundary x=±L, where the rejection probability is 1/2, for symmetric w(η). This leads
to the general bound

Λ⩾ 1/2, (4)

which sets an upper limit to the convergence rate. One of the principal goals of this work is to
study how λ depends on the typical jump length encoded in w(η).

It is possible to construct a formal singular eigenfunction with an eigenvalue given by the
rejection probability R(x) for any point x. Let us consider ΨR(x) with ΨR(x)(y) = 1 only if
y= x and ΨR(x)(y) = 0 for all other y ̸= x. Substitution into the Master equation (1) shows
thatΨR(x) is an eigenfunctions with λ= R(x). Such solutions are zero almost everywhere. We
nevertheless show below that they add a new term to the eigenfunction expansion, which is not
present for the Master equation of a Markov chain on a discrete set. To highlight the absence
of smooth eigenfunctions, we will call R([−L,L]) the singular continuum of eigenvalues.

Below, by explicit solution of the Master equation for the box problem, we show that to
account for the two possible relaxation scenarios, the eigenfunction expansion of the probab-
ility distribution reads

Pn(x) =
∑

λ∈{λ0...λN }

AλPλ(x)λ
n + Ln(x), (5)

where Ln(x) describes the contribution from the singular continuum and the amplitudes Aλ

are fixed by the overlap of the initial distribution P0(x) with the eigenfunctions of the Master
equation. Here, the discrete summation runs over a finite (and possibly small) number ofN + 1
terms, with N ⩾ 0. The eigenvalues are ordered such that λ0 ⩾ λ1 ⩾ λ2 . . . with λ0 = 1 cor-
responding to the equilibrium solution. The remaining term Ln(x) localizes at large times
n→∞ around a finite number of points xl where the rejection rate R(x) in (1) is maximal:
limn→∞Ln(x)/Ln(xl) = 0 for any x ̸= xl. In this sense the term Ln asymptotically converges
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to a function which is zero almost everywhere, like the eigenfunctions of the singular con-
tinuum. The case N = 0 corresponds to the localizing case where only the equilibrium term
λ0 = 1 is present in the expansion and relaxation is entirely governed by the Ln term. We
already derived in [28] an explicit analytical expression for the asymptotics governed by Ln,
for a problem with N = 0; however, it was not possible to obtain explicit solutions for para-
meters with different values ofN . In the present article, we derive exact solutions for a wider
range of parameters, allowing to describe analytically the change of behavior betweenN = 1
and N = 2.

2.3. Spectral problem for the box confinement

To make analytic progress possible, we consider in the remainder the case of a uniform jump
distribution with a maximum jump length a:

w(η) =
1
2a

[θ(η+ a)− θ(η− a)] . (6)

where θ(.) is the Heaviside step function, i.e. θ(x) = 1 if x> 0, and θ(x) = 0 if x< 0. This is a
natural choice in a wealth of Monte Carlo simulations and makes explicit analytical solutions
for the eigenvalues/eigenfunctions of the Master equation for a⩾ 2L/3 possible. This will
allow us to establish the subtle properties of the eigenspectrum of the Metropolis–Hastings
algorithm encoded in equation (1), with a fully analytical description of a localization trans-
ition in the relaxation properties. Our results will also demonstrate that for a= 2L, the form
equation (6) for w(η) realizes the lower bound Λ = 1/2 in equation (4) and is therefore an
optimal choice.

In the following, positions and lengths will be measured in units of the box size, so that
L= 1. Given the jump distribution equation (6), the Master equation (1) reads

Pn(x) =
1
2a

ˆ min(1,x+a)

max(−1,x−a)
Pn−1(x

′)dx ′ +
|a− 1+ x|+ |a− 1− x|+ 2a− 2

4a
Pn−1(x). (7)

The corresponding eigenvalue/eigenfunction equation for the Master equation then becomes:

1
2a

ˆ min(1,x+a)

max(−1,x−a)
Ψ(x ′)dx ′ +

|a− 1+ x|+ |a− 1− x|+ 2a− 2
4a

Ψ(x) = λΨ(x), (8)

where λ is the eigenvalue and Ψ is the corresponding eigenfunction. We choose to study this
simple boxmodel because it allows an exact analytical treatment, but the change of behavior of
the eigenvectors at the optimal value of the jump length, where the singular spectrum crosses
over the regular one, seems quite generic and is expected to hold for more general confining
potentials. In the remainder, we use the compact notation Ψ(x) for the eigenfunction, leaving
the notation Pλ only when the full probability distribution Pn(x) is needed. Our analytical
method to find the eigenvalue/eigenfunctions bears some similarities with that used in [31].
By differentiating equation (8) with respect to x, this integral equation can be turned into a
system of coupled differential equations. The number of coupled equations will be found to
correspond to the minimal number of jumps it takes to travel from one edge of the system to
the other, thereby limiting our analytical treatment to at most three jumps since we focus on the
range a> 2/3. The high number of coupled systems for smaller a precludes analytic progress.
In the limit of infinitesimal jumps a→ 0, the leading eigenvalues can be obtained from the
correspondence to a one-dimensional Schrödinger equation in a box. This correspondence
is however only approximate. In this article, we will focus only on the regime where exact
solutions can be obtained.
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3. Resolution for large jumps (a>1)

3.1. The case a⩾ 2: infinite spectral degeneracy

For a> 2, the eigenvalue equation (8) simplifies into:

λΨ(x) =
1
2a

ˆ 1

−1
Ψ(y)dy+

(
1− 1

a

)
Ψ(x). (9)

Integrating over the (−1,1) interval, we find λS= S where S=
´ 1
−1Ψ(y)dy. Two solutions

are then possible: S ̸= 0, giving λ= 1 which corresponds to the steady state distribution (Ψ =
const), or S= 0, which inserted into equation (9) gives:

λ1 = 1− 1
a
, (for a> 2). (10)

The eigenvalue (10) is infinitely degenerate since all the functions obeying
´ 1
−1Ψ(y)dy= 0

are actually eigenfunctions. Besides, there are no other eigenvalues. For a= 2, we realize the
optimum, λ1 = 1/2, see equation (4).

In this case a> 2, the full integral equation (7) reads

Pn+1(x) =
1
a
1
2
+

(
1− 1

a

)
Pn(x), (11)

taking into account the normalization
´ 1
−1Pn−1(x ′)dx ′ = 1. Equation (11) admits the following

physical interpretation: from any position x0, when a jump is attempted, it is accepted with a
probability 2L/(2a) = 1/a since L= 1, irrespective of x0. The walker’s density after this jump
is thus uniform in [−1,1]. With the complementary probability 1− 1/a, the jump is rejected,
in which case Pn−1 does not change. Rewriting equation (11) as

Pn(x) =
1
2
+

(
1− 1

a

)(
Pn−1(x)−

1
2

)
(12)

leads to the solution for all n

Pn(x) =
1
2
+

(
1− 1

a

)n(
P0(x)−

1
2

)
, (13)

which evidences the eigenvalue λ1 = 1− 1/a. This behavior is specific to the high symmetry
of the uniform potential with a uniform jump distribution and is not representative of more
general choices for the confining potential U(x).

While the solution for a> 2 is straightforward, the problem for a< 2 is more difficult to
tackle. We managed to find the analytical solutions for a⩾ 2/3; this allows to see how the
infinitely degenerate eigenvalue λ1 evolves under smooth changes of the operator underlying
equation (1).

3.2. Solution for 1⩽ a< 2

For a⩽ 2, the eigenvalue equation for initial positions near the walls at ±1 becomes:

λΨ(x) =

{
1
2a

´ 1
x−aΨ(y)dy+

(
1
2 −

1−x
2a

)
Ψ(x) (x>−1+ a)

1
2a

´ x+a
−1 Ψ(y)dy+

(
1
2 −

x+1
2a

)
Ψ(x) (x< 1− a).

(14)

For 1< a⩽ 2, (9) applies in the central region x ∈ (1− a,−1+ a). For ‘wavefunctions’
describing relaxation modes with λ< 1,

´ 1
−1Ψ(y)dy= 0 and we recover λ= 1− 1/a provided
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Ψ(x) is non-zero somewhere in (1− a,−1+ a). The corresponding eigenfunctions identically
vanish for x< 1− a and x>−1+ a and obey

´ 1
−1Ψ(y)dy= 0. The eigenvalue λ= 1− 1/a

thus remains infinitely degenerate. The remaining eigenvalues can be found assumingΨ(x) =
0 for x ∈ (1− a,−1+ a) and by transforming the integral equations equation (14) into a sys-
tem of differential equations.

We introduce

Ψ(x) = ΨL(1− a− x) for x ∈ [−1,1− a] (15)

Ψ(x) = ΨR(1− x) for x ∈ [−1+ a,1], (16)

so that the arguments of both ΨL and ΨR are in (0,2− a). This change of variable allows us
to transform the integral equations into two coupled differential equations:

d
dx

[(x− 2− 2a(λ− 1))ΨL] = ΨR (17)

d
dx

[(x+ 2aλ− a)ΨR] = ΨL (18)

with boundary conditions ΨL(0) = 0. The solution reads

ΨL(x) =
x(2− 3a+ 4aλ)

2(1+ a(−1+λ))(−2+ x+ 2a− 2aλ)

+ log

∣∣∣∣ (−2+ x+ 2a− 2aλ)(−a+ 2aλ)
(−2+ 2a− 2aλ)(x− a+ 2aλ)

∣∣∣∣ . (19)

Knowing ΨL(x), one obtains ΨR(x) from equation (17).
At this point, the only unknown is λ, which can be determined from the consistency require-

ment
´
Ψ(y)dy= 0, which reads

ˆ 2−a

0
dx(ΨL(x)+ΨR(x)) = 0. (20)

This gives the algebraic eigenvalue equation:

−2+ 3a− 4aλ+(2+ 2aλ− 2a) log

∣∣∣∣2+ 2aλ− 2a
a− 2aλ

∣∣∣∣= 0. (21)

We find that for 1⩽ a< 2, this equation has two solutions in the interval λ ∈ [−1,1]. One
is spurious, λ= 3a−2

4a : the corresponding ‘wavefunction’ ΨL from equation (19) identically
vanishes ΨL = 0. Thus there is only one valid solution; it can be found explicitly rewrit-
ing equation (21) using the variables (X,Y) defined as λ= −4−X+3Y

4(Y−2) and a= 2−Y in which
equation (21) takes the much simpler form (X+Y) log[(X+Y)/(X−Y)] = 2X. This allows to
find λ1 explicitly:

λ1 =
(3− ν)a+ 2ν− 2

4a
(22)

where ν ≃ 1.77187 is the solution of:

−ν+
1+ ν

2
log

ν+ 1
ν− 1

= 0. (23)

It can be checked that the eigenfunction corresponding to equation (22) is anti-symmetric
Ψ(x) =−Ψ(−x). Since this eigenfunction is associated to eigenvalue λ1, we will henceforth
denote it by Ψ1(x) A plot of Ψ1 is given in figure 2. It is continuous, with discontinuous
derivatives at 1− a and a− 1.
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Figure 2. Plot of the eigenfunction Ψ1(x) (antisymmetric) for three values of a in the
range 1< a< 2.

Equations (10) and (22) describe analytically the behavior of the relaxation rate of the
Metropolis algorithm equation (1) for a uniform jump distribution w(x). They give an explicit
value for λ1 in the region a⩾ 1 and prove that the minimum λ1 = 1/2 is attained only at a= 2.
They also reveal the unusual structure of the eigenvalues in this problem. For a⩾ 2, there are
only two eigenvalues:λ0 = 1which is associated to a symmetric mode, and an infinitely degen-
erate eigenvalue λ= 1− 1/a which can correspond to both symmetric and anti-symmetric
wave-functions. For 1⩽ a< 2, these two expressions for the eigenvalues remain valid with
the same degeneracy, but in addition a new non-degenerate mode described by equation (22)
appears, splitting from the λ= 1− 1/a branch at the optimal value a= 2. The corresponding
eigenfunction is anti-symmetric and localized at the edge of the system where the rejection
probability is maximal. A summary of the spectral properties will be presented in section 5.
The behavior of eigenfunctions is illustrated in appendix.

3.3. Relaxation of symmetric initial conditions for 1< a< 2

Solving the eigenvalue equation for 1< a< 2 in the previous section, we found that there
were only two eigenvalues with λ< 1 in this range. We also showed that the eigenfunction
corresponding to λ1 was antisymmetric. This raises the question of the relaxation dynamics for
symmetric observables for which the contribution from this eigenfunction vanishes. We will
show here that in general, the relaxation of symmetric observables is not determined by λ2 =
1− 1/a except if P0(x) vanishes outside the interval (−1+ a,a− 1) in which case section 3.2
shows that P0(x)− 1/2 is in the eigenspace of λ2. Rather, the relaxation is ruled by the singular
continuum.

Restricting our attention to symmetric observables, we can assume that Pn(x) is symmetric.
Then the Master equation (1) can be rewritten in a way that depends only on Pn(x) restricted
to x ∈ (−1,1− a).

Pn+1(x) =
1
2a

− 1
2a

ˆ −x−a

−1
Pn(y)dy+

(
1
2
− x+ 1

2a

)
Pn(x). (24)

8
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It is convenient to rescale x by introducing x=−1+(2− a)x̃ where x̃ ∈ (0,1). Then express-
ing Pn(x) as

Pn(x) =
1
2
+ϕn(x̃) (25)

we find that equation (24) takes the simpler form

ϕn+1(x̃) =−K̃
ˆ 1−x̃

0
ϕn(ỹ)dỹ+

(
1
2
− K̃x̃

)
ϕn(x̃) (26)

where K̃= (2− a)/2a.
In section 3.2, we showed that the eigenfunction assumption ϕn(x̃) = λnϕ(x̃) does not lead

to solutions with well defined eigenfunctions. Thus instead we propose the following anzats
for the asymptotic behavior of ϕn(x̃) in the Master equation (26):

ϕn(x̃) = 2−n
[
e−nf(x̃) + hn

(
e−nf(1−x̃) − 1

)]
(27)

where the function f(x̃) is such that f(0) = 0 but e−nf(x̃) decays rapidly for x> 0. The constant
hn is chosen to ensure

´ 1
0 ϕn(x̃)dx̃= 0. This form for ϕn(x̃) allows to replace the integral in

equation (26) by boundary terms which appear as the dominant asymptotic contribution to the
integrals in the limit n→∞ by integration by parts. For example, we resort to the following
approximation :

ˆ 1−x̃

0
e−nf(ỹ)dỹ=

ˆ 1−x̃

0

−1
nf ′(ỹ)

(e−nf(ỹ)) ′dỹ=
1

nf ′(0)
+O(n−2) (28)

where we also neglected the second boundary term proportional to e−nf(1−x̃) as it decays expo-
nentially fast with n for x̃< 1. Using this and similar expansion, together with neglecting all
terms which decay faster than n−1, we find

f(x̃) =− log(1− 2K̃x̃) , hn =
1

2nK̃
. (29)

Rewriting this result in the original variables, we find the leading asymptotic of the deviation
of Pn(x) from its equilibrium value:

Pn(x)− 1/2∝
[
R(x)n− a

(2− a)n

(
2−n−R(|x| − a)n

)]
θ(|x|+ 1− a). (30)

We note that near an edge (for example near the left edge x=−1), δPn(x) relaxes to a fixed
asymptotic form:

δPn(x)∝ exp(−n(1+ x)/a). (31)

Interestingly, this dependence resembles the scaling solutions obtained for zero-temperature
Monte Carlo dynamics [29], where the proportionality constant depends on the initial condi-
tions. This form holds if P0(x) is not identically zero outside of x ∈ (1− a,a− 1). The validity
of equation (30) is confirmed by direct numerical iteration of theMaster equation (1), as shown
in figure 8 in appendix. We see that for 1< a⩽ 2, the symmetric component of the deviation
of Pn(x) from its steady state value P∞(x) = 1/2 becomes peaked around x= 1 where R(x) is
maximal, but does not exactly tend to a δ function either because the integral over the entire
interval must vanish.

9
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Generalizing the asymptotic behavior of equation (30), we can characterize the relaxation
to steady state in this regime by:

lim
n→∞

Pn(x ′)−P∞(x ′)

(maxx ′R(x ′))
−n = 0 (32)

everywhere except at the points x
′
where rejection probability R(x) is maximal; at these points,

the limit can be non zero and depends on the initial conditions. It appears that the above rela-
tion (32) particularizes equation (5) in the case where the discrete summation cancels out from
symmetry (inherited from the initial conditions).

4. Solution for 2/3 ⩽ a< 1

4.1. The five intervals splitting

The approach here bears similarities with that for 1⩽ a< 2, where we transformed the eigen-
function equation into differential equations by splitting the accessible domain [−1,1] into
sub-intervals with a different choice of origin for the expression of the wavefunction in each
sub-interval. When 2/3⩽ a< 1, it is convenient to split the domain [−1,1] into 5 non-
overlapping intervals: I−2, I−1, I0, I1, I2 = [−1,1− 2a], [1− 2a,−1+ a], [−1+ a,1− a], [1−
a,−1+ 2a], [−1+ 2a,1]. In each sub-interval, we write Ψ(x) = Φn(x− yn) where yn is the
center of the interval In and n ∈ {−2,−1,0,1,2}. With these notations, equation (8) can be
transformed into the following system of differential equations: For x ∈ [−1+ a,1− a]:

(2aλ)
dΦ−2

dx
=Φ0 +

d [(2a− 1− x)Φ−2]

dx
(33)

(2aλ)
dΦ0

dx
=Φ2 −Φ−2 (34)

(2aλ)
dΦ2

dx
=−Φ0 +

d [(2a− 1+ x)Φ2]

dx
. (35)

For x ∈ [−a2,a2], introducing a2 = 3a/2− 1, we get

(2aλ)
dΦ−1

dx
=Φ1 +

d [(a2 − x)Φ−1]

dx
(36)

(2aλ)
dΦ1

dx
=−Φ−1 +

d [(x+ a2)Φ1]

dx
. (37)

The system of equations (33)–(35) can be reduced to a second order differential equation
on Φ0:

h0
2xλ

d
dx

[
(x2λ − x2)

dΦ0

dx

]
+Φ0 = A (38)

where h0 = 2aλ, xλ = 2aλ− 2a+ 1 and A is an integration constant, yielding an offset to Φ0.
Equation (38) has the form of a Legendre differential equation and is solved in terms of

Legendre functions of the first kind [32]. Separating symmetric and antisymmetric components
(which are defined up to an overall proportionality constant), we find:

Φ0S(x) = Pσ(x/xλ)+Pσ(−x/xλ) (39)

Φ0A(x) = Pσ(x/xλ)−Pσ(−x/xλ) (40)

10
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where Pσ is the Legendre function with index σ given by:

σ =−
aλ+

√
aλ(4− 8a+ 9aλ)

2aλ
, xλ = 1+ 2a(−1+λ) (41)

and the notations Φ0S and Φ0A emphasize that these are symmetric/antisymmetric wave-
functions respectively. The wavefunction restricted to the intervals I−2 and I2 can be expressed
as a function of Φ0:

Φ2(x) =
h0(x+ xλ)

2xλ

dΦ0

dx
+A (42)

Φ−2(x) =
h0(x− xλ)

2xλ

dΦ0

dx
+A. (43)

We note that A is an overall shift to all the wavefunctions Φ−2,Φ0,Φ2.
The solution of the system (36) and (37) can be written in terms of elementary functions:

rλ(x) =
1

2wλ(x−wλ)
+

1
4w2

λ

log
wλ − x
wλ + x

, (44)

where we introduced the notation wλ = 2aλ− a2 = 2aλ− 3a
2 + 1. This leads to

Φ1(x) = C2 +C1rλ(x) (45)

Φ−1(x) = C2 −C1rλ(−x), (46)

C1 and C2 being two integration constants.
The eigenvalue equations are obtained by requiring the continuity of the wavefunction at

the junction between the different intervals. Since we have separated solutions in symmet-
ric/antisymmetric classes, it is enough to write the continuity condition at the junction between
intervals I0, I1 and I2. This yieldsΦ0(1− a) = Φ1(−a2) andΦ1(a2) = Φ2(−1+ a) (we remind
that a2 = 3a

2 − 1).
For antisymmetric wavefunctions, the symmetry fixes A= C2 = 0 and we get

rλ(−a2)Φ2(−1+ a)−Φ0(1− a)rλ(a2) = 0. (47)

Taking into account equation (40) which defines Φ0(x) = Φ0A(x) and equation (42) giving
Φ2(x) as a function of Φ0(x), we have an explicit equation for the eigenvalue λ with anti-
symmetric wavefunctions. We denote this eigenvalue by λ1 in figure 3.
Within the symmetric subspace, we haveΦ−1(−x) = Φ1(x). This requirement gives C1 = 0

and we find Φ−1(x) = Φ1(x) = C2 = const. In this case, A is an overall shift of the symmetric
solution—and is fixed by

´ 1
−1Ψ(x)dx= 0. The matching conditions do not depend on A and

we find:

Φ2(−1+ a)−Φ0(1− a) = 0 (48)

where using equation (39) we set Φ0(x) = Φ0S(x) and use equation(42) to find Φ2(x) as a
function of Φ0(x). Solving equation (48), we obtain the eigenvalue λ2, shown in figure 3.
From the five interval splitting, we reconstruct the whole symmetric function Ψ(x), that we
denote Ψ2(x) since it is associated to λ2. It is shown in figure 4.

The eigenvalue equations equations (47) and (48) cannot be solved analytically in their gen-
eral form. However, they allow to find the eigenvalues numerically and to derive some of their
properties. For both symmetric and anti-symmetric eigenfunctions, we find an infinite series
of negative eigenvalues with the property λ→ 0 for a→ 1 and a single positive eigenvalue
for both symmetries. These two eigenvalues split away from the rest of the eigenspectrum and

11
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Figure 3. Summary of the exact eigenvalue spectrum λn (n⩾ 1) of the Metropolis
algorithm equation (8) for a⩾ 2/3. The upper part of the graph displays the valueN of
the relevant discrete relaxation modes, see equation (5). Besides, figure 5 corresponds to
a zoom into the lower left corner of the present graph, in the vicinity of the point a= 1,
λ= 0. For a> 2, the branch shown with eigenvalue λ1 is infinitely degenerate.

Figure 4. Plot of the eigenfunction Ψ2(x) for three values of a in the range 2/3< a<
1. This function is symmetric, continuous across the five sectors, with discontinuous
derivative at the junctions between two consecutive sectors. For a= 0.8 and a= 0.9,
the eigenfunction Ψ2(x) grows very quickly near the edges of the box x=±1 and its
maximal value lies outside the chosen vertical range.

are the only eingenvalues above the singular continuum, showing that this case corresponds to
N = 2 . A picture summarizing all the obtained eigenvalues is shown in the next subsection
(see figure 3), while we focus here on the presentation of the analytical results.
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Figure 5. Scaling behavior of negative eigenvalues for a< 1 in the limit a→ 1. The
first three negative eigenvalues with the largest modulus are plotted for symmetric/anti-
symmetric wave functions (for n= 0,1 and 2). In the limit a→ 1, even/odd wavefunc-
tions become degenerate and follow the Rydberg series equation (49).

4.2. Zooming around the a=1, λ=0 point

We turn to investigate the asymptotic properties of the eigenvalues for λ→ 0 and a→ 1. From
equation (41), this limit corresponds to σ ≃ 1√

−λ
→∞ and 1−a

xλ
≃ a− 1→ 0. Analyzing the

asymptotic properties of equations (47) and (48) in this limit, we find a Rydberg-like series of
eigenvalues (with odd denominators):

λ(s,a)
n ≃− 4(a− 1)2

π2(1+ 2n)2
. (49)

Remarkably, the leading order asymptotic behavior coincides for symmetric λ
(s)
n and anti-

symmetric λ(a)
n wavefunctions. The asymptotic Rydberg series behavior of the negative eigen-

values is compared with the numerical eigenvalues on figure 5, which illustrates this feature.
When a departs from unity, the symmetric and anti-symmetric branches of eigenvalues move
further away from each other.

The anti-symmetric eigenvalue λ1 is a smooth continuation of the solution equation (22)
obtained for a ∈ (1,2) into the interval a ∈ (2/3,1). We will thus not discuss its analytical
properties. The analytical behavior of the symmetric eigenvalue λ2 is more subtle, as in the
previous section we established that there are no symmetric eigenvalues for a> 1.

Numerically, we find that λ2 rapidly tends to a limit value λ2 = 1/2 as a approaches unity
from below. It is thus natural to expand equation (48) in this limit. We found, however, that to
obtain accurate asymptotic estimates, a change of variables is needed. We introduce the vari-
able X= 1− 1−a

xλ
, which is the deviation from unity of the (positive) argument of the Legendre

functions in equation (39), evaluated at x= 1− a. Expanding equation (48) in the small para-
meters X and 1− a (using xλ = 2aλ2 − 2a+ 1, one sees that λ→ 1/2 corresponds to X→ 0).
We remind that in this expansion, the parameter σ of the Legendre functions has also to be

13
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expressed as a function of X. Performing this expansion, we get the following Laurent series
for logX as a function of 1− a:

logX=− 1
2(1− a)

− 3
2
+ log2+(1− a)(π2/3− 4)+ . . .. (50)

Inserting this solution into X= 1− (1− a)/xλ and treating it as an equation on λ2 (through
xλ), we find:

λ2 −
1
2
= exp

(
− 1
2(1− a)

+ log(1− a)− 3
2
+

(1− a)(π2 − 15)
3

+ . . .

)
. (51)

This asymptotic expansion demonstrates the non analytic behavior of λ2 near 1/2, and we
also see that the expansion of log(λ2 − 1/2) does not take the form of a Laurent series in a− 1
because of the additional log(1− a) terms. It is probable that this logarithmic term explains
why the direct expansion in the parameters λ2 − 1/2 was not successful. Since the derivation
of equation (51) relies heavily on the use of formal mathematical calculation software, we
checked the accuracy of equation (51) numerically to confirm the validity of our derivations.
We find that for a= 0.95, the relative error between the numerical value of λ2 and the estimate
equation (51) is 3.9× 10−3, decreasing further as a approaches unity.

5. Summary of the exact eigenvalues spectrum

In essence, we obtained a complete description of the eigenvalue spectrum of the Metropolis
Master equation (8) in the range a⩾ 2/3. This provides us with a reference case to under-
stand the structure of the eigenvalue spectrum for this type of self-adjoint operator, which
markedly differs from the spectrum of a Schrödinger equation in a box. Figure 3 shows the
full eigenspectrum for all the range a⩾ 2/3, for which some explicit analytic solutions could
be obtained; this conveys a summary of our findings.

Range a ⩾ 2: We obtained in section 3.1 an explicit analytic solutions for a⩾ 2. This case
corresponds to N = 1, with the particularity that the eigenvalue λ1 is infinitely degenerate.
The choice a= 2 gives Λ = λ1 = 1/2, since 1/2 is also the rejection probability at the edge of
the box (and thus a lower bound for Λ); this choice realizes the optimal convergence rate for
this problem, among all possible choices of a jump distribution function w(x).

Range 1 ⩽ a< 2: This case, treated in section 3.2, also corresponds to N = 1 but the
eigenvalue λ1 is non degenerate and corresponds to an anti-symmetric eigenfunction. This
eigenvalue is also the only eigenvalue below 1, which lies above the singular continuum
R([−1,1]). By symmetry, any symmetric initial probability distribution P0(x) has a vanish-
ing matrix overlap with this eigenmode. The relaxation of such a probability distribution will
thus be governed by the singular continuum. The deviation of Pn(x) from P∞(x) will then be
given by localizing term δPn(x)≃ Ln(x), with the property that limn→∞Ln(x)/Ln(±1) = 0
for any x ̸=±1. The points x=±1 at the edge of the box are those with the highest rejection
probability R(x). The leading asymptotic behavior of Ln was established in section 3.3.Range
2/3 ⩽ a< 1: In section 4, we derived the exact solution to the associated eigenvalue prob-
lem. This allowed us to establish that a= 1 is a critical point corresponding to the transition
from N = 2 (for 2/3< a< 1) to N = 1 (for 1< a< 2). To show this, we derived an algeb-
raic equation on the eigenvalues involving Legendre functions of the first kind (see section 4).
These equations could no longer be solved explicitly. We found eigenvalues numerically and
derived some of their asymptotic properties in the limit a→ 1, thereby characterizing the trans-
ition N = 2→N = 1.
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Range a< 2/3: Analytical progress becomes extremely complicated in this region, in the
appendix we show the numerical eigenspectrum of a discretized version of theMaster equation
in a broad range of a. The numerical eigenspectrum agrees very well with our analytical results
for a> 2/3.

The main result of this paper is the analytical description of the eigenspectrum at the trans-
ition betweenN = 1 andN = 2. For 2/3< a< 1, a symmetric eigenfunction solution appears
which does not exist for a> 1; it yields the eigenvalue λ2 with a limit λ2 → 1/2 for a→ 1
described by equation (51). The eigenvalue λ2 merges with the top of the singular continuum
Λ = 1/2 following a dependence which is reminiscent of the gap equation in superconductivity
[33] with a leading term λ2 − 1/2∼ exp([2(a− 1)]−1), which cannot be expanded as a power
series in a− 1. We also found that this change in N goes together with the appearance of an
(approximate) Rydberg series of negative eigenvalues (a< 1), which branch off from the infin-
itely degenerate eigenvalue λ2 = 1− 1/a (a> 1). This last observation may be specific to the
box problem because of the existence of an infinitely degenerate branch λ2 for 1< a< 2. On
the other hand, we expect that the merging between a relaxation eigenmode and the singular
continuum, that we described here, is a generic phenomenon for transitions between relaxation
regimes with different number of non-equilibrium relaxation eigenmodesN that appear in the
relaxation expansion (5).

6. Conclusion

We investigated the relaxation properties of a simple Monte Carlo algorithm, describing a ran-
dom walker confined in a (rescaled) box x ∈ (−1,1) and subject to a flat potential U(x) =
const. The equilibrium probability distribution is thus uniform in (−1,1). At each algorithmic
step, we attempt to change the particle position x→ x+ η where the jump distance η is drawn
from a uniform probability distribution in (−a,a). The length scale a is the maximum attemp-
ted jump length. If the attempted jump falls outside the box (−1,1), the move is rejected and x
remains unchanged. Otherwise the move is accepted and the position is updated to x+ η. For
any a> 0, the probability distribution of the random walkers will converge towards equilib-
rium, with a strongly a-dependent relaxation rate.

To analyze the relaxation rate, we studied the Master equation describing this process. It is
an integral equation which in some cases can be mapped to a system of differential equations.
For a> 2/3, we solved this system analytically to obtain the full spectrum of eigenvalues and
eigenfunctions. We found that, in general, the relaxation dynamics is not described only by
the eigenvalue spectrum. Instead, we need to take into account the contribution of the set of
singular eigenvalues equal to the rejection probability R(x) at some point x ∈ (−1,1). A pos-
sible eigenfunction associated to such a singular eigenvalue is zero everywhere except at the
point x. This function vanishes almost everywhere and has a vanishing norm. To highlight the
unusual nature of such eigenfunctions, we refer to this part of the eigenspectrum R([−1,1])
as the singular continuum. This name is meant to distinguish these eigenvalues from the con-
tinuum of eigenvalues that can appear for the Schrödinger equation on the real line, for which
on the contrary, the norm of the eigenfunctions becomes infinitely large. In general, the contri-
bution from the singular continuum will dominate the asymptotic convergence to equilibrium
only after taking into account the contribution of a number+N of relaxation eigenmodes. We
recently showed some examples where a transition to N = 0 can occur. In these situations,
the relaxation behavior is completely dominated by the singular continuum [28]; however, we
could not study analytically the transition between different values of N .
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For the present free particle confined in a box, such a study is possible; this is the main
result of our paper. We showed that the regime 1< a< 2 corresponds toN = 1, with a single
anti-symmetric relaxation eigenmode above the singular continuum. This eigenmode thus has
vanishing overlap with symmetric initial probability distributions; in this case, the singular
continuum rules the dynamics, and the deviation from equilibrium concentrates at late time
(after a large number of iterations) onto the points of maximal rejection, at the edge of the
box ±1. Indeed, the singular continuum eigenfunctions vanish almost everywhere. We then
showed thatN = 2 for 2/3< a< 1. The transition is described by a merging between a relax-
ation eigenmode at 2/3< a< 1 and the singular continuum which takes place at a= 1. We
obtained asymptotic estimates describing the gap between the eigenvalue spectrum and the top
of the singular continuum. Interestingly, this gap vanishes to all orders in 1− a and cannot be
obtained by a regular perturbative expansion near a= 1. We believe that this merging with the
continuum is a generic scenario describing the change in the number of relaxation eigenmodes
N . At the same point a= 1, we evidenced the emergence of a Rydberg-like series of negative
eigenvalues; the connection between the two phenomena remains an open question.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).

Appendix. Comparison with numerical diagonalization and Monte Carlo
simulations

To put our analytical findings to the test, we performed several numerical simulations: dir-
ect simulations of the Monte Carlo algorithms and numerical studies of the Master equation
(including diagonalization of discretized versions of the Master equation, or iteration of the
Master equation itself, starting from a specific initial probability distributionP0(x)). In figure 6,
we show the agreement between the relaxation rate Λ estimated from the simulations of the
Monte Carlo algorithm. We see a very good agreement between the relaxation rate Λ obtained
for arbitrary (non symmetric) initial conditions and our analytical results. The agreement for
the next leading eigenvalue corresponding to symmetric P0(x) is less accurate. In particular we
see some deviations close to the transitionN = 2→ 1, we attribute those to more pronounced
transients effects close to this transition. The comparison between the analytical eigenspectrum
and the spectrum of a lattice discretization of the Master equation is shown on figure 7.

The change in the relaxation properties of the Monte Carlo dynamics at a= 1 is illustrated
on figure 8, which displays the (normalized) deviation from equilibrium δPn(x) = Pn(x)− 1/2
after n steps of the Monte Carlo algorithm. We report results for a= 0.7 and a= 1.3, for two
initial probability distributions: a generic P0(x) without any symmetry, and a symmetric func-
tion P0(−x) = P0(x). Numerical results are obtained using both direct Monte Carlo simula-
tions and iteration of the Master equation, except for the symmetric a= 1.3 case for which
only results from the Master equation are shown, as a larger number of step n was required.
For a= 0.7, both choices of P0(x) relax to the leading relaxation eigenmode, with a symmetry
compatible with that of P0(x): we observe an anti-symmetric eigenmode for a generic P0(x),
and the sub-leading symmetric eigenmode for a symmetricP0(x). Relaxation to this eigenmode
is fast, requiring about ∼10 steps of the algorithm. For a= 1.3, a similar picture is observed
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Figure 6. Comparison between the relaxation rate obtained numerically from theMonte
Carlo dynamics (dots) and our analytical calculations (continuous lines). The Monte
Carlo data is collected over 1010 independent simulations up to n= 50 with initial con-
ditions P0(x) = δ(x− 1). The values for Λ are extracted from by calculating the mean
value ofO(x) = |x+ 0.5| and for ΛS from a symmetric observableO(x) = |x| (the sub-
script S thus refers to the symmetric branch). We attribute the values below 1/2 for ΛS

to incomplete numerical convergence.

Figure 7. Comparison between the analytical eigenspectrum (available for a> 2/3) and
numerical eigenvalues of a 1000 site discretization of the Master equation. There is a
very good match between numerical and analytical eigenvalues. The discretized prob-
lem necessarily has 1000 eigenmodes which fill the singular continuum for which there
are no eigenfunctions with non vanishing measure in the continuum limit. New eigen-
modes above the singular continuum continue to appear as a is lowered leading to the
diffusive limit with a dense spectrum around λ= 1 for small jump lengths a. The critical
points for the appearance of the new eigenvalues seem to be well descried by the series
2/n with integer n⩾ 2, however without analytical solutions for a< 2/3 this is just a
numerical observation. We see that this is accompanied by the appearance of new neg-
ative eigenmodes branches suggesting that there may indeed be a connection between
positive and negative eigenmodes.
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Figure 8. The top panels show the relaxation of the deviation from equilibrium Pn(x)−
1/2 (normalized to unity) towards the eigenfunction Ψ1(x) starting from an asymmet-
ric initial condition for a= 0.7 and a= 1.3. The bottom panels show the same quantity,
starting from symmetric initial conditions for a< 1 the normalized Pn(x)− 1/2 con-
verges to the analytical Ψ2(x) but for a> 1, the deviation from equilibrium becomes
more and more localized at the edges as n increases. The discretization used N= 5000
points uniformly distributed in the box (−1,1). TheMonte Carlo data are collected over
1010 independent iterations of the dynamics. In the bottom-right panel, comparison is
made with the asymptotic prediction of equation (19) for the case a> 1 in the upper
right panel, with the results of section 3.3 for the bottom right panel; for a< 1 (upper
and bottom left panels), we use the results of section 4.

for a generic P0(x), but the situation for symmetric P0(x) is very different. We see that δPn
does not converge to fixed eigenfunctions but instead keeps concentrating at the edges of the
box, at x=±1, where the rejection probability is highest. This corresponds to the localizing
contribution coming from the singular continuum. The numerical results are compared with
the predicted asymptotic form for δPn, that we derived in section 3.3, showing a very good
agreement.

Finally, we illustrate the evolution of the leading relaxation eigenmodes with the (maximal
jump length) parameter a, see figure 9. At a≪ 1, the two leading relaxation eigenmodes are
very close to the solutions of the corresponding Fokker–Planck problem: Ψ1(x)≃ sinπ x/2
and Ψ2(x)≃ cosπ x. As a increases, the eigenmodes feature a larger weight on the edges,
where the rejection probability is maximum. For a> 1, we see that the numerically simulated
Ψ2 completely collapses to the edge of the system (localization). This is a manifestation of the
absence of symmetric relaxation eigenmodes above the singular continuum, for 1< a< 2.
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Figure 9. Evolution of the numerical eigenfunctions Ψ1(x) and Ψ2(x) with the jump
distance a, for N= 1000 discretization sites. For Ψ2(x), most of the weight is localized
at the edge points±1:Ψ2 falls outside of the vertical range displayed, as a consequence
of localization.
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