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Ising models for networks of real neurons

Gašper Tkačik,a,c Elad Schneidman,a−c Michael J. Berry II,b and William Bialeka,c
aJoseph Henry Laboratories of Physics, bDepartment of Molecular Biology,

and cLewis–Sigler Institute for Integrative Genomics
Princeton University, Princeton, New Jersey 08544 USA

(Dated: October 22, 2018)

Ising models with pairwise interactions are the least structured, or maximum–entropy, probability
distributions that exactly reproduce measured pairwise correlations between spins. Here we use this
equivalence to construct Ising models that describe the correlated spiking activity of populations
of 40 neurons in the retina, and show that pairwise interactions account for observed higher–order
correlations. By first finding a representative ensemble for observed networks we can create synthetic
networks of 120 neurons, and find that with increasing size the networks operate closer to a critical
point and start exhibiting collective behaviors reminiscent of spin glasses.

PACS numbers: 87.18.Sn, 87.19.Dd, 89.70.+c

Physicists have long explored analogies between the
statistical mechanics of Ising models and the functional
dynamics of neural networks [1, 2]. Recently it has been
suggested that this analogy can be turned into a precise
mapping [3]: In small windows of time, a single neuron i
either does (σi = +1) or does not (σi = −1) generate an
action potential or “spike” [4]; if we measure the mean
probability of spiking for each cell (〈σi〉) and the correla-
tions between pairs of cells (Cij = 〈σiσj〉− 〈σi〉〈σj〉), then
the maximum entropy model consistent with these data
is exactly the Ising model

P ({σi}) =
1

Z
exp





N
∑

i=1

hiσi +
1

2

N
∑

i 6=j

Jijσiσj



 , (1)

where the magnetic fields {hi} and the exchange cou-
plings {Jij} have to be set to reproduce the measured val-
ues of {〈σi〉} and {Cij}. We recall that maximum entropy
models are the least structured models consistent with
known expectation values [5, 6]; thus the Ising model is
the minimal model forced upon us by measurements of
mean spike probabilities and pairwise correlations.
The surprising result of Ref [3] is that the Ising model

provides a very accurate description of the combinatorial
patterns of spiking and silence in retinal ganglion cells
as they respond to natural movies, despite the fact that
the model explicitly discards all higher order interactions
among multiple cells. This detailed comparison of the-
ory and experiment was done for groups of N ∼ 10 neu-
rons, which are small enough that the full distribution
P ({σi}) can be sampled experimentally. Here we extend
these results to N = 40, and then argue that the ob-
served network is typical of an ensemble out of which we
can construct larger networks. Remarkably, these larger
networks seem to be poised very close to a critical point,
and exhibit other collective behaviors which should be-
come visible in the next generation of experiments.
To be concrete, we consider the salamander retina re-

sponding to naturalistic movie clips, as in the experi-

ments of Refs [3, 7]. Under these conditions, pairs of
cells within ∼ 200µm of each other have correlations
drawn from a homogeneous distribution; the correlations
decline at larger distance [8]. This correlated patch con-
tains N ∼ 200 neurons, of which we record from N = 40
[9]; experiments typically run for ∼ 1 hr [10].
The central problem is to find the magnetic fields and

exchange interactions that reproduce the observed pair-
wise correlations. It is convenient to think of this problem
more generally: We have a set of operators Ôµ({σi}) on
the state of the system, and we consider a class of models

P ({σi}|g) =
1

Z(g)
exp

[

K
∑

µ=1

gµÔµ({σi})

]

; (2)

our problem is to find the coupling constants g that gen-
erate the correct expectation values, which is equivalent
to solving the equations ∂ lnZ(g)/∂gµ = 〈Ôµ({σi})〉expt.
Up to N ∼ 20 cells we can solve exactly, but this ap-
proach does not scale to N = 40 and beyond. For larger
systems, this “inverse Ising problem” or Boltzmann ma-
chine learning, as it is known in computer science [11],
is a hard computational problem rarely encountered in
physics, where we usually compute properties of the sys-
tem given a known model of the interactions.
Given a set of coupling constants g, we can estimate

the expectation values 〈Ôµ〉g by Monte Carlo simulation.
Increasing the coupling gµ will increase the expectation

value 〈Ôµ〉, so a plausible algorithm for learning g is to

increase each gµ in proportion to the deviation of 〈Ôµ〉
(as estimated by Monte Carlo) from its target value (as
estimated from experiment). This is not a true gradi-
ent ascent, since changing gµ has an impact on operators

〈Ôν 6=µ〉, but such an iteration scheme does have the cor-
rect fixed points; heuristic improvements include a slow-
ing of the learning rate with time and the addition of
some ‘inertia’, so that we update gµ according to

∆gµ(t+ 1) = −η(t)
[

〈Ôµ〉g(t) − 〈Ôµ〉expt

]

+ α∆gµ(t),

(3)
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FIG. 1: (a) Precision of the Ising model learned via Eq (3):
measured covariance elements are binned on the x-axis and
plotted against the corresponding reconstructed covariances
on y-axis; vertical error bars denote the deviation within the
bin and horizontal error bars denote the bootstrap errors on
covariance estimates. (b) Zoom–in for small Cij, with scale
bar representing the distribution of covariances from shuffled
data. Not shown are the reconstructions of the means, 〈σi〉,
which are accurate to better than 1%. (c) Distribution of
coupling constants Jij. (d) Measured vs predicted connected
three–point correlations for 40 neurons (red) and exact solu-
tion for a 20 neuron subset (black). (e) Probability of ob-
serving K simultaneous spikes, compared to the failure of the
independent model (black line). Dashed lines show error es-
timates.

where η(t) is the time–dependent learning rate and α
measures the strength of the inertial term [12].

Figure 1 shows the success of the learning algorithm by
comparing the measured pairwise correlations to those
computed from the inferred Ising model for 40 neurons.
To verify that the pairwise Hamiltonian captures essen-
tial features of the data, we predict and then check statis-
tics that are sensitive to higher order structure: the prob-
ability P (K) of patterns with K simultaneous spikes,
connected triplet correlations and the distribution of en-
ergies (latter not shown). The model overestimates the
significant 3–point correlations by about 7% and gener-
ates small deviations in P (K); most notably it under-

estimates the no–spike pattern, Pexpt(K = 0) = 0.550
vs. PIsing(K = 0) = 0.502. These deviations are small,
however, and it seems fair to conclude that the pairwise
Ising model captures the structure of the N = 40 neuron
system very well. Smaller groups of neurons for which ex-
act pairwise models are computable also show excellent
agreement with the data [3, 14].
It is surprising that pairwise models work well both on

N = 40 neurons and on smaller subsets of these: not ob-
serving σχ will induce a triplet interaction among neurons
{σα, σβ , σγ} for any triplet in which there were pairwise
couplings between σχ and all triplet members. Moreover,
comparison of the parameters in g

(40) with their corre-
sponding averages from different subnets g(20) leaves the
exchange interactions almost unchanged, while magnetic
fields change substantially. To explain both phenomena,
we examine the flow of the couplings under decimation.
Specifically, we include three–body interactions, isolate
terms related to spin σn, sum over σn, expand in Jin, Jijn
up to O(σ4), and then identify renormalized couplings:

hi → hi + ωJ̃in +
∑

j βij +O(γ, δ), (4)

Jij → Jij + βij +O(γ, δ), (5)

Jijk → Jijk +O(γ, δ) (6)

where J̃in = Jin −
∑

j Jijn, βij = J̃inJ̃jn(1 − ω2) + ωJijn
and ω = tanh(hn −

∑

i Jin + 1
2

∑

ij Jijn). The terms

γ, δ ∝ (1−ω2) originate from terms with 3 and 4 factors
of σ, respectively. The key point is that neurons spike
very infrequently (on average in ∼ 2.4% of the bins) and
so 〈σi〉 ≈ −1, in which case ω is approximately the hy-
perbolic tangent of the mean field at site n and is close
to −1. If pairwise Ising is a good model at size N , and
couplings are small enough to permit expansion, then at
size (N − 1) the corrections to pairwise terms, as well as
Jijk, are suppressed by 1 − ω2. This could explain the
dominance of pairwise interactions: it is not that higher
order terms are intrinsically small, but the fact that spik-
ing is rare means that they do not have much chance to
contribute. Thus, the pairwise approximation is more
like a Mayer cluster or virial expansion than like simple
perturbation theory.
We test these ideas by selecting 100 random subgroups

of 10 neurons out of 20; for each, we compute the ex-
act Ising model from the data, as well as applying Eqs
(4–6) 10 times in succession to decimate the network
from 20 cells down to the chosen 10. The resulting
three–body interactions Jijk have a mean and standard
deviation ten times smaller than the pairwise Jij. If
we ignore these terms, the average Jensen–Shannon di-
vergence [15] between this probability distribution and
the best pairwise model for the N = 10 subgroups is
DJS = 9.3 ± 5.4 × 10−4 bits, which is smaller than the
average divergence between either model and the exper-
imental data and means that ≫ 103 samples would be
required to distinguish reliably between the two models.
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FIG. 2: C(T ) for systems of different sizes. Ising models were
constructed for 400 subnetworks of size 5, 180 of size 10, 90
of size 15 and 20, 1 full network of size 40 (all from data),
and 3 synthetic networks of size 120; vertical error bars are
standard deviations across these examples. The mean of the
heat capacity curve and the 1 sigma envelope for Ising models
of randomized networks are shown in blue dashed lines.

Thus, sparsity of spikes keeps the complexity in check.

Given a model with couplings g, we can explore the
statistical mechanics of models with g → g/T . In par-
ticular, this exercise might reveal if the actual operating
point (T = 1) is in any way privileged. Tracking the
specific heat vs T also gives us a way of estimating the
entropy at T = 1, which measures the capacity of the
neurons to convey information about the visual world;

we recall that S(T = 1) =
∫ 1

0 C(T )/T dT , and the heat
capacity can be estimated by Monte Carlo from the vari-
ance of the energy, C(T ) = 〈(δE)2〉/T 2.

Figure 2 shows the dependence of heat capacity on
temperature at various system sizes. We note that the
peak of the heat capacity moves towards the operating
point with increasing size. The behavior of the heat ca-
pacity C(T ) is diagnostic for the underlying density of
states, and offers us the chance to ask if the networks we
observe in the retina are typical of some statistical ensem-
ble. One could generate such an ensemble by randomly
choosing the matrix elements Jij from the distribution
that characterizes the real system, but models generated
in this way have wildly different values of 〈σi〉. An alter-
native is to consider that these expectation values, as well
as the pairwise correlations Cij, are drawn independently
out of a distribution, and then we construct Ising model
consistent with these randomly assigned expectation val-
ues. Figure 2 shows C(T ) for networks of 20 neurons
constructed in this way [16], and we see that, within er-
ror bars, the behavior of these randomly chosen systems
resembles that of real 20 neuron groups in the retina.

Armed with the results at N = 20, we generated

several synthetic networks of 120 neurons by randomly
choosing once more out of the distribution of 〈σi〉 and Cij

observed experimentally [17]. The heat capacity C120(T )
now has a dramatic peak at T ∗ = 1.07±0.02, very close to
the operating point at T = 1. If we integrate to find the
entropy, we find that the independent entropy of the indi-
vidual spins, S0(120) = 17.8± 0.2 bits, has been reduced
to S(120) = 10.7 ± 0.2 bits. Even at N = 120 the en-
tropy deficit or multi–information I(N) = S0(N)−S(N)
continues to grow in proportion to the number of pairs
(∼ N2), continuing the pattern found in smaller networks
[3]. Looking in detail at the model, the distribution of
Jij is approximately Gaussian J = −0.016 ± 0.004 and
σJ = 0.61± 0.04; 53% of triangles are frustrated (46% at
N = 40), indicating the possibility of many stable states,
as in spin glasses [18]. We examine these next.

At N = 40 we find 4 local energy minima (G2, · · · ,G5)
in the observed sample that are stable against single spin
flips, in addition to the silent state G1 (σi = −1 for all
i). Using zero–temperature Monte Carlo, each configu-
ration observed in the experimental data is assigned to
its corresponding stable state. Although this assignment
makes no reference to the visual stimulus, the collective
states Gα are reproducible across multiple presentations
of the same movie (Fig 3a), even when the microscopic
state {σi} varies substantially (Fig 3b).

At N = 120, we find a much richer structure [19]:
the Gibbs state now is a superposition of thousands of
Gα, with a nearly Zipf–like distribution (Fig 3c). The
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FIG. 3: (a) Probability that the 40 neuron system is found
in a configuration within the basin of each nontrivial ground
state Gα, as a function of time during the stimulus movie;
P (Gα|t) = 0.4 means that the retina is in that basin on 40%
of the 145 repetitions of the movie. (b) All unique patterns
assigned to G5 at t = 10.88−10.92 s. (c) Zipf plot of the rank
ordered frequencies with which the lowest lying 5 · 104 stable
states are found in the simulated 120 neuron system.
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entropy of this distribution is 3.4±0.3 bits, about a third
of the total entropy. Thus, a substantial fraction of the
network’s capacity to convey visual information would
be carried by the collective state, that is by the identity
of the basin of attraction, rather than by the detailed
microscopic states.
To summarize, the Ising model with pairwise inter-

actions continues to provide an accurate description of
neural activity in the retina up to N = 40. Although
correlations among pairs of cells are weak, the behav-
ior of these large groups of cells is strongly collective,
and this is even clearer in larger networks that were con-
structed to be typical of the ensemble out of which the
observed network has been drawn. In particular, these
networks seem to be operating close to a critical point.
Such tuning might serve to maximize the system’s sus-
ceptibility to sensory inputs, as suggested in other sys-
tems [20]; by definition operating at a peak of the specific
heat maximizes the dynamic range of log probabilities for
the different microscopic states, allowing the system to
represent sensory events that occur with a wide range
of likelihoods [21]. The observed correlations are not
fixed by the anatomy of the retina or by the visual in-
put alone, but reflect adaptation to the statistics of these
inputs [22]; it should be possible to test experimentally
whether these adaptation processes preserve the tuning
to a critical point as the input statistics are changed.
Finally, the transition from N = 40 to N = 120 opens
up a much richer structure to the configuration space,
suggesting that the representation of the visual world by
the relevant groups of N ∼ 200 cells may be completely
dominated by collective states that are invisible to ex-
periments on smaller systems.
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