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The Potts model

Pocket calculators and cell phones not allowed.
This part should be written on a separate paper.

La rédaction pourra se faire en français pour ceux qui le souhaitent.

The multinomial expansion formula, that can prove useful here, is reminded in the annex below. Besides, the

different parts are essentially independent. In particular, the last question may be decoupled almost entirely

from the others.

We consider a variant of Ising model, the so-called Potts model, where the N degrees of freedom (spins)
σ1, . . . , σN may each take q different values, σi ∈ {1, . . . , q}, where q is, for the time being, an arbitrary
integer ≥ 2. The spins interact with the following Hamiltonian

H(σ1, . . . , σN ) = −
N∑

i,j=1

Ji,jδσi,σj
−

N∑

i=1

hσi
, (1)

where Ji,j ≥ 0 is the coupling constant between spins i and j, δ denotes the Kronecker symbol (giving one
if the two arguments are equal, 0 otherwise) and h1, . . . , hq can be seen as magnetic fields acting on the q
possible values of the spins. Such an approach is useful to study theoretically a variety of “hard” or “soft”
condensed matter problems in a unified framework, and is also relevant to model some experimental systems
(such as atomic adsorption, magnetic coarsening, foams, bubbles etc.). Interestingly, while q is taken here
as an integer, it is possible to “continualize” the model for real q, and the q → 1 limit connects Potts model
with percolation. Other limits for q lead to problems in combinatorics or probability. Indeed, the Potts
model enjoys fruitful connections with a priori remote domains, such as graph theory or computer science.

In the remainder, we shall work in the canonical ensemble, the system being in equilibrium at temperature
T . We denote the Boltzmann constant by kB and averages over the Boltzmann-Gibbs distribution by 〈·〉 ;
β = 1/(kBT ).

A. Warming up : limiting cases, order parameter and connection to Ising
model

1) What do you expect for the large T behaviour ?

2) When all fields hµ = 0 (µ = 1, . . . q), how many ground states are there ?

3) What if all fields hµ 6= 0 (all being different) ?

4) We assume h1 > 0 while all other fields vanish. We denote by 〈x〉 the mean fraction of spins in state
1 (i.e. such that σi = 1). What order parameter m can you construct from 〈x〉, that would go from 0
in a disordered situation to 1 under perfect order ?

5) We consider here the q = 2 case. Establish that Potts model is then equivalent, up to a constant

energy, to Ising model with variables σ
(I)
i = ±1 and a Hamiltonian

H(σ
(I)
1 , . . . , σ

(I)
N ) = −

N∑

i,j=1

J
(I)
i,j σ

(I)
i σ

(I)
j − h(I)

N∑

i=1

σ
(I)
i . (2)

Express J
(I)
i,j and h(I) as functions of parameters pertaining to Potts model.

6) Do you expect a phase transition for q = 2 and if so, of what type ?
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B. The Curie-Weis approach, with a hint of Landau

To investigate possible phase transitions, we resort to what is arguably the simplest treatment, inspired
by the Curie-Weis method worked out for Ising model. It amounts to a single spin approximation, in a
self-consistent effective field. The underlying lattice is hyper-cubic, of dimension d. The (ferromagnetic)
couplings Jij are all taken equal to J , restricted to nearest neighbors on the lattice.

7) How many nearest neighbors does a given spin have ?

8) If J = 0 and the fields are such that h2 = h3 = . . . = hq while h1 may differ from the others, show
that 〈x〉, the mean fraction of spins in state 1 (which is also the probability that a given spin is in
state 1), reads

〈x〉 =
eβh1

eβh1 + χ eβh2
. (3)

What is χ ?

9) We address from now on the situation J 6= 0. In the Curie-Weis spirit, what is the origin of the so-called
“molecular field” ?

10) Express the molecular field acting on spins of type 1, and of type µ 6= 1, with all fields hµ vanishing.

11) Compute the mean fraction 〈x〉.

12) From 〈x〉, show that an eligible order parameter m obeys

m =
e2d βJ m − 1

e2d βJ m + q − 1
. (4)

Before you are there, you can start by subtracting to 〈x〉 its value in the disordered phase, and then
rescale this difference so that it tend to unity under perfect order. This will give you the relation
between m and 〈x〉.

13) Sketch the behaviour of the right-hand-side in Eq. (4) as a function of m, for both low and high
temperatures. How can one proceed to find the self-consistent order parameter ? Discuss briefly the
physics at play.

14) With a Taylor expansion of the right-hand-side in Eq. (4) for small m, one obtains :

m =
T ∗

T
m + C2 (q − 2)m2 + C3m

3 + O(m4), (5)

where C2 > 0. What is the value of T ∗ ?

15) Eq. (5) hides an interesting piece of information concerning the order of the phase transition, as a
function of q. To bring this information to the fore, one needs to think in terms of a Landau-like free
energy R(m), and we therefore write

R(m) =
a2
2
m2 +

a3
3
m3 +

a4
4
m4 +O(m5) (6)

Using the fact that for T close to T ∗, a2 = ã2(T − T ∗) where ã2 > 0 is some constant, relate the
coefficients in (6) to those in (5). You have here to linearize a term in Eq. (5).

16) The above analysis teaches us the sign of a3, that is the key to our discussion. It is understood that
the admissible values of m can only be positive (including 0). By sketching the profiles of
R(m) for different T , conclude on the order of the phase transition under study. This order is affected
by the q-value.

17) Are your results consistent with those from the Ising model ? Are they compatible with what you see
on Fig. 1 ?

18) Accepting that Potts model for q → 1 describes percolation, what type of transition do you then
expect there ?
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Figure 1 – Plot of the right hand side of Eq. (4) as a function of m, together with the first bissectrix, for
q = 8, and some value of 2dβJ (here close to 4.22).

C. The one-dimensional setting : transfer matrix and renormalization

The N spins live here on a chain, with periodic boundary conditions (σ1 = σN+1). There is no external
field and the Hamiltonian reads

H(σ1, . . . , σN ) = −J
N∑

i=1

δσi,σi+1
(7)

19) Write the definition of the partition function Z, without attempting to compute it.

20) Rewrite Z introducing a q × q transfer matrix T. Define T explicitly for the case q = 3.

21) Here q = 3 unless otherwise stated. Show that T admits a simple symmetric eigenvector. What is
the corresponding eigenvalue ? The other eigenvalue is degenerate. What is its expression ? Write the
corresponding eigenvectors (you can use the fact that they have to be perpendicular to the previous
one).

22) Compute the partition function. What do you conclude ?

23) Write the free energy per spin in the thermodynamic limit.

24) How do results generalize to arbitrary q ?

The transfer matrix technique allows to obtain the correlation length, but we switch here to a renormalization
treatment. We note by a the original lattice spacing between two successive sites. One can prove that

∑

σ′=1,...q

exp
(
Kδσ,σ′ +Kδσ′,σ′′

)
= A exp

(
K ′δσ,σ′′

)
(8)

where A and K ′ depend on K ≡ βJ .

25) Use this result to establish that

Z(K,N, a) = AN ′

Z(K ′, N ′, b). (9)

What are N ′ and b ?

26) The expression of K ′ as a function of K reads

eK
′

=
e2K + q − 1

p eK + q − 2
. (10)

What is p ? There are two fixed points only to the map K → K ′. What are they ? Discuss their
stability.

27) Sketch the “renormalization flow” diagram, obtained by iterating the above renormalization procedure.
Discuss its physical meaning.

28) Is there a finite temperature critical point ? Is that a surprise ?
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29) We denote by ξ(K) the correlation length in the problem, and by ξ̃ its dimensionless counterpart,
measured in units of the lattice spacing. How are ξ̃(K ′) and ξ̃(K) related ?

30) Compute

eK
′

+ q − 1

eK′ − 1
as a function of

eK + q − 1

eK − 1
. (11)

Making use of the result in question 29, show that up to a constant

ξ̃ ∝
1

log [1 + q/(eK − 1)]
(12)

If you can remember the result for the 1D Ising chain, does it feature the same structure ?

D. Mean-field analysis - take 2

In this section, we take Ji,j = J/N for all values (i, j), with J > 0.

31) Why can such an approach be coined “mean-field” ? Making use of the fact that δσ,σ′ =
∑q

µ=1 δσ,µδσ′,µ,
show then that the partition function associated to the Hamiltonian (1) can be written in the form

Z =
∑

x1,...,xq

NN
x1,...,xq

e−Nβe(x1,...,xq) , with e(x1, . . . , xq) = −J

q∑

σ=1

x2σ −

q∑

σ=1

hσxσ . (13)

What are the possible values for x1, . . . , xq ? What is their meaning ? What is the constraint that links
them? Write explicitly the expression of NN

x1,...,xq
.

32) Stirling’s formula ln(X!) ∼ X lnX −X for X → ∞ is reminded. Show that the free energy per spin
reads, in the thermodynamic limit :

f(T ) = −
1

β
lim

N→∞

1

N
lnZ = inf

x1,...,xq

f̂(x1, . . . , xq, T ), with (14)

f̂(x1, . . . , xq, T ) = e(x1, . . . , xq)− Ts(x1, . . . , xq) and s(x1, . . . , xq) = −kB

q∑

σ=1

xσ lnxσ . (15)

What is the domain where the minimization should be performed ? Comment on the expression of
s(x1, . . . , xq).

33) How could we have found directly the free energy f̂ above, and what name(s) does this approach bear ?

We denote by (x∗1, . . . , x
∗
q) the point where the minimum of f̂ is reached. In the thermodynamic limit, one

has 〈δσi,σ〉 = x∗σ for all i and all σ.

34) What is the value of (x∗1, . . . , x
∗
q) for high temperatures ? How can we call the corresponding phase of

the system ?

35) We assume in what follows that h1 = · · · = hq = 0, and it is reminded that J > 0. What are the
possible values of (x∗1, . . . , x

∗
q) at vanishing temperature ? How can we call the corresponding phases ?

What is the degeneracy of the ground state ?

We now wish to study the transition between the low T and high T regimes. We assume that the
spontaneous symmetry breaking that occurs at low T , takes place along the σ = 1 direction, and
does not distinguish among the other q − 1 possible values. We thus write x1 = x, together with
x2 = · · · = xq.

36) Express the common value x2 = · · · = xq as a function of x. Show then that with the above para-

metrisation, we have f(T ) = inf
x
f̂(x, T ), with f̂(x, T ) = e(x) − Ts(x). Provide the expressions of the

functions e(x) and s(x).

From now on, q is taken as an arbitrary real number ≥ 2, not necessarily an integer (there indeed
exists an alternative definition to the partition function, that is meaningful for all possible real q).
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37) Plot schematically and separately the functions e(x) and s(x) for an arbitrary q > 2, emphasizing the
behaviour close to the boundaries of their support (lower and upper bound), as well as the behaviour
in the vicinity of their extrema (the position of which will be indicated).

38) What is the value of x that minimizes f̂(x, T ) at high temperature ? This value will be denoted x0 in

the remainder. Below which temperature, denoted T
(2)
c , is x0 no longer a local minimum of f̂(x, T ) ?

It may prove useful to show

∂2f̂

∂x2

∣∣∣∣
T

= −γJ
q

q − 1
+ kBT

1

x(1− x)
, where γ is a constant that will be given. (16)

39) Expand f̂(x, T
(2)
c ) to third order around x = x0. Show then that if q > 2, there exists a temperature

T
(1)
c > T

(2)
c such that x0 no longer is the global minimum of f̂ for all temperatures T < T

(1)
c .

40) Plot schematically the graphs of f̂(x, T ) as a function of x for different temperatures.

41) In the case q > 2, write the conditions that determine the value of T
(1)
c , and the position of the global

minimum x(1) of f̂ at temperature T
(1)
c

−
, i.e. infinitesimally below T

(1)
c . Show that the conditions are

met by

x(1) = 1−
α

q
, kBT

(1)
c = J

q − 2

(q − 1) ln(q − 1)
. (17)

What is the value of α ?

42) Sketch the graph of the position of x∗(T ), the global minimum of f̂ , as a function of T . The cases q = 2
and q > 2 should be distinguished. Write down an admissible order parameter. In each case, what is
the order of the transition and, if applicable, what is the value of the critical exponent β associated
to the critical behaviour of x∗(T ) ?

43) Explain qualitatively what would happen if one would consider the exact solution of the Potts model

on a given lattice at T = T
(1)
c , imposing a fraction of spins σi = 1 between x0 and x(1). It will be

assumed that the mean-field scenario for q > 2 holds.

E. Exact results (miscellanea)

So-called duality transformations allow on some lattices to map Potts model onto itself, yet at a different
coupling parameter K = βJ . In doing so, one proves that the partition function on the square lattice
(dimension d = 2) obeys the relation

Z(K) = Z(K̃)

(
(eK − 1)2

q

)N

with (eK̃ − 1)(eK − 1) = q. (18)

44) What is the explicit expression of the critical temperature ?

In the 1970s, renormalization group treatments stumbled upon the Potts model for quite a while (in
particular the change from first order for some q to second order for others), until it was realized that phase
space should be enlarged to include “vacancies”. Indeed, mapping a region where the spins take many of the
q possible values onto any one of those values leads to an overestimation of order. It is wiser to represent
such areas by a vacancy on the renormalized lattice. Rather than the original Hamiltonian, we then consider

Henlarged = −
∑

〈i,j〉

(
L+ Jδσi,σj

)
titj +∆

∑

i

ti, (19)

where again σi = 1, 2 . . . q while ti = 0 or 1. When the chemical potential ∆ = −∞, all the ti = 1 and
we are back to Potts model. On the other hand, a finite value of ∆ allows to have some ti = 0, correspon-
ding to vacant sites. Figure 2 shows the flow of the Hamiltonian (19) under a real-space renormalization
transformation. The value of q is unchanged by the transformation, so all flows are along cross-sections of
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Figure 2 – Flows within parameter space of the Hamiltonian (19) for a real-space renormalization group
transformation of the q-state Potts model with vacancies in dimension d = 2. The surface ABCD is critical.
It separates the ferromagnetic and disordered phases. EF and GF are lines of critical and tricritical fixed
points respectively. The line CD is for first-order fixed points. After B. Nienhuis et al. [Physical Review
Letters 43, 737 (1979)] and J. Yeomans, see reference below.

constant q. The variable L which appears in the Hamiltonian is necessary to close the parameter space but
is not pertinent to our argument and is suppressed from the diagram. The intersection of the critical surface
ABCD with the e∆−3J = 0 plane defines the critical temperature kBTc(q)/J of the usual pure Potts model.

45) What do we learn concerning the order of the phase transition ? What is the critical value of q in this
respect ? How does this compare to the mean-field scenario ?

46) Is this result compatible with Fig. 3 ?

47) In two dimensions, how can we compare the mean-field critical temperature to that found by duality
(question 44) ?

F. Open question

48) How would you compute the upper critical dimension in the present context ? What is its value ? You
can admit here that the critical exponent for the divergence of the correlation length is ν = 1/2. For
completeness, how can you show this result ?

G. Application

The physisorption of Krypton atoms onto a graphite plane provides a possible realization of Potts model.
In such a plane, carbon atoms are organized in a hexagonal structure, and Krypton preferentially adsorbs in
the center of the hexagonal rings (shown by circles on figure 4-a)). For steric reasons, an adsorbed Krypton
atom makes adsorption on nearest neighboring sites less likely, and we shall consider a 1/3 coverage (one
site occupied on average out of three). In this case, a possible ground state is shown in Fig. 4-b). There
thus exist three equivalent positions for the lattice of adsorbed Kr, and we admit that such a system can
be described by a Potts model, where a site corresponds to a triplet of original adsorption sites (see figure
4-c)), and where the spin indicates which of the three original sites is occupied. We therefore exclude the
possibility that Kr atoms desorb, which certainly happens at high T .
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Figure 3 – Computer simulations of the Potts model at the critical temperature, for q = 2, 3, 4 (top row)
and q = 5, 6, 9 (bottom row), from left to right. The different colors are for domains of like-spins ; there are
thus q colors in each Pott’s plot. From H. Duminil-Copin, arXiv:1707.00520.

b)a) c)

Figure 4 – a) Sketch of a graphite surface, where possible adsorption sites for Krypton atoms are represented
by the circles. b) A possible ground state at filling fraction 1/3. The sites occupied by Krypton correspond
to the black disks. c) Groups of triplets of adsorption sites, to define the sites considered in the Potts model
(where a q-states spin lives). Five such groups are shown in panel c).

49) What is then the value of q ? Figure 5 shows a configuration of Kr on the graphite plane, in which the
possible ground states coexist, and occupy well defined domains. Show on the figure the domain walls
(and do not forget to give this sheet back !). Which type of wall is the most energy consuming ?

H. Annex

The multinomial expansion reads

∑

k1+k2+...+km=n

n!

k1! k2! . . . km!
xk11 xk22 . . . xkmm = (x1 + x2 + . . .+ xm)n

References :
For question 49, see the cover of Statistical Mechanics of Phase Transitions by J. Yeomans (Oxford University
Press), inspired from Commensurate-incommensurate phase diagrams for overlayers from a helical Potts

model, M. Kardar and A. Berker, Phys. Rev. Lett. 48, 1552 (1982). An authoritative review on the Potts
model is that by F. Wu, Rev. Mod. Phys. 54, 1 (1982) though not covering interdisciplinary applications
(math, computer science, soft matter).
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Composition number :

Figure 5 – An instantaneous configuration of adsorbed Kr atoms on graphite, at filling fraction 1/3 ; the
question is to identify the different ground states coexisting, and the domain walls between them. . .

This sheet should be given back with the composition.
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