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Finite-size scaling - correction

A. Introduction

1) In a finite system, the partition function is an analytic function of its parameters (T , B. . . ). Its log
inherits from this property : the free energy does not exhibit any singularity.

2) The critical temperature is bounded by 2.25 J/k < Tc < 2.3 J/K

3) The mean-field critical temperature is 4J/k on a square lattice with four nearest neighbors. It has to
be larger than the exact result : mean-field is blind to some fluctuations, and thus overestimates the
extent of the ordered phase.

4) Since ν = 1 in two dimensions, we have α = 0, which hides a log divergence at Tc. This is special in
the sense that other quantities like χ or ξ will diverge as a power law of t, and thus more “violently”.

5) We generalize the vanishing field ansatz and write

χ
L
(T,B) = |t|−γf

(
L

ξ∞(t)
,
B

|t|βδ
)

(1)

where the field is “measured” in units of M δ
sp ∝ |t|βδ, Msp being the spontaneous magnetization.

Strictly speaking, Msp 6= 0 below Tc only ; yet, take take |t|βδ as the relevant scaling variable also
above Tc. Using that ξ∞ ∝ |t|−ν and changing scaling function, we trade |t| for L−1/ν and arrive

χ
L
(T,B) = Lγ/νg

(
tL1/ν , BLβδ/ν

)
. (2)

While f only depends on |t|, we chose for convenience to have g depend on t : we “glue” together the
branches above and below Tc.

6) Then χ
L
(Tc, B) = Lγ/νg

(
0, BLβδ/ν

)
. This scaling behaviour explains the quantity plotted in the

figure : γ/ν = 1.75. This also tells us that the quantity shown on the x-axis is BLβδ/ν = BL1.875 , or,
more probably, BL1.875/J to have it dimensionless.

7) It is not possible to have a second order phase transition for B 6= 0 : the susceptibility then does not
diverge. Besides, one can observe a first order transition for T < Tc, when B changes, but this is again
at B = 0.

8) In the language of the renormalization group, there are therefore two relevant scaling fields, associated
to T and B, that need to be fine tuned to locate the critical point.

B. Finite-size scaling for the correlation length with B = 0

9) The spin-spin correlation length ξ is traditionally defined from the large distance asymptotics of
the spin-spin correlation function. In a finite system, this may be a difficulty (large distance regime
masked).

10) A very similar scaling argument as above leads to

ξ
L
(t) = |t|−ν ϕ(t L1/ν) (3)

Thus a = −ν and b = 1/ν.
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11) Introducing φ(x) = x−νϕ(x), we get

ξ
L
(t) = Lφ(t L1/ν). (4)

12) In a very large system outside the critical point, ξ
L
does not depend on L. Therefore, φ(x) ∝ |x|−ν

for large |x|. This is compatible with the expected behaviour for the correlation length at a given t for
L → ∞ : it should behave like |t|−ν . In other words, ϕ(x) goes to a constant for large x. We recover
here a = −ν.

13) At a given L when t → 0, the correlation length cannot grow without bounds. When it “hits” the
system size, L limits ξ, so that we expect in this regime ξ

L
∝ L. As a consequence, we expect that for

small x, φ(x) goes to a constant.

14) We expect the function φ to have a unique maximum since it is this maximum that will lead to the
divergence of the corelation length when increasing L. We expect a unique critical point.

15) The idea is to plot ξ
L
/L as a function of T . Remarkably, the curves at different sizes will cross exactly

at Tc, if the scaling assumption is correct (and it is, provided T is not too far from Tc, and that the
sizes are not too small). Fig. 1 provides a sketch of the expected behaviour for 3 system sizes. All
curves cross at Tc, which offers a simple criterion for locating the critical temperature.

16) The localization of the maximum of ξ
L
/L as a function of T will define a temperature

T ∗
L = Tc + Tcx

∗L−1/ν . (5)

What matters here is T ∗
L − Tc ∝ L−1/ν . Thus, once Tc has been located by the crossing of curves, the

behaviour of T ∗
L as a function of L provides us with a measure of ν.

Figure 1 – Cartoon of rescaled correlation length ξ
L

as a function of temperature, for three system sizes
L1 > L2 > L3. The maxima of ξ/L, reached at Tc +
Tc x

∗ L−1/ν where x∗ is some constant, all coincide.

C. Finite-size scaling and transfer matrix calculations on strips : appli-

cations to two-dimensional Ising model

17) For a fixed M , the system is essentially one dimensional, especially seen from large distances. Hence,
no phase transition.

18) The key is in the periodicity along the short dimension. The Hamiltonian reads

βH = −βJ
(
s1s2 + s21 + s2s3 + s22 + s3s4 + s24 + . . .

)
(6)

A possible transfer matrix is T with elements T (s1, s2) = exp[βJ(s1s2 + 1)] :

T =

(
e2βJ 1
1 e2βJ .

)
(7)

19) The eigenvalues are t1 = 1 + x2 and t2 = x2 − 1 with x = eβJ .
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20) No divergence at finite T , no critical point.

21) The size of the transfer matrix for M = 2 is 4×4.

22) For M = 2, we have two rows of interacting spins, as in Fig. 2. It is convenient to define a spin vector
~si for each column i = 1, 2, . . ., with the two spin values associated to the two rows j = 1 and j = 2

(s
(1)
i , s

(2)
i ), see the figure. It is because the ~si can take four different values,

(
s
(1)
i

s
(2)
i

)
=

(
1
1

)
,

(
1

−1

)
,

(
−1
1

)
,

(
−1
−1

)
(8)

that the transfer matrix is 4 × 4. For arbitrary M , the transfer matrix would be 2M × 2M . The
Hamiltonian reads, remembering the boundary condition along the vertical direction

βH = −βJ
∑

i

(
s
(1)
i s

(1)
i+1 + 2 s

(1)
i s

(2)
i + s

(2)
i s

(2)
i+1

)
. (9)

Therefore, the elements of the transfer matrix are

T(~si, ~si+1) = e
βJ

[

s
(1)
i

s
(1)
i+1+2 s

(1)
i

s
(2)
i

+s
(2)
i

s
(2)
i+1

]

. (10)

With the ordering convention as in Eq. (8) and with , we obtain

T =




x4 x−2 x−2 1
x2 1 x−4 x2

x2 x−4 1 x−2

1 x−2 x−2 x4


 (11)

where x = eβJ . The two largest eigenvalues are

(
x4 + 2 + x−4 +

√
x8 + x−8 + 14

)
/2 , x4 − 1 (12)

which is compatible with the result given for the correlation length in the main text.

23) We have kTc ≃ J/0.435 ≃ 2.3 J . This compares well to the exact value in the figure.

Figure 2 – Situation with M = 2 in-
teracting spin chains. The two spin va-
lues for a given column i are lumped
together to define the spin vector ~si.

D. On the usefulness of Binder cumulants

24) For a Gaussian random variable X with mean 0, 〈X4〉/〈X2〉2 = 3.

25) Because σ is small compared to X∗, 〈X2〉 ≃ X∗2, 〈X4〉 ≃ X∗4. Thus, 〈X4〉/〈X2〉2 ≃ 1.
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26) At large T , the system is not magnetized globally and the correlation length can be assumed signi-
ficantly smaller than L. Thus, the global magnetization, which fluctuates around 0, results from the
contribution of a large number of domains with size ξd. From the central limit theorem, the distribu-
tion is Gaussian, hence the vanishing of U

L
. With N = Ld, we can compute the standard deviation

from the fluctuation-response connection :

NχkT = 〈N2s2
L
〉 =⇒ 〈s2〉

L
=

χkT

Ld
, (13)

involving the susceptibility per spin, that is arguably quite close to its large size limit. Below the critical
temperature, the right hand side of this relation still yields the standard deviation of magnetization
fluctuations. This standard deviation becomes smaller and smaller as L grows, while the spontaneous
magnetization will converge to a finite non-vanishing value. Hence, at small T , U

L
→ 1− 1/3 = 2/3.

27) The curves cross at the critical temperature (compatible with earlier estimates, more precise here). The
reason is that at Tc precisely, the correlation length ξ∞(t) diverges and no decomposition of the system
in boxes of volume ξd is possible. On general grounds, we expect the distribution of magnetization
PL(s) to exhibit a scaling form

PL(s) = LaP̃ (sLb, L/ξ∞). (14)

Normalization to unity imposes that a = b, but this is a detail. What matters is that at Tc, the
dependence on L is lost : what is measured by U

L
is the cumulant of a non-trivial function with zero

mean. To summarize

U
L
≃ 2/3 at small T , U

L
universal at Tc, U

L
≃ 0 at large T . (15)

The curves-crossing feature of the Binder cumulant, illustrated in the figure, is a widely used means
to locate the critical point.

28) (bonus) Another central limit argument points to the Gaussianity of s fluctuations below Tc. Attention
should be paid to the fact that the definition of U

L
involves 〈s4〉

L
which is not the cumulant. Denoting

by Msp the spontaneous magnetization, we have

〈(s−Msp)
4〉 = 3σ4 with σ2 =

χkT

Ld
. (16)

After a bit of algebra, one finds that at small T ,

U
L
≃ 2

3
− 4χkT

3LdM2
sp

. (17)

The deviation from 2/3 is negative, as expected from the figure, and provides us with a measure of χ.

E. Finite-size scaling for the order parameter

29) We start with the scaling assumption

〈|s|〉
L
= |t|β h1

(
L

ξ∞

)
= |t|β h2

(
L|t|1/ν

)
= L−β/ν h̃

(
L|t|1/ν

)
(18)

where c is some coefficient while h1, h2, h̃ are scaling functions.

30) In light of our scaling ansatz, the “rescaled magnetization” defined, as plotted in the figure, should be

|t|β/ν 〈|s|〉
L
, plotted as a function of L |t|1/ν . (19)

The two branches in the figure correspond to T < Tc and T > Tc. The behaviours for large x = L |t|1/ν
appear power-law.
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— Take T < Tc fixed, and L increases ; we expect 〈|s|〉
L
∝ |t|β, meaning h̃(x) ∝ xβ for large x.

— Take T > Tc, T fixed, and L again increases : 〈|s|〉
L
is the sum of uncorrelated random variables

with 0 mean and variance in 1/N (always the same argument of partitioning space in cells of
volume ξd∞ ≪ Ld), hence 〈|s|〉

L
∝ 1/

√
N = 1/L. Thus, h̃(x) ∝ xc for large x with exponent c

determined from the condition

1

L
= L−β/ν Lc/ν =⇒ c = β − ν. (20)

We conclude that the two slopes in Figure 3 are

β =
1

8
for the upper branch (T < Tc) and β − ν = −7

8
for the lower branch (T > Tc). (21)

Figure 3 – Slopes of the two branches of the order
parameter plot, that correspond to T > Tc and T < Tc
as indicated
.

F. How to distinguish first-order from second-order phase transitions ?

31) Weakly first-order means that the discininuity of the order parameter at Tc is small, which may confuse
and lead to believe that the transition is continuous.

32) We have

p± =
e±βBLdMsp

eβBLdMsp + e−βBLdMsp
(22)

33) The corresponding mean value reads

〈s〉
L

= p+ [Msp + χB] + p− [−Msp + χB] = Msp tanh
(
βLdMspB

)
+ χB . (23)

34) It then follows that that

χ
L
= χ + M2

sp

Ld

kT

[
1− tanh2

(
LdMspB

kT

)]
. (24)

35) From expression (24), the width ∆B is

∆B =
kT

MspLd
. (25)

The resulting slope at the origin isM2
spL

d/(kT ), and diverges with system size. The key feature is that
this divergence is not of the same type as that which holds at the critical point.
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36) Relation (24) fully explains the two figures... The limiting value shown by the arrows in both Figures
is χ.

37) The divergence of the susceptibility is not the same : simply L2 at a first order transition, for a
more subtle Lγ/ν at the critical point. Besides, the scaling variable for B is not the same in the two
situations : BL2 in the first case, BLβδ/ν in the second.

G. Slab geometry

38) Getting closer to the critical point, the correlation length will grow, and the system will behave as fully
3D, with thus χ ∝ |t|−1.25. Then, close enough to Tc, the correlation length will hit L⊥, and decreasing
further |t|, the system will more and more behave like a two-dimensional one, with χ ∝ |t|−1.75. In this
sense, the susceptibility features a crossover behaviour.

39) For the two-dimensional system in a strip L‖×L⊥, we may observe first χ ∝ |t|−1.75 until the correlation
length reaches L⊥. Closer to Tc, χ will saturate and stop to grow (one-dimensional behaviour).

40) (bonus) We use the fluctuation-response connection and the fact that G(r) ∝ r−η at Tc with d = 2 :

NkTχ =
∑

i,j

Gi,j ≃
∫
drdr′G(r− r′) (26)

and since N = L‖L⊥ :

χkT =
1

L‖L⊥

∫ L‖

O
dx1

∫ L⊥

O
dy1

∫ L‖

O
dx2

∫ L⊥

O
dy2

1

[(x1 − x2)2 + (y1 − y2)2]η/2
. (27)

It is safe to make use of the large r behaviour of G only, since we are interested in how χ diverges at
Tc. The above means that

χ = L1−η
‖ L⊥ ψ̃

(
L‖

L⊥

)
(28)

where ψ̃ is a scaling function. If we take L‖L⊥ = L, we get χ ∝ L2−η, to be compared with the law

Lγ/ν obtained earlier. This shows that 2− η = γ/ν .

41) The situation is different if the system is not some subpart of an otherwise infinite system, but finite
with some boundary conditions (periodic or free do not make a real difference). The correlation function
takes then a one dimensional form, exponential, in the regime L⊥ ≪ x≪ L‖. We next go back to the
fluctuation -response connection :

χkT =
1

L‖L⊥

∫ L‖

O
dx1

∫ L⊥

O
dy1

∫ L‖

O
dx2

∫ L⊥

O
dy2 L

−η
⊥ e−a|x1−x2|/L⊥ . (29)

This results in

χkT ∝ L2−η
⊥ , (30)

which does not depend on L‖. There is a transition only for L⊥ → ∞ (keep in mind that L⊥ is the
smallest dimension of the slab).
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