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Mean Field Games provide a powerful framework to analyze the dynamics of a large number of controlled 
objects in interaction. Though these models are much simpler than the underlying differential games 
they describe in some limit, their behavior is still far from being fully understood. When the system is 
confined, a notion of “ergodic state” has been introduced that characterizes most of the dynamics for 
long optimization times. Here we consider a class of models without such an ergodic state, and show 
the existence of a scaling solution that plays a similar role. Its universality and scaling behavior can be 
inferred from a mapping to an electrostatic problem.

© 2020 Elsevier B.V. All rights reserved.
Mean Field Games are a powerful framework introduced about 
a decade ago by Lasry and Lions [1] as an alternative approach 
to differential game theory when the number of agents becomes 
large (see [2] for a suitable introduction to the field for physi-
cists). Their applications are numerous, ranging from finance [3,4]
and economy [5,6] to engineering sciences [7,8], and wherever one 
has to deal with optimization issues for many coupled subsys-
tems. On a quite general basis, a Mean Field Game involves a set 
of N players (or agents) which are characterized by a continuous 
“state variable” Xi ∈ Rd , i = 1 . . . N , which, depending on the con-
text, may represent a physical position, the amount of resources 
owned by a company, the house temperature in a network of con-
trolled heaters, etc. These state variables evolve on a time interval 
[0, T ] according to some controlled dynamics, which we assume 
here to be described by a linear, d-dimensional, Langevin equation, 
dXi

t = ai
tdt + σdWi

t , where each component of Wi is an indepen-
dent white noise of variance one, σ is a constant, and the “control 
parameter” is the velocity ai

t . This control is adjusted in time by 
the agent i in order to minimize a cost functional over the re-
maining time to play, which in the simplest case can be assumed 
of the form
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c[ai](xi
t, t) = E

[∫ T
t

(μ
2 (ai

t)
2 − V [mτ ](Xi

τ )
)

dτ

+cT (Xi
T )

∣∣∣Xi
t = xi

t

]
. (1)

In (1), cT (x) is the terminal cost, an additional cost player i
would pay if his state at the end of the game, Xi(T ), is equal 
to x, μ is a positive constant, akin to a mass in physics, and 
V [mt](x) is a functional of the empirical density at time t mt(x) =
1
N

∑
j δ(x − X j(t)), through which the agents’ optimization prob-

lems are coupled. We shall assume V [mt](x) takes the simple form

V [mt](x) = U0(x) + g mt(x) . (2)

For a very large number of players, like in a mean field theory, the 
fluctuations of the empirical density are neglected and mt(x) be-
comes a deterministic quantity governed by a Fokker Planck equa-
tion. Furthermore, the optimization problems decouple and the 
optimal value of the cost (1) (the “value function”) for the agent 
i becomes a function of the variable xi

t , solution of an Hamilton-
Jacobi Bellman equation [9]. The resulting model is called a Mean 
Field Game and can be defined as a pair of coupled equations, de-
scribing the (forward in time) evolution of the density of players 
m(x, t) and the (time backward) evolution of the value function 
u(x, t). In the simple case we consider here the system of deter-
ministic equations takes the form [2,10]
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⎧⎪⎪⎨
⎪⎪⎩

∂tm − 1

μ
∇ [m∇u] − σ 2

2
�m = 0 (a)

∂t u − 1

2μ
[∇u]2 + σ 2

2
�u = V [m] . (b)

(3)

The coupling between the two PDE’s comes from two parts: 
in the Fokker-Planck equation (3a), the optimal velocity appears 
in the drift term and here is proportional to the gradient of the 
value function, a = − 1

μ∇u; in the Hamilton-Jacobi Bellman equa-
tion (3b) the term V [m] reflects the dependence of the cost func-
tional (1) on the density. This structure also induces rather atypical 
boundary conditions: the (forward) Fokker-Planck equation is as-
sociated with an initial condition m(0, x) = m0(x) specifying the 
initial distribution of agents, while the terminal cost CT in Eq. (1)
imposes a final condition for the value function, u(T , x) = cT (x). 
This forward-backward structure together with mixed initial-final 
boundary conditions leads to new challenges when trying to char-
acterize, either analytically or numerically, solutions to this system 
of equations.

For a large class of settings, which includes in particular the 
case of repulsive interactions when the system is confined either 
by a stabilizing external potential or because of a geometry with 
fixed spatial extension, such a system exhibits an ergodic (station-
ary) state, independent on the boundary conditions, which can be 
rigorously defined in the limit T → ∞ as an hyperbolic fixed point. 
The importance of this result, as proven by Cardialaguet et al. [11]
is twofold: for finite but long enough optimization time T , the 
game will stay very close to this ergodic (time independent) state 
except possibly in its initial and final parts. Furthermore, the tran-
sient dynamics near t = 0 and t = T completely decouple one from 
the other, and the mixed boundary problem simplifies accordingly: 
they describe how the initial and final boundary conditions match 
with the ergodic state and are characterized by two possibly dif-
ferent time scales, τi and τ f , independent on T .

The problem we want to address in this letter is the behavior 
of such a system when an ergodic state cannot exist, for instance 
when the state space is unbounded and the interactions repulsive, 
so that any initially localized configuration will expand forever. 
The natural question in such conditions is whether some kind of 
limiting (non-stationary) regime still exists for such systems that 
would, at some level, play a similar role as the ergodic state in 
confined systems.

Considering more specifically a one-dimensional problem with-
out “one-body” term (i.e. U0(x) ≡ 0), a first indication that this 
is indeed the case is brought out by numerical solutions for the 
system (3a)–(3b) for repulsive interactions (that is V [mt](x) =
gm(t, x), g < 0), starting from a localized initial density. Numer-
ical results (see Fig. 1) show clearly that except for transient times 
near t = 0 and near t = T , the density can be accurately fitted on 
an inverted parabolic shape

m(x, t) =
⎧⎨
⎩

1

N(t)
(z(t)2 − x2) if |x| ≤ z(t)

0 otherwise ,

(4)

where the prefactor is found to be N(t) = 4
3 z(t)3, as total mass 

conservation requires. Assuming this shape as an ansatz, the evo-
lution reduces to that of the scaling factor z(t), which is for most 
times found to grow as a power law (see left insert in Fig. 1)

z(t) ∼ t2/3 . (5)

These features appear for sufficiently long optimization time T , 
and are essentially independent of the initial and final boundary 
conditions provided the initial distribution has a bounded exten-
sion and the final cost is close to zero everywhere.
Fig. 1. Numerical simulation of the time evolution described by the system (3a)–(3b)
in one space dimension with T = 200, g = −2, σ = 0.5 and μ = 1. The initial dis-
tribution is a Gaussian of variance 0.1 centered at the origin, and the terminal cost 
is cT (x) = 0. The left inset shows a log-log plot of the time evolution of the density 
at the origin m(0, t) (full line), showing a t2/3 scaling behavior (dashed line) at al-
most all times. On the right inset the rescaled density z(t)m(x/z(t), t) is shown to 
have an invariant parabolic shape (with z(t) = 4/(3m(0, t))).

By analogy with the physics of Bose condensate, let us intro-
duce a characteristic length-scale, the healing length ν = μσ 2/|g|, 
which represent the typical distance on which interactions bal-
ances quantum pressure (or diffusion in our case) [12]. A neces-
sary condition for the behavior observed in Fig. 1 to appear is the 
smallness of ν with respect to other length-scales. This condition 
will however eventually be fulfilled at one point as the extension 
of density distribution grows in time, possibly inducing a time shift 
in (5).

What those numerical results tell us is that in this setting, the 
notion of ergodic state has been replaced by the next best thing, 
namely a universal scaling solution. The goal of this paper is to un-
derstand this puzzling result, in particular the 2

3 scaling exponent, 
and give some arguments in favor of its universality.

For this purpose, we now introduce a few formal transforma-
tions which allow to show that this result is rather natural and 
intuitive, once the problem is cast in its proper language. In turn, 
we will also gain a better understanding of this regime.

1. Hydrodynamic representation

The main idea behind the approach below comes from the deep 
link between Mean Field Games and the non-linear Schrödinger 
equation, discussed at lengths in [2], which allows for the use of 
several techniques developed to study Bose-Einstein condensates. 
One of these techniques, the Madelung substitution, is particularly 
well suited to deal with the small ν regime [13]. It consists in 
defining a velocity field v(t, x)

v(x, t) = −∇u

μ
− σ 2∇m

2m
, (6)

which maps the evolution (3a) for the density m to a simple trans-
port/continuity equation

∂tm + ∇(mv) = 0 . (7)

The evolution for the velocity field v derives from the HJB equation 
(3b) and reads

∂t v + ∇
[

σ 4

2
√

m
�

√
m + v2

2
+ g

μ
m

]
= 0 , (8)

and involves a O (σ 4) term. As in the context of cold atoms, this 
term can be neglected as long as the characteristic length of the 
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system is large in front of the healing length ν = μσ 2/|g| [13], 
leading to what is referred to as the Thomas Fermi approxima-
tion. This weak noise limit is also one of the requirements for the 
appearance of the parabolic behavior described in Fig. 1. In this ap-
proximation, the O (σ 4) term in (8) is dropped and the equations 
read⎧⎪⎨
⎪⎩

∂tm + ∇(mv) = 0

∂t v + ∇
[

v2

2
+ g

μ
m

]
= 0 .

(9)

These equations are formally very close to those studied for in-
stance in the field of cold atoms [12], the main differences being 
the (negative) sign of g , which makes the system elliptic rather 
than hyperbolic, and the nature of the boundary conditions. Within 
this approximation, it can easily be verified that the ansatz Eq. (4)
with

z(t) = 3

( |g|
4μ

)1/3

t2/3 , (10)

is a particular solution of the Thomas-Fermi-like equations Eq. (9). 
The real mystery is therefore not that such a particular solution 
does exist, but to understand why this t2/3 behavior shows up at 
all intermediate times for a large class of boundary conditions, and 
in other terms, why it is universal in the large optimization time 
limit.

2. Riemann invariant and hodograph transform

To answer this question, we shall turn to an approach devel-
oped in the context of non-linear waves [14], which relies on 
the notions of Riemann invariants and hodograph transform. Rie-
mann’s method can be considered an extension of the method 
of characteristics. It amounts to finding curves (characteristics) on 
which some quantities (Riemann invariants) are conserved. Here, 
one can show that there exists a pair of Riemann invariants, 
(λ+(x, t), λ−(x, t)), namely λ± = v ± 2i

√|g|m/μ, so that (9) reads⎧⎪⎪⎨
⎪⎪⎩

∂tλ+ +
(

3

4
λ+ + 1

4
λ−

)
∂xλ+ = 0

∂tλ− +
(

1

4
λ+ + 3

4
λ−

)
∂xλ− = 0 .

(11)

Though characteristics do not exist in this context (they are curves 
in the complex plane C2), this change of variables still allows us to 
linearize these equations using an hodograph transformation [14]. 
Taking the pair (λ+, λ−) as independent variables, we express x
and t as functions of them, so that the system (11) transforms into 
a linear one{

∂−x − β+∂−t = 0

∂+x − β−∂+t = 0 ,
(12)

where β± =
(

3
4 λ± + 1

4 λ∓
)

, and where we have introduced the no-

tation ∂± ≡ ∂
∂λ± . This system can be readily integrated once as

{
x − β+t = ω+
x − β−t = ω− ,

(13)

with ω± solution of

∂±ω∓ = −(∂±β∓)t = −1
t . (14)
4

Thus the functions ω± can be expressed as derivatives of a poten-
tial ω± = ∂±χ , where χ(λ+, λ−) is solution of an Euler-Poisson-
Darboux equation:

∂2+−χ − 1

2(λ+ − λ−)
(∂+χ − ∂−χ) = 0 . (15)

The main difference with the traditional treatment of NLS that 
we have closely followed until now is that here the Riemann 
invariants (λ+, λ−) are complex conjugates. In terms of its real 
and imaginary parts, ξ = 1

2 (λ+ + λ−) = v and η = 1
2i (λ+ − λ−) =

2
√|g|m/μ, equation (15) becomes

∂ξξχ + ∂ηηχ + 1

η
∂ηχ = 0 , (16)

which is the Laplace equation in cylindrical coordinates (with no 
angular dependence) with η and ξ as radial and axial coordinates, 
respectively. Equations (13) now read{
ηt = −Eη

2(x − ξt) = −Eξ ,
(17)

with Eη and Eξ the radial and axial components of the elec-
tric field, E = −∇χ . Note that even if (16) is originally a two-
dimensional problem, a clear connection with electrostatics
emerges when considering it a three dimensional one with ax-
ial symmetry.

3. Potential representation

Through the hodograph transform we have shown that for any 
potential χ , solution of the Laplace equation (16), there is a solu-
tion to the Thomas Fermi equation (9) provided that the relations 
(17) between x, t and the electric field E hold. The linear Laplace 
equation (and the related electrostatic problem) is clearly signif-
icantly simpler than the original non-linear hydrodynamic equa-
tions. The price to pay for that simplification is that taking into 
account the boundary conditions becomes highly non-trivial since 
the locus of the curves t(ξ, η) = 0 or t(ξ, η) = T on which these 
conditions are expressed actually depend on the particular poten-
tial χ(ξ, η) considered.

However, since the dynamics we are interested in is asso-
ciated with the spreading of the density of agents, the curves 
t(ξ, η) = const. are contracting as t increases, smaller time curves 
including every larger time ones. If we consider χ as generated by 
a distribution of charge ρ(ξ, η), Eq. (16) implies that ρ(ξ, η) = 0
between the curves t(ξ, η) = 0 and t(ξ, η) = T but can be non-
zero either near the origin (for times larger than T ) or at large 
distance (corresponding to negative times). If the optimization 
time is long enough we can assume that there exists a range 
of times [t̃min, ̃tmax], 0 � t̃min, t̃max � T , so that for any curve 
t(ξ, η) ∈ [t̃min, ̃tmax] the distributions of charges both at the origin 
and “at infinity” are far enough so that the effects of their mo-
ments are essentially negligible. Since the total charge at infinity 
contributes only by an irrelevant constant, we can give a good ap-
proximation of χ in this range of time as the potential created by 
a point charge Q 0 located at the origin

χ(η, ξ) ≈ Q 0√
η2 + ξ2

, (18)

with a relation between Q 0 and the boundary conditions of the 
problem yet to be determined.

The main result of this paper is that the approximation of the 
charge distribution by a monopole centered at the origin is pre-
cisely the observed universal behavior expressed by Eqs. (4)-(5). 
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In addition the conditions under which this approximation is valid 
provide the regime of validity of the scaling form Eqs. (4)-(5). In-
deed, inserting Eq. (18) into Eq. (17) and inverting the relation 
between (ξ = v, η = √|g|m/μ) and (x, t) readily gives⎧⎪⎪⎨
⎪⎪⎩

m(t, x) = 3
(
(μQ 0/2g)2/3z(t)2 − x2

)
4z(t)3

v(t, x) = − z′(t)
z(t)

x ,

(19)

for |x| < z(t), with z(t) given by Eq. (10). It suffices now to show 
that independently of the boundary condition we have Q 0 = 2g/μ
(which is in any case required by the normalization of m(x, t)), to 
prove that Eq. (19) is in fact the numerically observed scaling form 
Eqs. (4)-(5).

To show this, we can simply apply Gauss’s law∫
St̃

(�E · �n)dS = 4π Q 0 (20)

on a surface St̃ such that t(η, ξ) = t̃ = const., for any 0 ≤ t̃ ≤ T . 
Parametrizing this surface by (x, θ), with dS = η j(x, ̃t)dθdx (with 
j(x, ̃t) ≡ √

(∂xξ)2 + (∂xη)2), and the normal �n to the surface St̃
given by �n = (nξ , nη, nθ ) = j(x, ̃t)−1 (∂xξ,−∂xη,0), we get

Q 0 = 1
4π

∫ 2π
0

∫
R η

[
2(x − ξ t̃)∂xη − ηt̃∂xξ

]
dθdx

= 1
2

∫
R

[−t̃∂x(η
2ξ) + 2xη∂xη

]
dx . (21)

If we assume η to decrease sufficiently fast with x, the first, time 
dependent, term integrates to zero. This was to be expected be-
cause no matter the time t̃ , as long as 0 < t̃ < T , the total charge 
included in St̃ is the same: Q 0 is by construction a constant of 
the motion. Integrating by part and recalling that η = 2

√|g|m/μ, 
Eq. (21) yields Q 0 = 2g

μ

∫
R mdx, which, because of the normaliza-

tion condition on m(x, t), is the required result.

4. Conclusion

Introducing a potential representation for the [1d potential-
free] Mean Field Game problem Eqs. (3a)–(3b), we have shown 
that the remarkable, and a priori quite puzzling universal scaling 
form we have observed numerically for large optimization times 
can be derived in a very natural way. In this representation, it ap-
pears as the simple fact that the related potential χ , sufficiently far 
away from the charge distribution which creates it, can be well ap-
proximated by the potential generated by a single monopole. The 
condition of being sufficiently far from both the charges near the 
origin and the one near infinity is reflected in the MFG problem by 

considering times far from both t = 0 and t = T , which is of course 
only possible in the limit of very long optimization time. In some 
sense, we have thus been allowed to replace the notion of ergodic 
state by what could be thus called “an ergodic scaling form” in a 
situation where a genuine ergodic state cannot exist.

At a more general level, the potential representation of this 
Mean Field Game underlies the integrability of the hydrodynam-
ical equations (9). Beyond the simple monopolar approximation 
Eq. (18), we can construct a complete multipolar expansion for the 
potential χ , and it can be seen easily that each “charge” of this ex-
pansion correspond to a conserved quantity of the dynamics. The 
mapping between the boundary conditions and these charges be-
ing thus equivalent to the mapping between boundary conditions 
and constants of the motion. This consideration emphasizes the 
fact that the deep reason behind the scaling law characterizing the 
1d potential free MFG that we consider in this paper is actually 
their integrable character. A more in depth discussion of this ques-
tion will appear in a separate publication [15].
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