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We study the consequences of matter-wave revivals associated with many-body quantum interferences on
physical observables for an ultracold bosonic system in an optical lattice. For the Bose-Hubbard dimer, we
show that the interplay between weak intersite tunneling and strong on-site interactions can lead to the quantum
dynamics of a density wave displaying several features not found in the mean-field limit. We demonstrate in
particular the influence of these phenomena on occupancy oscillations and coherence. We furthermore observe
resurgent revivals and a (anti)synchronization of revival peaks and occupancy oscillation peaks, which are the
signatures of cooperative matter-wave interference effects that alternate between constructive and destructive
features leading to the peak revival behaviors. The impact of such many-body quantum interference phenomena
in various experimentally accessible observables is presented, paving the way for their detection in future
ultracold-atom experiments.
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The quantum dynamics of isolated, far-from-equilibrium,
strongly interacting many-body systems exhibit an exten-
sive range of phenomena intimately linked to developing
quantum interferences and superposition. They underlie en-
tanglement generation [1], relaxation towards equilibrium [2],
the saturation of out-of-time-ordered correlators [3], and other
post-Ehrenfest timescale phenomena [4] and they play a sig-
nificant role in the context of scarring phenomena related to
the absence of thermalization [5–7]. Early on, the ground-
breaking experiment of Greiner et al. [8] demonstrated the
dispersal and subsequent revivals of matter-wave fields using a
Bose-Einstein condensate in an optical lattice. This cannot be
described in a mean-field approximation, such as the truncated
Wigner approximation (TWA) [9–11], due to the necessarily
elaborate constructive many-body quantum interferences re-
quired to reconstruct the matter-wave field.

Revivals are a well-known and remarkable signature of
quantum interferences in the context of ordinary Schrödinger
dynamics [12,13]. Experimentally realized with electronic
wave packets in Rydberg atoms, both revivals [14] and frac-
tional revivals [15] have been observed. There the evolution
of minimum-uncertainty wave packets initially disperse just
as a consequence of Heisenberg’s uncertainty principle and
underlying nonlinear classical dynamics. For a wave packet
initially centered somewhere along a periodic orbit, the ex-
pected recurrences collapse at the outset, the more nonlinear
the dynamics, the more rapidly they diminish. Later, for in-
tegrable dynamical systems with effectively one degree of
freedom or a few degrees of freedom and rationally related
timescales, the wave packet is observed to be reconstructed
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as a result of a delicate balance of multiple constructively
interfering components; note, however, that it is possible to
observe wave-packet revivals even in low-dimensional chaotic
systems under exceptional circumstances [16]. Recently, al-
most complete revivals have also been reported in a local
observable with spin lattices [17].

In the context of many-body bosonic systems, the perfect
analogy to a minimum-uncertainty wave packet is a Glauber
coherent state [18]. Nevertheless, surprisingly few studies
of coherent state revivals have been reported in the context
of ultracold quantum gases, which otherwise constitutes a
rather powerful platform for performing an enormous vari-
ety of quantum simulations [19]. The notable exception is
the aforementioned experiment of Greiner et al. [8]. There
the corresponding “classical dynamics” is not related to the
condensate atoms’ motional degrees of freedom, but rather to
the underlying mean-field description in terms of a condensate
wave function whose phase undergoes oscillations within each
well.

The Bose-Hubbard model’s dynamics becomes richer with
the introduction of tunneling between wells, as opposed to the
single-well setup considered in [8]. Here phenomena emerge
as varied as superfluid to Mott insulator phase transitions
[20,21], Josephson oscillations and self-trapping [22,23], and
chaotic dynamics [24], to name a few of the possibilities.
It is therefore natural to investigate many-body quantum in-
terference phenomena in bosonic matter field dynamics as
a function of the competition between tunneling and inter-
action strengths. In this regard, considerable effort has been
directed toward quantum entanglement and thermalization
studies [2,25–28], but far less attention has been paid to the
revivals themselves (although see [29,30] for numerical inves-
tigations of revivals in double wells, [31–34] for theoretical
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studies of revivals in optical lattices with finite hopping, and
[35] for a semiclassical analysis in the weakly interacting
regime).

In this Letter we show that even though the perfect re-
vivals of the tunneling-free Bose-Hubbard model degrade
with increased tunneling strength [32], imperfect revivals
can persist up to an appreciable magnitude. Their presence
evinces a significant amount of constructive many-body quan-
tum interference over a broad dynamical range. Under these
circumstances, remarkable and exotic behaviors emerge de-
tectable through simple one-body observables, such as on-site
particle number and coherence, which are readily available
to experimental implementation [8]. In particular, a counter-
intuitive buildup in revival quality is described as a function
of increasing perturbation strength and a resonant synchro-
nization between observables is exposed. This Letter both
pinpoints what to look for when attempting to detect revival
patterns in Bose-Einstein condensates trapped in complex op-
tical lattices and provides a concise theoretical explanation for
the phenomena presented.

Consider the dynamical situation of an optical lattice
with periodic boundary conditions in which alternating sites
are loaded with coherent states of differing mean occu-
pations and/or phase, i.e., a density wave arrangement
corresponding to a condensate wave function of the form
(. . . , ψ1, ψ2, ψ1, ψ2, . . .) on the lattice. In the mean-field de-
scription of this arrangement, there exists a symmetry plane
whose dynamics can be mapped exactly onto a Bose-Hubbard
dimer model [36]. This mapping is of practical relevance
as long as the dynamics out of the symmetry plane do not
appreciably develop in the course of the time evolution, i.e.,
for weak hopping effects in the lattice, and as long as homo-
geneity, in particular also in the interaction parameter U , can
be maintained along the lattice.1

The dimer has also been of great interest in its own right
and as a bosonic Josephson junction [23,37,38]. It is given by

Ĥ = −J (â1â†
2 + â2â†

1) + U

2
[n̂1(n̂1 − 1) + n̂2(n̂2 − 1)], (1)

where J gives the tunneling strength and U the interaction
strength. It suffices to investigate the revival dynamics of a
Bose-Hubbard dimer with strong repulsive interaction and a
tunable hopping strength in order to illuminate the far greater
range of resultant many-body quantum interference effects.
It is quite helpful to use a scaled time τ = Ut/2π h̄ as re-
vivals occur for τ very nearly equal an integer. The ratio of
tunneling to interaction strength divided by the mean occu-
pancy of the sites fixes the dynamics in the mean-field limit.
Thus, γ = 2J/nU , where n = n1 + n2. Its use enables a direct
comparison of systems with different n as their mean-field
dynamics are identical. It also serves as the natural parameter
which emerges from semiclassical and quantum perturbation
theories as a function of J .

1Small site-to-site variations δU in the interaction parameter U
(e.g., due to the presence of a global confinement potential) give
rise to reductions of the height and width of the revival peak dis-
cussed here. Those effects can be neglected as long as one has
|δU/U | � γ 2.

FIG. 1. (a) Time evolution of n2(τ ) [blue (dark gray) solid line],
calculated for γ = 0.14 and n = 200. Initial population oscillations
between the two sites rapidly decay, but return for τ ≈ 1, near the
revival. (b) Close-up showing also the TWA [red (light gray) dashed
line] which cannot reproduce this oscillatory feature. (c)–(f) Out-
comes of numerically simulated occupancy measurements for 1000
repetitions. After the initial transient and well away from τ ≈ 1,
(c) and (f) show a thermal-like density. Clear deviations are found
at a local (d) maximum and (e) minimum of n2(τ ). These detection
statistics are reflected in the occupancy standard deviations, blue
shaded zone of (b) (n2 − �n2, n2 + �n2).

Denoting by |z1, z2〉 the coherent state such that âi|z1, z2〉 =
zi, and thus ni = |zi|2 (i = 1, 2), the dynamics display a num-
ber of striking quantum interference effects for an initial
state given by the limit of one unoccupied site |z, 0〉, i.e.,
(n1, n2) = (n, 0). The first observation is that the interference
effects are strong enough to be clearly visible in a simple
and measurable one-body observable [2], namely, n2(τ ) =
〈ψ (τ )|n̂2|ψ (τ )〉 (see Fig. 1). In the self-trapping dynamical
regime, the originally empty site occupancy n2(τ ) displays a
short time transient rapid oscillation and then settles down to
its long time average. This behavior is captured properly by a
TWA calculation as expected. However, in the neighborhood
of the revival time, but slightly earlier, a rapid oscillation
reappears that is entirely missed by the TWA. In addition, for
most times, where there are no oscillations in n2(τ ), there is
a stable probability density (relative frequency) of finding a
particular integer value when measuring n̂2, the most probable
value being zero; the density appears roughly exponential.
Inside the time envelope of the reviving rapid oscillations,
near a minimum the measurement probability is more or less
a Kronecker δn20. A very short time earlier though (a frac-
tion of τ/n), the measurement probability is peaked near 4
and has significant probability up to about 8, thus displaying
wild swings in the occupancy probabilities. As γ increases,
the magnitude of the oscillations increases, i.e., increasing
tunneling leads to greater constructive many-body quantum
interference in n2(τ ), perhaps up to γ ∼ 0.2. A good mea-
sure to illustrate the stability of the probability density is the
standard deviation ±�n2. Its range is indicated by the blue
shaded region of Fig. 1(b). Away from the reviving n2(τ )
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FIG. 2. Time-dependent mean occupancy n2(τ ) [upper blue
(dark gray) line] and coherence a2

2(τ ) [lower red (light gray) line]
for N = 200, with (a) and (b) γ = 0.074, (c) and (d) γ = 0.098,
and (e) and (f) γ = 0.17. As shown in the close-ups in (a), (c), and
(e), n2(τ ) and a2

2(τ ) initially display synchronous oscillations that
rapidly decay. Whereas the occupancy saturates at a steady value,
the coherence vanishes at some point. Later it revives near τ � 1
(see Fig. 4 for a close-up of the revival feature).

oscillations, the probabilities are stable and little is changing,
but in the oscillating region �n2 is rapidly varying between
nearly vanishing and the long time average of n2(τ ).

Various quite different theoretical approaches can be used
to analyze successfully these behaviors and those displayed
in the following figures as well. A modified quantum pertur-
bation theory that goes up to second order in the eigenvalues,
but to higher orders in the eigenfunctions, captures the oscilla-
tions and, for example, predicts that the peak of the oscillation
envelope of n2(τ ) shifts forward in time by γ 2/2 from τ = 1,
consistent with Fig. 1. Another approach bootstraps Einstein-
Brillouin-Keller (EBK) quantization information into the
TWA to create a hybrid theory, which also predicts the oscilla-
tions and γ 2/2 shift and gets increasingly precise as the total
number of particles increases. The details of both approaches
are left to a complete accounting elsewhere [39].

A second important observable, measured by Greiner et al.
[8], is the coherence given by a2(τ ) = |〈ψ (τ )|â|ψ (τ )〉|2. It is
much more closely related to a revival by virtue of the fact
that coherent states are eigenstates of â, i.e., â|z〉 = z|z〉. A
desirable feature is that a2(τ ) only approaches the value of
n = |z|2 in the case that |ψ (τ )〉 approaches |z〉 to within some
global phase. Excluding the special case of z = 0, renormal-
izing the coherence by n gives a measure bounded from above
by unity that only attains unity in the case of |ψ (τ )〉 = |z〉. For
the density wave arrangement, it turns out that the information
contained in the coherence of the initially empty site behaves
quite differently from that of the initially occupied site.

Beginning with the unoccupied site, for the sake of better
illustration both a2

2(τ ) and n2(τ ) are plotted together in Fig. 2
versus τ [without renormalizing by n2(τ )] for a range of γ

values. In the initial decay of oscillations, it is seen that the
two measures begin approximately equal, indicating that
the state remains close to a coherent state unentangled with the
other occupied site. After a couple of oscillations or so, a2

2(τ )
decreases more and more relative to n2(τ ) and after the oscil-
lations die down it slowly vanishes. This decay rate increases
with increasing γ . In the region of the revived oscillations, it
returns close to the value of n2(τ ) again for an oscillation or
so. However, once γ is sufficiently large that the long time
average of n2(τ ) exceeds unity, a2

2(τ ) stops recovering to a
nearly perfect coherent state and only partially succeeds in do-
ing so. Similarly, the revived n2(τ ) oscillations cease reaching
all the way down to zero beyond the same value of γ . Also,
as γ increases there is an increasing shift between the two
envelopes of the a2

2(τ ) and n2(τ ) oscillations. The envelope of
a2

2(τ ) shifts almost imperceptively later by 3γ 2/2n, whereas
the n2(τ ) envelope shifts earlier by approximately γ 2/2, as
previously mentioned.

In the context of single-particle physics, such as pump-
probe experiments in Rydberg atom electronic wave packets
[14,15], the return probability (autocorrelation function)
C(τ ) = |〈�|�(τ )〉|2 is the measure most often considered
experimentally and theoretically [13]. A good measure for the
quality of a revival is given by its peak value. Unity indicates
a perfect revival. This is similarly true for the renormalized
coherence for the occupied site a2

1(τ )/n. In Fig. 3 the peak
values of both measures are plotted as a function of γ for
various total particle numbers; from top to bottom, the mean
particle numbers n = 50, 100, and 200, respectively. The oc-
cupied site coherence shows that at its peak, the occupied
site coherent state is nearly perfectly reconstructed through
many-body quantum interferences in its time evolution for γ

values up to approximately γ = 0.25. Beyond this it decays
more and more quickly with increasing particle number. The
robustness of the coherence is somewhat surprising as this
dynamics at γ = 0.25 is halfway towards the self-trapping
transition at γ = 0.5 for the initial state. It therefore represents
a rather strong perturbation to the dynamics, and revivals,
which depend very sensitively on delicate constructive inter-
ferences, are typically easily destroyed.

In a little bit of a contrast, the return probability decays
more quickly since it contains information about both the oc-
cupied and unoccupied sites. Figures 1 and 2 illustrate that the
coherent state character of the wave function on the initially
unoccupied site degrades more rapidly with increasing γ and
therefore so must the return probability. Nevertheless, it shows
a certain robustness against destruction with increasing γ and
it also displays large variations, being far from a monotoni-
cally decreasing function. In a sense, the revival is exhibiting
a resurgent behavior with increasing perturbation, which is a
priori rather surprising. Clearly, increasing the mean particle
number n increases the numbers of successive maxima and
minima that appear in the curves. Each local maximum repre-
sents a resurgence in the revival, whereby increasing γ from
the previous minimum increases the revival quality and the
amount of constructive interference. Curiously, the γ values
of the resurgent revival peaks arise for integer values of the
long time average of n2(τ ) and the local minima correspond
to the half-integer values [compare Fig. 3(c) with Figs. 2
and 4].
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FIG. 3. Maximal value of the revival peak for the renormalized
occupied-site coherence [upper red (light gray) line] and the return
probability to the initial state [lower green (dark gray) line] as a
function of γ for (a) n = 50, (b) n = 100, and (c) n = 200. Note
the pronounced variations in the return probability peak heights.
In (c) the dashed lines at γ = 0.098, 0.14, and 0.17 indicate local
maxima of the curve associated with the return probability. As seen
in Figs. 2 and 4, these local maxima correspond to values of γ for
which the long time average of n2(τ ) takes on an integer value (see
Fig. 2). The local minima (dotted line at γ = 0.074) are found at
γ values for which the long time average of n2(τ ) is a half-integer
(see again Figs. 2 and 4). The revival peak heights are essentially
perfectly reproduced by a high-order quantum perturbative calcula-
tion indicated by the black dots. Similar but far smaller variations
of the renormalized occupied-site coherence exist, but are effectively
imperceptible in this figure.

The near-perfect agreement of the quantum perturbation
theory with the quantum calculations and its necessary re-
liance on high-order mixing in the eigenstates hints that as
they acquire increasing components of greater site 2 occupan-
cies, the resurgence in the revivals is due to some kind of a
cooperative interference effect. The unperturbed dimer under-
goes oscillatory dynamics that is characterized by two energy
or frequency scales with which one can straightforwardly
associate corresponding timescales, namely, the revival time
τr and the phase oscillation period τp = τr/n (the rapid os-
cillation of Figs. 1, 2, and 4). In the canonical approach
to understanding revivals [12], the timescale τr is related to
the discrete second difference of eigenvalues, whereas τp is
related to the discrete first difference. From either the quantum
perturbative or the EBK-bootstrapped TWA perspectives [39],
increasing γ shifts these frequencies weakly. For example, the
revival time at first shifts roughly τr (γ ) ≈ τr (0)(1 + 3γ 2/2n)
as γ increases from zero. This is the time at which the two
frequencies remain as close to an integer relationship as pos-
sible.

However, there is a dependence on the n2-site occupation
probability distributions, and as higher occupancies are popu-
lated with increasing γ , there is a general decay in the quality
of the revival and magnitude of the n2(τ ) oscillations with
both completely disappearing well before the self-trapping

FIG. 4. Close-up of the revival feature (a)–(c) in the return proba-
bility to the initial state, (d)–(f) in the occupancy on site 2, and (g)–(i)
in the coherence on site 2, for the parameters n = 200 and (a), (d),
and (g) γ = 0.074; (b), (e), and (h) γ = 0.098; and (c), (f), and (i)
γ = 0.17. As seen in Fig. 3, the case γ = 0.074 [(a), (d), and (g)]
corresponds to a local minimum in the peak return probability as
a function of γ , whereas the other cases shown here correspond to
local maxima in the return probability. In the case of such a local
maximum, the occupancy on site 2 becomes minimal at the instance
where the return probability revival takes place (vertical dotted lines),
thereby maximizing the population on site 1, whereas a maximal
population on site 2 is encountered at the revival time in the case
of a local minimum in the peak return probability.

transition is reached. A clue to the additional mechanism
responsible for the resurgence in the revivals on top of this
simple picture is illustrated in Fig. 4. Figures 4(a), 4(d), and
4(g) show that the first minimum in the peak return probability
occurs for a γ value at which the return probability peaks in
time at exactly the same time as the n2(τ ) oscillation peaks.
The other columns illustrate that the resurgent revival peaks
are at γ values for which the return probability peak is syn-
chronized with a local minimum in the n2(τ ) oscillations. This
synchronization coincides with the long time averaged n2(τ )
taking on integer values; the minima are at half-integer values.
This (anti)synchronization that minimizes the occupancy of
site 2 at the moment that the system is rebuilding the initial
coherent state to a maximal extent in site 1 cooperatively aids
the overall constructive interference necessary for the overall
revival.

In summary, the competition between intersite tunneling
and intrasite particle interactions creates elaborate revival
phenomena leading to occupancy oscillations, resurgent re-
vivals, and (anti)synchronization of occupancy and revival
peaks due to cooperative many-body quantum interference
effects. All of these effects are amenable to experimental
verification via an adaptation of the pioneering coherence
experiment of Greiner et al. [8]. The procedure that was
carried out therein would have to be applied to optical su-
perlattices [40] that are effectively constituted by sequences
of spatially displaced Bose-Hubbard dimers between which
tunneling is suppressed. Brillouin zone mapping techniques
[40] can be used to displace the populations on the two
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sites to distinct regions in momentum space, which allows
one to access the coherences associated with site 1 or 2,
whereas site population statistics as shown in Fig. 1 can
be obtained with quantum gas microscopes [2]. Owing to
the connection between the classical dynamics of the dimer
and that of the symmetry plane of an ultracold-atom density
wave in an optical lattice, analogs of these effects should
also exist in the latter case (as was shown in [4] for four-

and six-site lattices); it would be interesting to extend the
analysis beyond the symmetry plane to understand how the
other dynamical degrees of freedom impact all of these novel
behaviors.
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