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Semiclassical mechanics allows for a description of quantum systems which preserves their phase information,
and thus interference effects, while using only the system’s classical dynamics as an input. In particular one of
the strengths of a semiclassical description is to present a coherent picture which (to negligible higher-order h̄
corrections) is independent of the particular canonical coordinates used. However, this coherence relies heavily
on the use of the stationary phase approximation. It turns out, however, that in some important cases, a brutal
application of stationary phase approximation washes out all interference, and thus quantum, effects. In this
paper, we address this issue in detail in one of its simplest instantiations, namely the evaluation of the time
evolution of the expectation value of an operator. We explain why it is necessary to include contributions which
are not in the neighborhood of stationary points and provide new semiclassical expressions for the evolution
of the expectation values. The efficiency of our approach is based on the fact that we treat analytically all the
integrals that can be performed within the stationary phase approximation, implying that the remaining integrals
are simple integrals, in the sense that the integrand has no significant variations on the quantum scale (and thus
they are very easy to perform numerically). This to be contrasted with other approaches such as the ones based
on initial value representation, popular in chemical and molecular physics, which avoid a root search for the
classical dynamics, but at the cost of performing numerically integrals whose evaluation requires a sampling on
the quantum scale, and which are therefore not well designed to address the deep semiclassical regime. Along
the way, we get a deeper understanding of the origin of these interference effects and an intuitive geometric
picture associated with them.
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I. INTRODUCTION

Semiclassical approximations form a family of techniques,
including for instance the van Vleck approximation of the
quantum evolution operator [1], the time-dependent Wentzel
Kramers Brillouin (WKB) approximation for the propagation
of wave functions [2], or the Gutzwiller trace formula for
the density of states [3,4], making it possible to describe
quantitatively a quantum system in a certain range of param-
eters, using only an input from the corresponding classical
dynamics. In our nomenclature classical approximations of a
quantum quantity are approximations in which interference
effects are ignored, or lost. By contrast, semiclassical approx-
imations are such that information about phases is kept and
thus provide a description of interference effects.

The stationary phase approximation plays a central role in
semiclassical approaches. Indeed, common tools in quantum
mechanics, such as the Fourier transform or the Wigner trans-
form, involve integrals of the form∫

dKq A(q)e
i
h̄ S(q), (1)

where the integrand has a smooth envelope A(q) and a
rapidly oscillating phase S(q)/h̄. For relatively deep reasons,
semiclassical approximations usually keep the leading-order
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term and the first-order correction in h̄ but neglect higher-
order corrections, which is exactly what the stationary phase
approximation does. Within the semiclassical framework, in-
tegrals such as (1) are thus essentially always performed
within the stationary phase approximation, and the under-
standing that any such integral has to be performed within
this approximation actually provides a global coherence to the
semiclassical pictures. Consider, for example, the van Vleck
formula expressing the Feynman propagator as a sum over
classical trajectories. It can be derived through a WKB ap-
proximation “à la Maslov” [5], where one looks for solutions
of partial differential equations in the form of formal series in
h̄. It can also be obtained from the path integral representation
of the exact quantum evolution operator if all integrals in the
path integral formalism are performed within the stationary
phase approximation [6]. Both approaches lead to exactly the
same result.

One of the great strengths of semiclassical approaches is
the possibility to freely choose the system of coordinates
suited to our needs. Indeed, one can show that semiclassical
approximations keep the same form under a canonical change
of the classical variables within the stationary phase approx-
imation. This property is used in particular by Maslov [5]
to treat cases where the amplitude A(q) in (1) may become
singular, as we shall see later in this paper.

Because of the identity between expressions obtained from
the Maslov h̄ expansion and the stationary phase approxima-
tion, there is, in the mind of many practitioners of the field,
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a kind of identification between semiclassical and stationary
phase approximations. There are of course some limitations
to this identification, as in some circumstances, e.g., near
turning points or caustics, or near the bifurcation of a periodic
orbit, a naive application of the stationary phase approxima-
tion leads to divergences. These have to be cured by uniform
approximations, in which the behavior of the neighborhood
of stationary phase point is described more carefully than
the usual quadratic approximation. It remains nevertheless
that in almost all circumstances, only the neighborhood of
the stationary phase points can contribute significantly to an
integral of the form (1), and within a semiclassical approach
to a physical problem this is most of the time implicitly or
explicitly assumed.

There is, however, a class of problems for which this
rather natural assumption turns out to fail. This class includes
relatively “involved” physical quantities, like fidelity [7–9],
OTOC [10,11], or the quantum corrections to the conductance
in mesocopic quantum dots [12,13], but also some others as
benign as the time evolution of the expectation value 〈Ô〉 =
〈�|Ô|�〉 of an operator Ô for some time-dependent quantum
state |�t 〉 [14], or more general correlation functions [15]. In
this paper, we shall focus on the simple case of the expectation
value.

To be more specific, consider a K-dimensional dynamical
system, whose phase-space M is the set of points x = (p, q)
with p = (p1, . . . , pK ) and q = (q1, . . . , qK ). Suppose the
system is initially described by a state |�0〉, which evolves
under some Hamiltonian dynamics to a state |�t 〉 at time
t . The Wigner transform O(x) of an arbitrary operator Ô is
defined by

O(x) = 1

(2π h̄)K

∫
dKq′e− i

h̄ p.q′
〈
q + q′

2
|Ô|q − q′

2

〉
,

x ∈ M. (2)

We denote by Wt (x) the Wigner transform of the state |�t 〉,
namely

Wt (x) = 1

(2π h̄)K

∫
dKq′e− i

h̄ p.q′
�t

(
q − q′

2

)
�t

(
q + q′

2

)
,

(3)

where bar denotes complex conjugation. The expectation
value 〈Ô〉(t ) = 〈�t |Ô|�t 〉 can then be written [16] as the
phase-space integral,

〈Ô〉(t ) =
∫

dKx Wt (x)O(x). (4)

Suppose Ô is “smooth” in the sense that its Wigner transform
varies only on the classical scale. Then one can show that
keeping only the contribution of the neighborhood of station-
ary phase points in the integral of Eq. (4) leads to [17]

〈Ô〉cl(t ) =
∫

dKx W0(x) O(gt x) =
∫

dKx W0(g−1
t x) O(x),

(5)
with gt the classical Hamiltonian flow characterizing the clas-
sical dynamics associated with the Hamiltonian Ĥ . In words,
〈Ô〉cl(t ) is obtained as the overlap of the Wigner transform
of the operator Ô with the classically evolved Wigner trans-
form of the state |�〉. This expression is often referred to

as the linearized semiclassical initial value representation
(LSC-IVR) [18] in chemical or molecular physics, or the
truncated Wigner approximation (TWA) in the context of
cold atoms [19], but can be tracked back at least to the
work of Heller [20] in 1976 and is discussed in the review
written by Wigner and coauthors [21] in 1984. Within this
approximation, all interference effects are washed out, and the
expression (5) yields essentially the classical approximation to
the mean value.

This result actually leads us to consider several possibil-
ities. The first one would be that either interference effects
are indeed completely washed out and that for the expectation
value of any smooth operator, the classical approximation
Eq. (5) is indeed a correct description of the quantum evo-
lution, or that rapidly oscillating corrections to this classical
terms do exist but that they are beyond the reach of semi-
classics. There is, however, a large literature, starting from
the seminal paper of Tomsovic and Heller [22] and including
some situations for which the issue of nonapplicability of
the stationary phase approximation exist [7–13,23,24], which
shows that on a quite general basis the interference effects
that set on after the Ehrenfest time can be described within a
semiclassical approach and that their effects is nonnegligible.
We therefore clearly also expect this to be the case for the
mean value of smooth operators [14,15].

All the examples above provide a clear demonstration of
the effectiveness of semiclassics. However, the physical prob-
lem they describe, and the approach they use, often involve
either a statistical argument [7–13,23] or, in the spirit of the
IVR, to perform numerically the integral for which the station-
ary phase approximation fails [24]. Therefore, the rationale
dictating when stationary phase can be used and when it
cannot is not always absolutely clear, and one may be worried
about the fact that this necessity to do without stationary phase
approximation in some circumstances but not in others could
harm the general coherence of the semiclassical approach. The
goal of our work is to clarify these issues on the simple case of
the operator mean value. Our aim is to provide a semiclassical
description of interference effects for the time evolution (4)
of the mean value of a smooth operator Ô. We shall assume
that Ô is smooth in the sense that its Wigner transform varies
only on classical scales, that is, shows no short-scale quantum
features. In particular, we will clarify why in the integral of
Eq. (4) one should keep contributions which are not in the
neighborhood of a stationary phase point. Along the way,
we shall gain a deeper understanding of the origin of the
interference terms in the time-dependent expectation values
of operators, as well as a new semiclassical expression for
them which, for some (simple enough) operators Ô, are rather
explicit.

The structure of the paper is as follows. We start, in the two
following sections, by reviewing two important tools of semi-
classical theory that we will need for our discussion. We begin
in Sec. II by a presentation of the Maslov approach [5] which
relates the semiclassical evolution of a quantum wave function
to the classical evolution of the Lagrangian manifold on which
it is constructed. We then derive in Sec. III an expression
for the semiclassical Wigner function, which is the starting
point of our discussion of the expectation value of smooth
operators. This derivation will follow very closely the spirit
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of the original work of Berry [25]. However, we shall express
this semiclassical Wigner function in a slightly different form,
which transforms under canonical change of variable in a
rather transparent way. This will in particular make it possible
to show that the relevant interference terms in the computation
of a smooth operator’s mean value are expressed only in
terms of canonical invariants. Relying on this canonical in-
variance of the formalism, we then address in Sec. IV the
question of the interference terms in the expectation value of a
smooth operator, discuss their origin, the precise place where
stationary phase approximation cannot be used (and why), and
provide an expression for these interference terms which turns
out to be in the end rather intuitive and natural. Finally, we
conclude in Sec. V with a comparison between the point of
view taken in this paper and the approach suggested by an
IVR approach.

II. SEMICLASSICAL WAVE FUNCTIONS

A. Wave functions from Lagrangian manifolds

We assume in this paper that the initial state we consider
is a semiclassical wave function, that is, a state of the form
ψ0(q) = A(q) exp(iS(q)/h̄) or possibly a finite sum of terms
of that form. Such a function is the product of a smooth
envelope A(q) and a function that oscillates rapidly when
h̄ � 1. Provided one extend this notion to include complex
Lagrangian manifolds so that coherent states can be treated
within this framework [26], all the quantum states of interest
in semiclassical physics in practice fall in that category.

A procedure introduced by Maslov [5], that we briefly
sketch now, allows us to associate such a function with a
Lagrangian manifold in the classical phase space. We stress
that we do not introduce a specific dynamics or Hamiltonian
yet, and the semiclassical wave function that we are going
to build from the Lagrangian manifold is a priori not the
eigenstate of a specific model but should be viewed as the
possible initial state of some quantum evolution to be speci-
fied later. The Lagrangian manifolds that we consider here are
K-dimensional manifolds in the 2K-dimensional phase space
M that are characterized by the existence of a function S(q)
such that the p coordinates can be expressed as the gradient of
that function, namely p = ∂S/∂q (Theorem 4.20 of Ref. [5]).

A natural way to construct a Lagrangian manifold from
state ψ0(q) = A(q) exp(iS(q)/h̄) is to consider the set L of
phase-space points such that p = ∂S/∂q: By definition, it
is a Lagrangian manifold. Conversely, for any Lagrangian
manifold L, and given any smooth function A(q), one can
construct the semiclassical state A(q) exp(iSL(q)/h̄) with
SL(q) ≡ ∫

γ :x0→x pdq, where γ is any path on L going from
an arbitrary x0 to x = (p, q). Indeed, a consequence of the
fact that L is Lagrangian is that the integral defining SL(q)
does not depend on the path of integration but only on the end
points.

B. One-dimensional case

As an illustration, let us consider the one-dimensional
case K = 1. The phase space M is now two dimensional,
and a one-dimensional Lagrangian manifold L is simply a
curve in phase space, specified by some function SL(q) as

FIG. 1. Example of the association of a semiclassical wave func-
tion with a Lagrangian manifold. Top: The “Lagrangian manifold”
(here, for K = 1 just a curve; we choose for illustration p(q) =
eq − q). Bottom: Real part of the associated wave function, assuming
a(s) = 1 with the parameter s chosen as the curvilinear distance
along the curve (i.e., ds2 = dq2 + d p2) and a value of h̄ = 0.2.

the set of points (p, q) with p = dSL(q)/dq. A path γ on
L is a portion of that curve connecting an initial point x0

to a final point x, and the function SL(q) can be expressed
as SL(q) = ∫

γ :x0→x pdq, with x0 arbitrarily fixed on L. We
parametrize the curve L as L = {x(s), s ∈ [0, 1]}, with of
course x(s) = (p(s), q(s)) and possibly x(0) = x(1). We then
associate with L a semiclassical wave function following the
procedure indicated above (see Fig. 1 for an illustration).
Choosing a prefactor of the form A(q) = a(s)/

√|dq/ds| in
a domain where q(s) is monotonous (thus invertible), we set

ψL(q) = a(s)√|dq/ds| exp
[ i

h̄
SL(q) − i

π

2
μ

]
,

SL(q) =
∫

γ :x0→x
p(s)

dq

ds
ds, (6)

where a : [0, 1] → C is some smooth function of s, evaluated
at the parameter value corresponding to q, and the index μ,
introduced for later convenience, is a Maslov index which is
zero in this simple case. To go from q to p representation we
define the Fourier transform of a function ψ (q) as

ψ̃ (p) = 1

(2iπ h̄)1/2

∫
dq e− i

h̄ pqψ (q). (7)

The Fourier transform (7) has the property that
|ψ̃ (p)|2|∂ p/∂q| = |ψ (q)|2|∂q/∂ p| to 1/h̄ corrections. If
we calculate the Fourier transform ψ̃L(p) of ψL(q) in
the stationary phase approximation, then we get that the
stationary point is at a value of q such that dSL/dq = p, and
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Eq. (7) then gives

ψ̃L(p) = a(s)√|d p/ds| exp
[ i

h̄
S̃L(p) − i

π

2
μ̃

]
,

S̃L(p) = −
∫
L:x0→x

q(s)
d p

ds
ds, (8)

where μ̃ = 1 if d p/dq = d2SL/dq2 is negative and 0 other-
wise (Corollary 1.9 of Ref. [5]). Here the prefactor a(s) is
evaluated at the parameter value s corresponding to the sta-
tionary point q at which dSL/dq = p, that is, at the parameter
value s corresponding to p itself. Remarkably, because of the
choice of the form of the prefactor A(q), the semiclassical
wave functions (6) and (8) have exactly the same form up to
the sign in front of the action.

Expression (8) is valid only in the case where d p/ds 
= 0.
Of course, there is no special role played by variable q in
the above construction, and one can as well directly associate
with L a semiclassical wave function in the p representation.
Such a function can be obtained by changing (p, q) to (q,−p)
in Eq. (6), and it will be defined in a domain where p(s) is
invertible. In fact, this function exactly takes the form (8),
and therefore we denote it by ψ̃L(p). Thus, the association
between a manifold L and a wave function ψL has this nice
property that it can be performed in a symmetric way in the q
or the p representation.

If both q(s) and p(s) are invertible, then it is equivalent
(up to a constant phase factor) to obtain the semiclassical
wave function using either representation. For a generic L,
however, neither q(s) nor p(s) will be invertible over the
whole parameter range (think of an ellipse parameterized by
an angle). The procedure suggested by Maslov is then to in-
troduce a partition of the unity, i.e., a set of n smooth positive
real functions {ϕα (s), α = 1, . . . , n} such that

∑n
1 ϕα (s) = 1

and to choose it such that, for any α, either q(s) or p(s) is
invertible on the support of ϕα . In that case one can define
a function ψα (q) in q representation using either Eq. (6) [if
q(s) is invertible] or the inverse Fourier transform of Eq. (8)
[if p(s) is invertible], in both cases with amplitude ϕα (s)a(s).
The semiclassical wave function associated with L is then
simply ψL(q) = ∑

α ψα (q). It can then be shown that if in
Eqs. (6)–(8) the indices μα , μ̃α count the (algebraic) number
of caustics from x0 to the support of ϕα for the corresponding
representation, the resulting wave function is, to negligible
higher order in h̄ corrections, independent on the details of the
choice of the ϕα and in particular that the phase is a continuous
function.

If L is not a closed curve, then this completes the con-
struction. If x(0) = x(1), however, then one needs to further
impose that the total phase is single valued, which leads to the
usual EBK quantization condition,∮

L
pdq = (n + μL/4)2π h̄, (9)

with μL the Maslov index associated with L (which is usually
2 when K = 1). We stress again that we did not introduce any
dynamics yet (i.e., we did not specify the Hamiltonian, which
could for instance be a time-dependent one), and the EBK
condition (9) does not specify an eigenstate of the problem but

just a constraint on the manifold L such that one can associate
to it a wave function using the Maslov procedure.

C. Generalization to arbitrary dimension

This construction generalizes straightforwardly to the gen-
eral case of a K-dimensional system. The symplectic structure
of phase space M can be introduced through the wedge prod-
uct giving the symplectic area of a pair of phase-space vectors
(x, x′),

x ∧ x′ =
K∑

i=1

(piq
′
i − qi p

′
i ) = (x′)T Jx, J =

(0 −1

1 0

)
,

(10)

where 1 is the K × K identity matrix. A Lagrangian man-
ifold is then a manifold on which the differential 2-form
ω2 = ∑K

i=1 d pi ∧ dqi is uniformly zero. As a consequence,
the integral of the 1-form pdq ≡ ∑K

i=1 pidqi along any path
on L is invariant under a continuous deformation of that path
with fixed end points.

If L is K-dimensional, then we can parameterize it by
a vector of parameters s ∈ RK . Formulas (6)–(9) are easily
adapted if we use the compact notation where ∂q/∂s denotes
the K × K matrix with matrix elements ∂qi/∂s j and ∂S/∂q
denotes the vector with components ∂S/∂qi. Then the La-
grangian manifold L is specified by some function SL(q),
and (6) becomes

ψL(q) = a(s)√|∂q/∂s| exp
[ i

h̄
SL(q) − i

π

2
μ

]
,

SL(q) =
∫

γ :x0→x
p(s)

∂q
∂s

ds, (11)

where |.| denotes the absolute value of the determinant of
the matrix. Since L is Lagrangian, the action integral in (11)
is invariant under a continuous deformation of the path of
integration on L and thus, once EBK conditions such as (9)
are fulfilled for all generators of the homotopy group of L,
phase factors only depend on the point x ∈ L but not on the
path chosen to define the action integral.

At each point a K-dimensional Lagrangian manifold L is
locally diffeomorphic to a coordinate K-dimensional plane
(the q plane, the p plane, or a mixture of both) (Proposition 4.6
of [5]), which allows to always choose local coordinates such
that the parametrization is nonsingular, so that one can always
construct either the semiclassical wave function (6), or (8), or
obtain an analog expression in a mixed representation.

III. SEMICLASSICAL WIGNER FUNCTION

In this section, we derive a semiclassical expression for
the Wigner function, which will be the starting point of our
discussion in Sec. IV. We follow here very closely the spirit
of the original work of Berry [25], although the precise ex-
pressions we shall obtain will take a slightly different form,
whose transformation under canonical changes of variables
will be somewhat more transparent.
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A. Stationary phase approximation

The Wigner transform WL(x) of a semiclassical wave func-
tion ψL of the form (11) is obtained using the definition (3).
In order to obtain the semiclassical expression for WL(x), we
need to evaluate the integral

WL(x) = 1

(2π h̄)K

∫
dKq′e− i

h̄ p.q′A
(

q − q′

2

)
A

(
q + q′

2

)

× e
i
h̄ SL(q+ q′

2 )− i
h̄ SL(q− q′

2 )−i π
2 (μq+q′/2−μq−q′/2 ) (12)

in the stationary phase approximation [25].
At a given x = (p, q), a stationary point in the integral

of Eq. (12) is reached when q′ takes a value q̃ such that
p = 1

2 [∂SL/∂q|q−q̃/2 + ∂SL/∂q|q+q̃/2]. Symmetrically, a sta-
tionary point is also reached at q′ = −q̃. Let q+ ≡ q + q̃/2.
According to the above definitions, p+ = (∂SL/∂q)|q+ defines
a point x+ = (p+, q+) on L, corresponding to a parameter
value s+. Similarly, if q− ≡ q − q̃/2, then p− = (∂SL/∂q)|q−

defines a point x− = (p−, q−) on L, corresponding to a
parameter value s−. The stationary condition can then be
rewritten as p = 1

2 (p+ + p−). Since obviously 1
2 (q+ + q−) =

q, we have that x = 1
2 (x+ + x−). Therefore, for a stationary

point to exist in the integral evaluating WL(x), the point x
has to be the center of a pair of points (x+, x−) lying on
L. We shall below refer to ξ = (p+ − p−, q+ − q−) as the
corresponding chord.

We find it convenient to denote with superscripts ± all
quantities evaluated at point q+ or q− on L, parameterized
by the parameter value s±. All quantities at the stationary
point can then be expressed as functions of q+ and q− or
equivalently of s+ and s−. At the stationary point q′ = q̃, the
phase of the integrand in Eq. (12) is S (x)/h̄ with

S (x) = SL(q+) − SL(q−) − pq̃ =
∮ x+

x−
p(s)

∂q
∂s

ds, (13)

where in the right-hand side the integral is taken along the
closed contour made of any path going from x− to x+ on L and
the straight line from x+ back to x− (see Fig. 2). The Hessian
matrix ∂2SL/∂q2 = ∂p/∂q, evaluated at q+, is denoted by
∂p+/∂q+. We define the matrix

R ≡ ∂2SL
∂q2

∣∣∣
q+

− ∂2SL
∂q2

∣∣∣∣
q−

=
(

∂p+

∂q+

)T

−
(

∂p−

∂q−

)
(14)

[since the Hessian is a symmetric matrix, we may or may not
take the transpose in the right-hand side of (14)]. Let η denote
the number of negative eigenvalues of R. At the stationary
point, Gaussian integration yields

WL(x) =
( 2

π h̄

)K/2 ∑
β

A(q+
β )A(q−

β )√|Rβ |

× exp
[ i

h̄
Sβ (x) − i

π

2
μβ + iηβ

π

4

]
+ c.c., (15)

where the complex conjugate c.c. corresponds to the contribu-
tion of q′ = −q̃ [25]. In (15) the sum runs over all stationary
phase points ±(q̃)β , that is, all chords ξβ such that the two
points x−

β = x − ξβ/2 and x+
β = x + ξβ/2 associated with the

center x and the chord ξβ lie on L. In Eq. (19), μβ = μ+
β − μ−

β

+ L+

L

L

FIG. 2. Construction of the action S(x) introduced in Eq. (13).
For a given x, one needs to locate two points x+ and x− on
the manifold L such that x is the center of the segment [x−, x+]
(more than one pair of points may fulfill that condition; such pairs
are indexed by β in the text). The action S(x) then corresponds to
the shaded area [note that because of the EBK quantization condition
Eq. (9), which side of the chord is used is irrelevant]. L+ and L− are
pieces of L on which the end points x+ and x− lie.

is the Maslov index computed along the path on L from x−
β

to x+
β . The phase Sβ (x) can be interpreted as the symplectic

area enclosed by the path from x−
β to x+

β and the chord ξβ .
As a consequence, its variation δSβ when the phase point x is
moved by δx is, at first order in this small quantity, the sym-
plectic area of the quadrilateral formed by the chord ξβ and the
displacement δx. We thus have δSβ = ξβ ∧ δx = (δx)T · Jξβ ,
and therefore

∂Sβ

∂x
= Jξβ. (16)

B. Canonical invariance of the Wigner function

The “exact” quantum-mechanical Wigner function is in-
variant under symplectic maps, that is, linear canonical
transformations [27,28]. However, this is not entirely visible
from the definition Eq. (3) and is often not very transparent
either for semiclassical approximations of the Wigner func-
tion (see, however, Ref. [28], in which the amplitude of the
semiclassical Wigner function is expressed in terms of Pois-
son brackets of a pair of actions). In this subsection we will
cast (15) in a form which is manifestly invariant under linear
canonical transformations.

Indeed, using the fact that A(q) = a(s)/
√|∂q/∂s|, the de-

nominator in (15) can be written in terms of the K × K matrix
D defined as

D ≡
(

∂q+

∂s+

)T [(
∂p+

∂q+

)T

−
(

∂p−

∂q−

)](
∂q−

∂s−

)

=
(

∂p+

∂s+

)T (
∂q−

∂s−

)
−

(
∂q+

∂s+

)T (
∂p−

∂s−

)
, (17)

and which components are given by

Dab = ∂x+

∂s+
a

∧ ∂x−

∂s−
b

. (18)
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FIG. 3. Local system of coordinates used for evaluation of
Eq. (30) for small chords. The coordinate x‖ is the parallel direction
which follow the (almost identical on the classical scale) pieces L+
and L− of the Lagrangian manifold L; x⊥ is the transverse direction.
The gray area is the area used for the calculation of the action in (30);
the balloon shape is schematic, as is it assumed to be outside the
region where O(x) is finite.

The semiclassical Wigner function can then be rewritten as

WL(x) =
( 2

π h̄

)K/2 ∑
β

a(s−
β )a(s+

β )√
|Dβ |

× exp
[ i

h̄
Sβ (x) − i

π

2
μβ + iηβ

π

4

]
+ c.c. (19)

Under the form (19) it becomes clear that WL(x) is invariant
under symplectic maps. Indeed, such transformations preserve
the wedge product so that all Dab are invariant. As for the
action Sβ (x), it is given by the symplectic area (13) enclosed
by a path drawn on the Lagrangian manifold together with the
chord joining the two points x+ and x−. The symplectic area
enclosed by a given curve is invariant under any canonical
transformation; and for a symplectic map, the chord joining
x+ to x− is transformed into the chord joining the image of
x+ and x−. Thus, (19) is invariant under symplectic maps.

However, WL(x) is a priori not necessarily invariant under
generic canonical transformations. Consider first the matrix
D. Canonical transformations can be characterized by the
fact that they preserve the 2-form ω2 derived from the skew
product (10). This 2-form is defined at each point on the local
tangent space, but ∂x+/∂s+

a and ∂x−/∂s−
b in (18) should be

considered as belonging to the local tangent space at x+ and
x−, respectively. They will transform as a vector field under
a canonical transformation, i.e., along the corresponding lin-
earized maps M+ and M−, respectively, so that

Dab = ∂x−

∂s−
b

J
∂x+

∂s+
a

→ ∂x−

∂s−
b

MT
−JM+

∂x+

∂s+
a

. (20)

Since in general MT
−JM+ 
= J the quantities Dab are not invari-

ant (of course for symplectic maps M+ = M− and we recover
invariance). The same goes for the action Sβ (x) since for a
generic canonical transformation the chord joining x+ and x−
does not a priori transform into a chord.

This statement being made, we shall, however, see in
Sec. IV that the interference contributions to the mean value
Eq. (4) are dominated by short chords, i.e., chords ξβ =
x+

β − x−
β whose length goes to zero in the semiclassical limit.

This means that as h̄ → 0, the contributions of the Wigner
function we will be interested in will be the ones such that
x+

β → x−
β (although s+

β 
→ s−
β ), see Fig. 3. For these contri-

butions, the distinction between general and linear canonical
maps becomes irrelevant. Indeed, the tangent spaces near x+

β

and x−
β , as well as the linearized maps M+ and M−, can

be identified, while the distortion of the chord between x+
β

and x−
β becomes negligible. In that limit, both the matrix Dβ

and the action Sβ (x) are genuine canonical invariants up to
negligible higher-order h̄ corrections. Thus, the contributions
β which, in the sum (19), are relevant for the calculation
of the mean value of smooth operators can be considered
as invariant under any (i.e., not necessarily linear) canonical
transformation. Interestingly, going back from (19) to (12),
this also means that the same considerations can be applied to
this original form of the Wigner function: In the semiclassical
limit where only the vicinity of short chords contributes, one
can choose arbitrary canonical coordinates to express (12),
as all discrepancies will be higher-order h̄ corrections. We
will make use of this property in the following section, where
we shall allow ourselves arbitrary canonical transformations,
keeping in mind that this only makes sense in the situation
where short chords dominate.

C. Parametrization invariance of the Wigner function

The amplitude of ψL(q) in (11) is A(q), which should not
depend on the parametrization s of the Lagrangian manifold.
The Wigner function in (12) is therefore invariant under a
change of parameter and so should be its semiclassical expres-
sion (19). This can be checked directly on (19). Indeed, on a
change s �→ s′, a(s) should transform as a(s)√|∂q/∂s| = a(s′ )√|∂q/∂s′| ,
i.e.,

s �→ s′, (21)

a(s) �→ a(s′) = a(s)
√

|∂s/∂s′|. (22)

Since using (18) we have

Dab(s) �→ Dab(s′) =
K∑

i, j=1

∂si

∂s′
a

(
∂x+

∂s+
i

∧ ∂x−

∂s−
j

)
∂s j

∂s′
b

, (23)

the ratio a(s−)a(s+)/
√|D| is as expected invariant. The

choice of parameter will be guided by convenience. For
instance, when considering the eigenstates of classically in-
tegrable systems, for which one can define a system of
action-angle coordinates, the Lagrangian manifolds of interest
are the invariant tori specified by the action variables, and the
parameters s can be chosen as the angle variables [28]. In
Sec. IV we will choose a local parametrization that simplifies
calculations for mean values of observables.

D. Wigner function in the vicinity of the manifold

The above semiclassical expansion (19) is not valid when
x is in the vicinity of L. Indeed, in the limit x → L we have
s+ → s− and x+ → x−, and therefore the matrix D becomes
singular. The stationary approximation is no longer valid in
this case, and we have to start over from (12).

Let us assume that L has some curvature only at a classical
scale. Keeping only linear terms in the actions SL in (12), we
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get (disregarding the constant phases)

WL(x) = 1

(2π h̄)K

∫
dKq′A

(
q − q′

2

)
A

(
q + q′

2

)

× e
i
h̄ (pL−p)q′

, with pL = ∂SL
∂q

. (24)

If the prefactor varies slowly as a function of its arguments,
that is, only on a classical scale, then at h̄ → 0 the amplitudes
can be taken out of the integral, so that [29]

WL(x) = |A(q)|2δ(p − pL) =
∫

dKqL|A(qL)|2δ(x − xL)

=
∫

dKs|a(s)|2δ[x − x(s)], (25)

where the last equality comes from the change of variables
qL �→ s, using (22). The right-hand side of (25) is again
manifestly canonically invariant since, on integration over an
arbitrary test function, it will only depend on geometrical
properties of L.

At small but finite h̄, taking into account the curvature
of the manifold through uniform approximation will lead to
an Airy function in the one-dimensional case [25,30] and to
more subtle behaviors in higher dimension [28]. Taking into
account such corrections, or the the variation of the prefactor,
will in practice broaden the δ function on the quantum scale.
If the Wigner function is convoluted with a classical object,
as we shall do below, this will, however, not affect the final
result.

E. Time propagation

We now introduce a dynamics through some Hamilto-
nian Ĥ . Let gt be the corresponding classical Hamiltonian
flow. For any fixed t it is a canonical transformation
(Theorem 4.17 of Ref. [5]). Since any canonical transforma-
tion maps a Lagrangian manifold into another one (Theorem
4.18 of Ref. [5]), the manifold Lt = gtL obtained by propa-
gation of L under the classical flow is a Lagrangian manifold.

The strength and beauty of the Maslov association between
the Lagrangian manifold L and the semiclassical wave func-
tion ψL is that the semiclassical propagated wave function
ψL(t ) is obtained from the manifold Lt = gtL following ex-
actly the same procedure. Therefore, the time evolution of the
Wigner function WL(x) is obtained as

WL(x, t ) = WLt (x), Lt = gtL. (26)

This means that the Wigner function at time t is given by
Eq. (19) with L replaced by its time evolution gtL (and
coordinates s on gtL are the image of the coordinates s on
L). Equation (19) and its time-evolved version Eq. (26) will
form the basis of our discussion of the mean value of smooth
operators.

IV. EXPECTATION VALUE OF SMOOTH OPERATORS

A. Stationary point contribution and why this is not enough

We now turn to the discussion of the time evolution of the
expectation value of an operator Ô for an initial semiclassi-
cal wave function �0 constructed on an initial manifold L0

following the Maslov approach described in Sec. II. From
the discussion of Sec. III E, the Wigner function Wt (x) of the
time-evolved wave function is given by WLt (x), expressed as
Eq. (19), with Lt = gtL0. The expectation value is then given
by Eq. (4).

We will assume that Ô is a classical operator, in the sense
that its Wigner transform O(x) behaves like a classical quan-
tity, that is, it has no significant variation on the quantum scale
fixed by h̄. This notion that Ô is classical implies that, in
the stationary phase approximation of (4), only the phase of
Wt (x) has to be considered. This phase, appearing in (19), is
given by (13) in which the action integrals are taken on the
propagated manifold Lt = gtL0. Its derivative with respect
to the integration variable x is given by Eq. (16), namely
∂Sβ (x)/∂x = Jξ, where ξ is the chord joining two points on
Lt and having x as center. Thus the stationary phase condition
is given by ξ = 0. This implies that x ∈ Lt . The semiclassical
expression (19) is actually not valid there, as the prefactor
1/

√
|Dβ | diverges. Nevertheless, if one starts from the orig-

inal expression Eq. (12), then the stationary phase condition
indeed corresponds to chords of length zero.

This implies obviously that there is no hope to find sta-
tionary phase points outside of Lt but also that there are K
directions (corresponding to the tangents of Lt at x) for which
ξ remains zero, and thus half of the eigenvalues of (∂ξ/∂x)
are zero. As a consequence, one cannot do a simple Gaussian
integral to take into account the contribution to (4) of the
neighborhood of the stationary phase points. However, in the
neighborhood of the manifold one can use the expression (25)
for WLt (x), and the integral (4) then gives

〈Ô〉cl(t ) =
∫
Lt

dKs O(x(s))|a(s)|2, (27)

which is interpreted as the classical contribution to the ex-
pectation value, again in an explicitly canonically invariant
form. Note here that if we accept the form (27) at t = 0 for
〈Ô〉cl, application of (5) immediately yields the form (27) for
all times. The classical contribution (27) thus has in some
sense the same physical content as the TWA or LSC-IVR
approximation (5).

The fact that at stationary points half of the eigenvalues of
(∂ξ/∂x) are zero is a sign that the neighborhoods of stationary
phase points are rather atypical, which is presumably a first
hint of why another kind of contribution needs to be kept here.

Indeed, the essence of the stationary phase approximation
is not so much that only stationary phase points contribute
(they usually are of measure zero) but that the neighborhood
of stationary phase points contains all the points where the
phase varies slowly. Indeed, if one considers the integral∫ y2

y1

dy g(y) exp
[ i

h̄
f (y)

]
(28)

in the small-h̄ limit, and finds a point y∗ where f varies
slowly, i.e., f ′ is small, then there should be a point in the
vicinity of y∗ where f ′ vanishes. More precisely, if y∗ is
such that f ′(y∗) = ε∗ � h̄(y2 − y1), then we can expect that
yst � y∗ − ε∗/ f ′′, with f ′′ = f ′′(y∗) � f ′′(yst ), is a genuine
stationary phase point. Usually, f ′(y) and f ′′(y) are uncorre-
lated quantities; and if we vary y until we find a point y∗ such
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that f ′(y∗) is small, there is no reason a priori to expect that at
this point f ′′(y∗) is small as well. Thus a priori any point y∗,
where f ′(y∗) is small should be in the immediate neighbor-
hood of a stationary point yst, where f ′(yst ) = 0. Therefore
its contribution to (28) is taken into account as soon as the
contribution of the neighborhood of yst is taken into account
(which is what is done in the stationary phase approximation).

In generic cases, the only way to fail to have all the “nearly
stationary” points in the neighborhood of an exactly stationary
one is to tune a parameter to set precisely to zero the second
derivative of the phase. This situation can, however, be han-
dled by uniform approximation and can actually be interpreted
by saying that the stationary phase point has moved to the
complex phase space but remains nevertheless close.

The situation we consider is significantly different. Indeed,
here “almost stationary points” are associated with small
chords ξ = x+(s+) − x−(s−). The neighborhood of station-
ary phase points corresponds to the situation where s+ � s−.
However, it may be that x+ � x− while s+ 
� s−: This situa-
tion arises in particular in the case where the end points x+
and x− of the chord correspond to two distinct regions of the
evolved manifold Lt = gtL0. In such a case the geometry of
the problem forbids the presence of a neighboring stationary
phase point (i.e., with exactly ξ = 0). In the following, we
reserve the terminology “small chord” to the ones such that
s+ 
� s−. The dominant interference contributions to 〈Ô〉(t )
will come from these small chords ξ.

The question we may ask is how much we should expect
such small chords to actually be present in phase space for
the evolved manifold Lt . It is clear, for instance, that if L0

does not specifically display such short chords, we are not
expecting them either for rather short time where they should
remain nongeneric features. However, as time increases, the
manifold Lt will generically expand (linearly for integrable
systems but exponentially quickly for chaotic systems), which
for bounded system, for which the total phase-space volume
that can be explored is finite, implies that the typical “dis-
tance” between close but distinct sheets of Lt has to go to
zero as t → ∞. Therefore, assuming a small but fixed value
of h̄, there should generically be a time at which interference
effects associated with short chords will set in.

Let us illustrate this for instance with the case of a
one-dimensional (K = 1) chaotic system characterized by a
Lyapunov parameter λ. In that case we expect that the length
of Lt behaves as l0 exp[λt], with l0 the length of L0. If the
total accessible phase volume V (that is, the phase-space
domain inside which Wt (x) is confined) is finite, then the
typical separation between neighboring sheets of Lt should
be O((V/l0) exp[−λt]). Small chords, and thus interference
effects, will typically set in for times of the order of

ts.c. = 1

λ
log

( Vl

h̄l0

)
, (29)

with l a typical length scale characterizing the Wigner trans-
form O(x) of the observable Ô. The timescale ts.c. is thus
essentially the Ehrenfest time for which the “characteristic
action” used is the ratio Vl/h̄l0. Being logarithmic in h̄, it is
thus a fairly short time.

We therefore consider the contribution to (4) associated
with two portions of Lt , denoted by L+ and L− and locally

parameterized by s+ and s−, respectively, which come close
to one another. The corresponding interference contribution
to the expectation value is an integral of the form∫

dKxA(x)e
i
h̄ S(x), (30)

where, dropping indices f , β, and L, the action S is given
by (13) and the smoothly varying prefactor by

A(x) ≡
( 2

π h̄

)K/2 a(s−)a(s+)eiηπ/4−iμπ/2

√|D| O(x), (31)

with s+, s−, D, η, and μ associated with the different chords ξ

joining L+ and L− and going through x, as in Eq. (19).

B. One-dimensional case

Our goal in this subsection is to perform the phase-space
integral in Eq. (30) in the one-dimensional case K = 1. We
place ourselves in the context of a chaotic system, where
for time t larger than the characteristic time ts.c. defined
in (29), the various sheets of the manifold Lt will tend to
align along the manifold and therefore locally be oriented
along essentially the same direction. In this picture, there will
be a “parallel” direction (along the general direction of both
considered sheets of Lt ), along which quantities vary only on
a classical scale, and a “transverse” one, where variations are
on the quantum scale (see Fig. 3 for illustration).

We shall see that the integration in the transverse direction,
which is associated with rapid variations of the phase away
from the middle of the two sheets, can be done analytically
using stationary phase approximation. The stationary phase
approximation on the other hand cannot be applied for struc-
tural reasons to the integral along the parallel direction, which
corresponds to a much weaker (almost the absence of) varia-
tion of the phase and is much more idiosyncratic, and we shall
discuss a couple of limiting cases.

1. Canonical change of variables

As discussed in Sec. III B, when, as is the case here, only
short chords contributions are taken into account, the expres-
sion of the semiclassical Wigner function (19), and thus the
integral (30), is invariant under an arbitrary canonical change
of variable. We therefore introduce a pair of canonical vari-
ables x = (x‖, x⊥) (see Fig. 3), for which the integral (30)
simplifies. To do this, let Lc be any smooth curve lying
between L+ and L−, and λ0 some coordinate on Lc. We
note x0 = x(λ0) the phase point on Lc with coordinate λ0. At
each point x0 ∈ Lc the corresponding chord ξ (x0) defines a
direction in phase space. Any point x in the region between
L+ and L− is of the form x0 + uξ (x0) for some x0 ∈ Lc

and u ∈ [− 1
2 , 1

2 ]. One can therefore adopt a local coordinate
system such that x = (x‖, x⊥) with x‖ = λ0 the coordinate of
x along Lc and x⊥ ∝ u the coordinate along the chord ξ (x0).
We choose x⊥ so that dx‖ ∧ dx⊥ = d p ∧ dq, which makes the
change of variables from (p, q) to (x‖, x⊥) canonical.

In such a coordinate system, Lc is characterized by the
equation x⊥ = 0. Moreover, if one considers a chord ξ join-
ing L+ and L− and centered at a point of Lc, then ξ is
by definition oriented in the transverse direction, implying
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that its parallel component vanishes, namely ξ‖ = 0. The end
points x+ and x− of the chord ξ (x0) going through a point
x0 = (x‖, 0) are defined by 1

2 (x+ + x−) = x0 = (x‖, 0) and
ξ = x+ − x−, and therefore we have

x± = (
x‖,± 1

2w(x‖)
)

(32)

with w(x‖) = |ξ |. Therefore, in the units specified by the
measure dx⊥, the function w(x‖) gives the width of the region
of small chord lengths at point x0.

2. Semiclassical integration in the transverse direction

We are now in a position to perform the integral (30) in
the transverse direction, for a fixed value of x‖. As ∂S/∂x =
Jξ , we have ∂S/∂x⊥ = ξ‖, so that the stationary condition
∂S/∂x⊥ = 0 is given by ξ‖ = 0, that is, stationary points lie
on Lc.

Fixing a point x0 = (x‖, 0) on Lc, we can perform the
integral along x⊥ in the stationary phase approximation. By
construction the stationary point is x⊥ = 0, and Gaussian in-
tegration yields

∫ ∞

−∞
dx⊥e

i
2h̄ (

∂ξ‖
∂x⊥ )x⊥=0x2

⊥ =
√

2iπ h̄

(∂ξ‖/∂x⊥)x⊥=0

. (33)

Let us now compute the derivative (∂ξ‖/∂x⊥)x⊥=0. At an
arbitrary point x in the neighborhood of x0, the end points
x+(x) and x−(x) of the chord ξ (x) going through x coincide
with end points of chords going through points lying on Lc.
More precisely, there exists some λ+ ∈ Lc such that x+(x) =
x+(λ+, 0), and some λ− ∈ Lc such that x−(x) = x−(λ−, 0).
As a consequence, Eq. (32) yields

x = x+(x) + x−(x)

2
= x+(λ+, 0) + x−(λ−, 0)

2

=
(λ+ + λ−

2
,
w(λ+) − w(λ−)

4

)
, (34)

and the corresponding chord ξ reads

ξ (x) = x+(x) − x−(x) =
(
λ+ − λ−,

w(λ+) + w(λ−)

2

)
. (35)

Since both λ+ and λ− are close to x0 we can expand to first
order

x⊥ = w(λ+) − w(λ−)

4
� λ+ − λ−

4
w′(x‖) = ξ‖

4
w′(x‖),

(36)
which yields ( ∂ξ‖

∂x⊥

)
x⊥=0

= 4

w′(x‖)
. (37)

We thus obtain for the result of the transverse integration at
fixed x‖∫

dx⊥ A(x)e
i
h̄ S(x)

= 1

2
A(x‖, 0)e

i
h̄ S(x‖,0)

√
2π h̄|w′(x‖)|ei π

4 sgn(w′(x‖ )), (38)

with A defined by Eq. (31).

3. Integration in the parallel direction

To proceed with the last integral, one should bear in mind
that the parameterization of the Lagrangian manifold Lt is
essentially arbitrary and that any parametrization s′ of Lt can
be used as long as a(s) transforms into a(s′) according to (22).

Therefore, instead of using parameters s+ and s− in the
regions around x+ and x− we can use x‖ as a parameter for
both, with x‖ the coordinate on Lc such that the end points
of the chord going through (x‖, 0) coincide with x+ and x−
(note that x‖ coincides with λ+ and λ− introduced above for
s+ and s−, respectively). We shall denote by a+ and a− the
amplitudes in the regions around x+ and x−, so that a+(x‖) ≡
a(s+)

√|ds+/dx‖| and a−(x‖) ≡ a(s−)
√|ds+/dx‖|. With that

parametrization the prefactor in Eq. (19) is proportional to
a−(x‖)a+(x‖)/

√|D‖| with D‖ expressed by (17) but in the new
variables, that is,

D‖ =
(

∂x+
‖

∂x‖

)T (
∂x−

⊥
∂x‖

)
−

(
∂x+

⊥
∂x‖

)T (
∂x−

‖
∂x‖

)
. (39)

Here x± = (x±
‖ , x±

⊥ ) is given by Eq. (32), so that ∂x±/∂x‖ =
(1,± 1

2w′(x‖)), which inserted in (39) yields D‖ = w′(x‖).
Introducing the notation O(x‖) ≡ O(x(x‖, 0)) and A(x‖) ≡
A(x(x‖, 0)) [and for later use S (x‖) ≡ S (x(x‖, 0))] we thus
have

A(x‖) =
√

2

π h̄

a−(x‖)a+(x‖)eiηπ/4−iμπ/2√|w′(x‖)| O(x‖). (40)

The factor 1/
√|w′(x‖)| in (40) thus exactly cancels the√|w′(x‖)| in (38) originating from the transverse integral.

Taking into account the summation over all possible chords
labeled by β we finally get

〈Ô〉 = 〈Ô〉classic +
∑

β=short chord

∫
dx‖ O(x‖)aβ

−(x‖)aβ
+(x‖)

× e
i
h̄ Sβ (x‖ )−iμβ

π
2 +iηβ

π
4 +iη⊥

β
π
4 + c.c., (41)

where μβ is the Maslov index of any path joining Lβ
+ to Lβ

−
and η⊥ is the sign of w′(x‖).

Similarly to the classical contribution Eq. (27), the remain-
ing integration over x‖ is actually very much classical-like.
Indeed, because only phases that vary extremely slowly con-
tribute, all factors in the integrand vary only on the classical
scale, including the exponential term which contains an h̄ in
its exponent. This is therefore a rather atypical integral in
the context of semiclassical physics: It cannot be evaluated
using the separation of scales typical of the stationary phase
approximation (where anything varying only on the classical
scale can be assumed frozen in the relevant range of integra-
tion), which actually is the reason why a blind application of
stationary phase approximation fails for the calculation of the
expectation value of operators.

C. Generalization to dimension K

If we look back at the physical meaning of the calculation
leading to Eq. (41), then it can be summarized as follows.
First, we have identified that the origin of the interefer-
ence terms corresponds to pairs of sheets of the Lagrangian

042211-9



K. M. MITTAL, O. GIRAUD, AND D. ULLMO PHYSICAL REVIEW E 102, 042211 (2020)

manifold that, under the classical time evolution, become
close to each other on the quantum scale. On the classical
scale they can therefore be considered as essentially identical
as h̄ → 0, and one can therefore parametrize both of them by
the same coordinate x‖. Introducing then a transverse direc-
tion x⊥ such that (x‖, x⊥) forms a canonical pair of variable,
the integral along the transverse direction can be done using
stationary phase approximation, while the one on the parallel
direction does not involve any rapidly oscillating phase and is
thus essentially of a classical nature.

What eventually makes this calculation tractable is that we
can apply a canonical change of variable at various steps of
the derivation and place ourselves in the coordinate system
for which the computation is the simplest. This is possible
because, as discussed in Sec. III B, the relevant contribution to
the problem we are considering are invariant under canonical
changes of variable.

Having done this carefully for the one-dimensional case,
we shall see now that the result (41) can be obtained more
directly and extended to arbitrary dimension if we start from
the very definition (3) of the Wigner function, with �t the

semiclassical wave function constructed from the propagated
Lagrangian manifold Lt , and choose the right coordinate sys-
tem. Again, as follows from the discussion of Sec. III B, the
relevant contributions to (4) of (3) can, too, be considered
as canonical invariants, which allows us to choose freely the
coordinate system.

Consider thus a contribution to the interference terms as-
sociated with a pair of sheets (L+,L−) of L which come
extremely close to each other. On the classical scale these
two sheets can be viewed as identical, and because they are
Lagrangian it is always possible to find a system of canon-
ical coordinates (x‖, x⊥) such that x‖ parametrizes L± [in
the sense that (x‖, 0) ∈ L± if we do not distinguish between
L+ and L−] and x⊥ is transverse to it. Here, however, and
contrarily to the approach we used in Sec. IV B for the one-
dimensional case, we use a coordinate system (x‖, x̂⊥) such
that x̂⊥ can, too, be used as a parametrization of L, so that it
can play the role of q in Eq. (3). A simple choice of coordi-
nates for such a requirement is the sheer x̂⊥ ≡ x⊥ + μx‖ (with
μ 
= 0 arbitrary). We use from now on the variables (x‖, x̂⊥).

In this coordinate system, the integral (4) reads

1

(2π h̄)K

∫∫∫
dKx‖dKx̂⊥dKx̂′

⊥A
(

x̂⊥ + x̂′
⊥
2

)
A

(
x̂⊥ − x̂′

⊥
2

)
O(x‖, x̂⊥)e− i

h̄ x‖.x̂′
⊥+ i

h̄ S(x̂⊥+ x̂′⊥
2 )− i

h̄ S(x̂⊥− x̂′⊥
2 ), (42)

where O(x‖, x̂⊥) ≡ O(x(x‖, x̂⊥)). Changing variables in the integral (42) from x̂⊥, x̂′
⊥ to x̂+

⊥, x̂−
⊥ with x̂±

⊥ = x̂⊥ ± 1
2 x̂′

⊥ (with
Jacobian equal to 1), Eq. (42) gives

1

(2π h̄)K

∫∫∫
dKx‖dKx̂+

⊥dKx̂−
⊥A(x̂+

⊥ )A(x̂−
⊥ )O

(
x‖,

x̂+
⊥ + x̂−

⊥
2

)
e− i

h̄ x‖.(x̂+
⊥−x̂−

⊥ )+ i
h̄ S(x̂+

⊥ )− i
h̄ S(x̂−

⊥ ). (43)

We then use the fact that L can be parametrized locally by
an arbitrary parameter s and that the amplitude A(x̂⊥) of the
semiclassical wave function is related to the density a(s) on
L by A(x̂⊥) = a(s)/

√|∂ x̂⊥/∂s|. Choosing s = x‖ as a local
parameter in the vicinity of points x+ and x− we have

A(x̂+
⊥ ) = a(x‖+)√

|∂ x̂+
⊥/∂x‖+|

, A(x̂−
⊥ ) = a(x‖−)√

|∂ x̂−
⊥/∂x‖−|

. (44)

We now perform the stationary phase integration over the two
variables x̂+

⊥ and x̂−
⊥ in (43). The critical points (x̂+∗

⊥ , x̂−∗
⊥ )

are those where the gradient of the phase vanishes, yield-
ing the two conditions x‖+(x̂+∗

⊥ ) = x‖ and x‖−(x̂−∗
⊥ ) = x‖,

corresponding respectively to the points on L+ and L− param-
eterized by x‖. The Hessian matrix is a block-diagonal matrix
with blocks given by (∂x‖+/∂ x̂+

⊥ ) and (∂x‖−/∂ x̂−
⊥ ). Gaussian

integration thus gives an amplitude

(2π h̄)K 1√∣∣( ∂x‖+

∂ x̂+
⊥

)( ∂x‖−

∂ x̂−
⊥

)∣∣ . (45)

Inserting (44) and (45) into Eq. (43) at the stationary point
x‖+ = x‖− = x‖, we get

〈Ô〉 = 〈Ô〉classic +
∑

β=short chord

∫
dKx‖ O(x‖)aβ

−(x‖)aβ
+(x‖)

× e
i
h̄ Sβ (x‖ )−iθβ

π
4 + c.c., (46)

where (as in Sec. III A) each chord corresponds to two station-
ary points for which the roles of x̂+∗

⊥ and x̂−∗
⊥ are exchanged,

yielding two complex conjugated terms. In this equation,

Oβ (x‖) ≡ Oβ

(
x‖,

x̂+
⊥(x‖) + x̂−

⊥(x‖)

2

)
, (47)

is the Wigner transform of the operator Ô evaluated in x‖ at
the midpoint between L+ and L−;

Sβ (x‖) ≡ Sβ

(
x‖,

x̂+
⊥(x‖) + x̂−

⊥(x‖)

2

)
(48)

is the action Eq. (13) evaluated at the same location, i.e., the
action integral on the contour formed by a path on L from x+

β

to x−
β which is closed by a straight line between x−

β and x+
β ;

and θβ is a global index. With this parametrization, the fact
that the remaining integral on x‖ cannot be performed within
a stationary phase approximation approach becomes obvious.
For K = 1 this expression coincides with Eq. (41).

The index θβ in (46) results from a contribution from the
double Gaussian integration (45) over x̂+

⊥, x̂−
⊥ performed at

fixed x‖ (see Fig. 4), and from Maslov indices appearing in
the definition of the semiclassical wave function constructed
on the Lagrangian manifold Lt . The stationary phase condi-
tion in the Gaussian integration is met when points x+ and
x− are such that x‖+ = x‖− = x‖. At that point, since L+
and L− are almost parallel, the two blocks (∂x‖+/∂ x̂+

⊥ ) and
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FIG. 4. Parametrization used for the integral (42). The inte-
gration variables are (x̂+

⊥, x̂−
⊥, x‖), which all can be used (locally)

as parametrization of L±. The stationary phase conditions reads
x‖+(x̂+

⊥ ) = x‖ = x‖−(x̂−
⊥ ).

(∂x‖−/∂ x̂−
⊥ ) of the Hessian matrix behave in the same way, so

that the phase arising from Gaussian integration is zero. The
total phase contribution in (46) thus reduces to the Maslov
indices of the wave functions at the stationary phase points,
i.e., θβ = μβ .

D. Discussion

In general, the specific characteristics of the initial density
a(s), the shape of the evolved manifold Lt , and the specific
form of the Wigner transform O(x) of the considered operator,
all affect the final result, and it is not possible to provide an
expression for the last integral on x‖ that would be valid on a
completely general basis. In many circumstances, one would
have to resort to numerical integration to perform this last
step. On the other hand, and for the same reason, stationary
phase cannot be applied, this is a “simple” integral which,
when computed numerically, does not require a particularly
fine grid to achieve good precision.

Going back to K = 1, further progress can be made, how-
ever, in two limiting cases that we discuss further now. The
first one corresponds to times where the first interference
contributions start to appear (i.e., t � ts.c.). In that case, short
chords are not yet a typical feature of the evolved Lagrangian
manifold and will generically correspond to a bottleneck near
a point x0 where the two sheets are closest. In that case one
recovers the rather typical situation where it is the variation of
the phase S (x‖) which cuts off the integral on x‖. Using the
fact that ∂S/∂x‖ = ξ⊥, and expanding up to order 3, we get

S (x‖) = S (x0) + w0(x‖ − x0) + w′′
0

6
(x‖ − x0)3, (49)

since at the bottleneck point x0 the length w reaches a
minimum and thus w′

0 = 0. If we take the convention that

w′(0) > 0 for x‖ > 0, we then have∫ ∞

−∞
dx‖e

i
h̄ [w(0)x‖+ w′′ (0)

6 x3
‖ ] =

(
2h̄

w′′
0

)1/3

Ai

[
w0

(
2h̄

w′′
0

)1/3]
,

(50)

and the integral in (41) reduces to

〈Ô〉β = aβ
+(x0)aβ

−(x0)O(x0)e−iμβ
π
2 +iηβ

π
4 +iη⊥

β
π
4

×
(

2h̄

w′′β
0

)1/3

Ai

[
w

β

0

(
2h̄

w′′β
0

)1/3]
. (51)

The second limiting case we shall consider will on the
other hand correspond to the long-time limit t � ts.c. of a
chaotic dynamics, for which we further assume that the region
supp(O) inside which O(x) is significant, although large on
the quantum scale, remains relatively small on the classical
one, and in particular on the scale on which the stable and un-
stable manifolds of the classical motion change significantly
their shape. In that case, because t � ts.c., we can assume that
the various pieces of the evolved Lagrangian manifold Lt , and
in particular L+ and L−, essentially align on the unstable
manifold of the dynamics and therefore remain essentially
parallel when they go through supp(O). Furthermore, because
of the exponential stretching along the unstable manifold,
the points of L± ∩ supp(O) all originate from a very narrow
neighborhood of the original manifold L0, and we can assume
a±(x‖) = a± = const. In that case, Eq. (41) reduces to

〈Ô〉β = aβ
−aβ

+e
i
h̄ Sβ (x0 )−μ π

2 Õ(wβ/h̄) (52)

(with wβ the (constant) spacing between Lβ
+ and Lβ

−) and is
thus expressed in terms of the Fourier component

Õ(wβ/h̄) =
∫

dx‖O(x‖)e
i
h̄ wβ (x‖−x0 ) (53)

of O(x‖), i.e., of a cut of O(x) along an unstable manifold.
Note that a rescaling of x‖ would not change that result.

V. CONCLUSION

We have obtained a semiclassical expression for the mean
value of operators as a sum of a classical contribution,

〈Ô〉cl(t ) =
∫

dx W0(x) O(gt x), (54)

corresponding to the TWA or LSC-IVR and oscillatory terms
associated with short chords. The final expression reads

〈Ô〉 = 〈Ô〉cl(t ) +
∑

β

∫
dx‖ O(x‖)aβ

−(x‖)aβ
+(x‖)

× e
i
h̄ Sβ (x‖ )−iμβ

π
4 + c.c., (55)

with Sβ (x‖) the action (13) evaluated at the midpoint be-
tween x+(x‖) and x−(x‖) (the points with parameter x‖ on
the sheets L+ and L− of L), O(x‖) the value of the Wigner
transform of the operator Ô at the same location, and μβ

the Maslov index of the path joining L+ and L− on which
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S is computed. Here we have used the two invariances of
the semiclassical Wigner function, invariance under canonical
change of variables (again in the approximation where only
short chords contribute), and invariance under parametrization
of L in order to choose x‖ both as a local coordinate and as a
variable parametrizing L. Although this is not made explicit
in our notations, different parametrizations x‖ can be used for
different contributions β.

Our results show that time evolution of mean values of op-
erators in the semiclassical approximation cannot be obtained
merely from the stationary phase approximation, at least when
several ingredients are present. If the Wigner transform of
the operator varies only at a classical scale, then time evo-
lution may stretch the manifold on which the semiclassical
wave function is constructed in such a way that nonstationary
points become relevant to the semiclassical dynamics. In that
case, the stationary points (and their vicinity) only provide
the classical contribution to the mean value. These stationary
points correspond to cases where the chords joining a pair of
points on the Lagrangian manifold become of length zero. The
semiclassical contributions originate in the fact that small (at
the quantum scale) but nonzero chords may arise, for instance
when the dynamics is chaotic. These almost stationary points
do not lie in the vicinity of a truly stationary point, so that the
stationary phase approximation does not capture them.

Thus, when computing semiclassically the mean values
of smooth operators for a semiclassical wave function one
needs to bear in mind that when short chords are involved,
i.e., when the folding of the Lagrangian manifold L on which
the wave function is built induces the presence of sheets that
are extremely close from one another, K integrals (over x̂⊥
in our notation) can be performed within the stationary phase
approximation; however, the K remaining ones (over x‖) do
not involve fast oscillations or stationary phase points and
must be performed by other means. The approach we suggest
is thus to perform within the stationary phase approximation
all the integrals that can be done in this way and to perform
the last remaining K by other means, possibly numerically.
One implication of this approach, however, is that it makes it
necessary to identify on the initial manifold (at t = 0) which
points will end up close to each other at time t , which amount
to a root search for the classical dynamics. This has to be con-
trasted with phase-space initial (or final) value representation
(IVR or FVR) approaches which are specifically designed to
avoid such root search.

These IVR or FVR semiclassical approaches are extremely
popular in the chemical and molecular physics community, in
particular in the version introduced by Herman and Kluck [31]
which involve some degree of smoothing but also in the
original form introduced by Miller [32] for the van Vleck
propagator or in the more modern and elegant form for
the Wigner function introduced by Ozorio de Almeida and
coworkers [14]. In these approaches, the classical trajectories
implied in the semiclassical calculation under consideration
are entirely specified by their initial conditions, thus avoid-
ing the need of a root search. As a bonus, one moreover
usually avoids the divergences associated with caustics or
turning points. Section 6 of Ref. [14] gives, for instance, an
application to these IVR or FVR approaches to the

calculations of mean values of operators that we have ana-
lyzed in this paper.

If the initial state |�0〉 that one is propagating does not
correspond to a semiclassical wave function (in the form we
define them in Sec. II), then there is no ambiguity that the IVR
or FVR form of the semiclassical propagation of the mean
value is superior to any approach that would imply a root
search. If, on the other hand, |�0〉 does take the form of a
semiclassical state, then IVR or FVR expressions for the op-
erator mean value are of course equivalent (within stationary
phase approximation) to inserting the semiclassical expres-
sion (19) into (4) [33]. As expected, both describe the same
physics, and deciding on one or the other is mainly a matter
of effectiveness; the term of the choice being to do a root
search or to avoid this root search at the cost of performing
numerically extra integrals.

There is obviously a set of situations where avoiding the
root search is enough of a simplification to justify the extra
numerical integrals implied by the IVR or FVR approaches.
However, if we go back to the calculations of transverse
integral in Sec. IV B 2 in the simple one-dimensional case,
then we see that this integral is dominated by a region of
size O(

√
h̄w′), with w′ the variation of the distance between

the two sheets of the manifold. As expected for semiclassical
integrals evaluated at the stationary phase approximation, this
size scales as

√
h̄, and, as soon as one enters a bit deeply in

the semiclassical regime, any attempt to compute numerically
the integral will require a very fine grid to avoid the output
being dominated by numerical noise. This state of things is
quite general in semiclassical integrals which in the semi-
classical limit are usually dominated by very small portion
of configuration (or phase) space. Here this is actually made
worse by the factor w′, which tends to zero when the two
sheets of the manifold become parallel, which will necessarily
happen when they become very close to each other. Even in
the simple one-dimensional case, computing numerically the
integral (30) in the deep semiclassical regime and for rather
long evolution time of a chaotic system such that the fold-
ing of the manifold creates extremely close, almost parallel,
pairs of sheets, will require to extract numerically the relevant
information from a tiny area of phase space which, if the
different role of the parallel and perpendicular directions are
not recognized, will require to propagate classical trajectories
on a grid on the subquantum scale in both directions. On the
other hand, our approach would in that case only require a
one-dimensional numerical integration (along the manifold)
with a grid on the classical scale.

We would thus argue that if IVR or FVR are clearly the
best options for semiclassical evolution of the mean value
of an operator taken on a non-semiclassical wave function,
and could be a viable route for short-time or not-too-deeply
semiclassic problems, then the root search implied by our
approach would still remain a considerably simpler and
more accurate option in the deep quantum long-time chaotic
regime.

As a final remark, in this paper we concentrated on the
simplest form of folding of the classical manifold where, un-
der chaotic time evolution, the Lagrangian manifold stretches
out with a curvature on the classical scale. However, much
more involved classical structures can appear, such as the
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whorls and tendrils discussed in Ref. [30]. For us, it is an open
question to decide whether the approach we propose can be
adapted to these more complicated geometries, whether they
could still be addressed semiclassically but would require nu-
merical integration of the semiclassical expressions (bringing
us back then to IVR or FVR) or whether they merely lead to
diffractive effects that cannot be handled semiclassically.
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