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Mean field games (MFG) provide a theoretical frame to model socioeconomic systems. In this Letter, we
study a particular class of MFG that shows strong analogies with the nonlinear Schrödinger and Gross-
Pitaevskii equations introduced in physics to describe a variety of physical phenomena. Using this bridge,
many results and techniques developed along the years in the latter context can be transferred to the former,
which provides both a new domain of application for the nonlinear Schrödinger equation and a new and
fruitful approach in the study of mean field games. Utilizing this approach, we analyze in detail a
population dynamics model in which the “players” are under a strong incentive to coordinate themselves.
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Mean field games were introduced a decade ago by
Lasry and Lions [1,2] and by Huang and co-workers [3] as
a tractable version of game theory for a large number of
players. This approach provides a very versatile framework
to model a vast range of socioeconomic problems ranging
from social behavior [4–7] to finance and economy [8–10].
Phrased in the language of macroeconomy, it makes it
possible to go beyond the “representative agent” descrip-
tion [10] and introduce, through its game-theory compo-
nent, some of the complexity associated with the variability
of economic agents’ situations. It does so while keeping
some reasonable degree of simplicity thanks to the “mean-
field” point of view taken. In engineering science, it also
proposes a manageable framework to approach complex
optimization problems involving a large number of coupled
subsystems [3,11].
This relatively new field has witnessed a very rapid

development in the last few years, and has followed two
major avenues. The first one is a mathematical approach in
which one aims at proving the internal consistency of the
theory [12–14] as well as deriving other rigorous results
such as existence and uniqueness of solutions for some
classes of models [15,16]. The other direction taken was
to develop efficient numerical schemes [5,17,18]. One
thing which has, however, prevented the diffusion of this
tool at a significantly larger scale is the lack of effective
approximation schemes. In fact, in spite of the mean-
field-type assumptions, the constitutive equations of these
models remain rather difficult to analyze, in particular,
because of their atypical forward-backward structure, and
only a few simple models admit an analytical solution
[6,19–21]. On the other hand, full fledged numerical
analyses of the mean field games equations leave much
to be understood.
We show here that there is a strong and deep

relationship between mean field games (or at least a
large class of them), and the nonlinear Schrödinger

(or Gross-Pitaevskii) equation, which has been studied
for almost a century by physicists to describe various
physical systems ranging from interacting bosons in the
mean field approximation to gravity waves in inviscid
fluids. The goal of this Letter is to show that this
identification allows us to transfer to mean field
games (or at least to a class of them) a vast array of
knowledge and techniques that have been developed
through the years in this field (see, e.g., Ref. [22–26]).
In particular, this opens the way to very effective approxi-
mation schemes leading both to a qualitative understand-
ing and a good quantitative description of the solutions
of the mean field games equations. This applies to
many circumstances where a direct analysis of the mean
field games equations seems highly nontrivial, and in
any case has not been fully undertaken. In particular, we
show how this approach provides an essentially complete
description of the regime of strong, short range, attractive
interactions, which is presumably the most interesting
case.
From a formal point a view, a mean field game is defined

by two components: the motion of the agents and the
quantity they try to optimize. Each agent i ¼ 1;…; N
is assumed to be characterized by a “state variable”
XiðtÞ ∈ Rn, which, depending on the problem under
consideration, may represent physical space [5], the
amounts of some natural resources [9], or the position of
a portfolio [8]. The dynamics of Xi contains a deterministic
part which is controlled by the agent, and a random one
associated with external noise. The simplest form of such a
motion is a Langevin dynamics

dXi ¼ aiðtÞdtþ σdWi; ð1Þ

where Wi is a white noise of variance one. On the other
hand, each agent chooses the drift aiðtÞ at time t in order to
minimize a cost function whose typical form is
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c½ai�ðXiðtÞ; tÞ

¼
��Z

T

t

�
μ

2
a2i ðτÞ − V½mτ�ðXiðτÞÞ

�
dτ

��
noise

þ ⟪cTðXiðTÞÞ⟫noise: ð2Þ

In this equation, ⟪ · ⟫noise means an average over the noise,
μ > 0 tunes the cost of a high drift velocity, cTðxÞ is the
final cost paid at the end of the optimization period T, and
V½mt�ðxÞ is both a function of x and a functional of the
density of agents mtðxÞ≡ ð1=NÞPiδ(x − XiðtÞ).
The class of models defined by Eqs. (1), (2), which

includes the “population dynamics models” introduced
by Guéant and co-workers [9], can be thought of as an
equivalent of the “Ising model” in the context of mean field
games: it is representative of most mean field games while
keeping clear of rather serious “technicalities” attached to
specific, application oriented, models. These more realistic
mean field games may require to consider other forms of
cost function or dynamics [15,27], as well as the intro-
duction of inhomogeneities in the agents characteristics [8].
At the present stage, very little is known about the solutions
of the mean field games equations even in their Ising-
model-like form Eqs. (1), (2), to which we therefore limit
our discussion.
Defining the value function uðx; tÞ≡minaið:Þc½ai�ðx; tÞ,

the minimization of the cost function Eq. (2), under the
dynamics Eq. (1), leads to a system of coupled partial
differential equations [2]:

∂tu −
1

2μ
ð∂xuÞ2 þ

σ2

2
∂2
xxu ¼ V½mt�ðxÞ; ð3Þ

∂tmþ ∂xðaðx; tÞmÞ − σ2

2
∂2
xxm ¼ 0; ð4Þ

with aðx; tÞ≡ −ð1=μÞ∂xuðx; tÞ. Equation (3) is a
Hamilton-Jacobi-Bellman (HJB) equation propagating
the value function uðx; tÞ backward in time from the final
condition uðx; TÞ≡ cTðxÞ; Eq. (4) is a Fokker-Planck (FP)
equation propagating the density of agent mtðxÞ ¼ mðx; tÞ
forward in time from the initial condition m0ðxÞ. The two
Eqs. (3) and (4) are coupled due to the density dependence
of the “potential” V½mt�ðxÞ and by the fact that the
optimized drift aðx; tÞ is the gradient of the value function.
With a relatively simple change of variables [28], the

system, Eqs. (3), (4), can be cast in a form which we
identify here as an imaginary time version of the nonlinear
Schrödinger equation. As a consequence of this identifi-
cation, we show hereafter that the associated formalism can
be naturally introduced, leading to an effective approxi-
mation scheme. In particular, this approach relates to a very
deep theorem derived by Cardialaguet and co-workers [29]
which states that (under additional technical conditions)
there exists an ergodic state m�ðxÞ in the long time limit

that the density mðx; tÞ approaches for T large when the
time t is sufficiently far from both 0 and T.
To proceed, we introduce two new functions: Φðx; tÞ ¼

exp½−uðx; tÞ=μσ2� (which corresponds to a Cole-Hopf
transformation for the HJB equation), and Γðx; tÞ ¼
mðx; tÞ=Φðx; tÞ. Eqs. (3), (4) then read for these new
variables,

−μσ2∂tΦ ¼ μσ4

2
∂2
xxΦþ V½mt�ðxÞΦ; ð5Þ

μσ2∂tΓ ¼ μσ4

2
∂2
xxΓþ V½mt�ðxÞΓ; ð6Þ

with the final conditionΦTðxÞ≡Φðx;TÞ¼ exp½−uTðxÞ=μσ2�
and the initial condition Γðx; 0ÞΦðx; 0Þ ¼ m0ðxÞ.
Under the formal replacement μσ2 → −iℏ, these equa-

tions are exactly those governing the evolution of a wave
function and its complex conjugate under the quantum
Hamiltonian Ĥ ¼ Π̂2=ð2μÞ þ V½mt�ðX̂Þ, where Π̂≡ μσ2∂x

and X̂ are respectively momentum and position operators.
For an arbitrary operator Ô ¼ fðX̂; Π̂Þ, let us introduce

the average

hÔiðtÞ≡ hΓðtÞjÔjΦðtÞi ¼
Z

dxΓðx; tÞÔΦðx; tÞ;

which, whenever Ô ¼ OðX̂Þ, reduces to the classical mean
value

R
dxmðx; tÞOðxÞ. One has, as for the Schrödinger

equation, μσ2ðd=dtÞhÔi ¼ h½Ĥ; Ô�i. In particular, straight-
forward algebra gives

d
dt

hX̂i ¼ hΠ̂i
μ

;
d
dt

hΠ̂i ¼ hF̂i; ð7Þ

where we have introduced the “force” operator F̂½mt�≡
−∂xV½mt�ðX̂Þ. The variance Σ2ðtÞ≡ hX̂2i − hX̂i2 evolves
according to

d
dt

Σ2 ¼ 1

μ
ðhX̂ Π̂þΠ̂ X̂i − 2hΠ̂ihX̂iÞ; ð8Þ

d2

dt2
Σ2 ¼ 2

μ2
ðhΠ̂2i − hΠ̂i2Þ − 2

μ
ðhX̂ F̂Þi − hX̂ihF̂iÞ: ð9Þ

If furthermore one considers local interactions between the
agents, so that the potential takes the form [27]

V½mt�ðxÞ ¼ U0ðxÞ þ f½mtðxÞ�; ð10Þ
one gets explicitly

hF̂i ¼ hF̂0i≡ h−∇xU0ðX̂Þi; ð11Þ
hX̂ F̂i ¼ hX̂F0i − V int; ð12Þ

with V int ≡ R
dx½Rm

0 duuf0ðuÞ�. Introducing, moreover,
the interaction energy hHinti≡

R
dx½Rm

0 dufðuÞ� the “total
energy”
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EðtÞ≡ 1

2μ
hΠ̂2i þ hU0ðX̂Þi þ hHinti ð13Þ

is a conserved quantity, i.e., dE=dt≡ 0.
Our claim is that Eqs. (7)–(13), together with many

results known in the context of the nonlinear Schrödinger
equation, can form the basis of the analysis of a very large
class of mean field games for various associated potentials,
including some long range interactions. In the following,
we will illustrate our point of view, restricting ourselves to
the one-dimensional case and to potentials of the form
Eq. (10) (though most of our findings can be extended
straightforwardly to other cases). Wewill furthermore focus
mainly on the regime that we think is the most interesting,
namely, the one of strong positive interactions, in a sense
clarified below.
To begin our analysis, it is presumably useful to start with

persistent solutions of Eqs. (5), (6), which will eventually
correspond to the “ergodic state” of Cardialaguet et al.
[29]. These are obtained as Γðx; tÞ ¼ ψ�ðxÞeϵt=μσ2 and
Φðx;tÞ¼ψ�ðxÞe−ϵt=μσ2 , giving mðx;tÞ¼m�ðxÞ¼ ½ψ�ðxÞ�2,
where ψ�ðxÞ is the solution of the time independent non-
linear equation Ĥψ�ðxÞ ¼ ϵψ�ðxÞ, that is,

μσ4

2
∂2
xxψ

� þU0ðxÞψ� þ f½ðψ�Þ2�ψ� ¼ ϵψ�: ð14Þ

We specialize from now on to f½mðxÞ�≡ gmðxÞ (the
general case can be addressed following closely the
approach described below [30]) with g > 0. In this case
Eq. (14) is exactly the (time-independent) Gross-Pitaevskii
equation. In the limit U0ðxÞ ¼ 0 the lowest energy state is a
soliton [26]:

ψ�
s ðxÞ ¼

1ffiffiffiffiffi
2η

p cosh−1
�
x
η

�
; ð15Þ

with η≡ 2μσ4=g, and ϵs ¼ g=ð4ηÞ.
Note that Eq. (15) provides a length scale, η, the spatial

extension of the soliton.We now consider a nonzero external
confining potential U0ðxÞ; by definition of a strong inter-
action regime, the variations of U0ðxÞ on a scale η are
small, that is jη∇xU0j ≪ jϵsj and jη∇2

xU0j ≪ j∇xU0j. Under
these conditions, it is clear that, away from t ¼ 0 and t ¼ T,
where the boundary conditions may force the density of
agents out of the soliton form, mðx; tÞ will keep a form
close to ½ψ�(x − x̄ðtÞ)�2, centered around its mean value
x̄ðtÞ≡ hX̂iðtÞ. For this narrow density profile one has
hF̂0i≃ −∇xU0ðx̄Þ, and applying Eq. (7) readily gives

μ
d2

dt2
x̄ðtÞ ¼ −∇xU0(x̄ðtÞ): ð16Þ

In the strong interaction regime, the motion of the soliton is
simply that of a classical particle of mass μ in the potential
U0ðxÞ.

The next point we need to address is the formation or
destruction of the soliton. Indeed, considering for instance
the neighborhood of t ¼ 0, the initial condition m0ðxÞ can
be taken far from the soliton form, and one may ask how
mðx; tÞ evolves to it from m0ðxÞ. The short answer to this
question is “quickly”—indeed this process is dominated
by interactions which are assumed to be large. To obtain
further insight, let us assume that the density has initially
a Gaussian shape of variance Σ2

i and centered around x̄.
We use a Gaussian ansatz to describe its initial evolution

mðx; tÞ≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΣ2ðtÞ

p exp

�
−
ðx − x̄Þ2
2Σ2ðtÞ

�
:

Neglecting the influence of the external potential during the
formation of the soliton in Eqs. (9)–(12), and using that
the total energy Eq. (13) is a conserved quantity, we can
express hΠ̂2i=2μ in terms of hHinti and its large t stationary
limit hHinti�. Using that here V int ¼ hHinti, we obtain

d2

dt2
Σ2 ¼ 2

μ
ðhHinti� − hHintiÞ

¼ g
2μ

ffiffiffi
π

p
�
1

Σ�
−

1

ΣðtÞ
�
; ð17Þ

where Σ� ¼
ffiffiffi
π

p
η. Imposing Σðt¼ 0Þ¼Σi, and introducing

zt ¼ ΣðtÞ=Σ�, zi ¼ Σi=Σ�, and τ� ≡ 2π
ffiffiffiffiffiffiffiffiffiffiffiffi
μη3=g

p
, Eq. (17)

can be integrated as

−ðzt − ziÞ − log

�
1 − zt
1 − zi

�
¼ t

τ�
: ð18Þ

The destruction of the soliton can be tackled similarly,
except that the terminal condition imposed on Σ2 is of the
mixed form μdΣ2=dtðTÞ þ 2½∂2

xxcT(x̄ðTÞ)�Σ2ðTÞ ¼ σ2,
and thus gives a different expression (not shown) for the
solution of Eq. (17). One finds that ΣðTÞ≃ Σ�ð1þ ξÞ
where ξ≃ 0.43 is a number. So the final density mðx; TÞ
has a dispersion which remains of order Σ�.
Setting aside the precise way the soliton is formed or

destroyed near the boundaries t ¼ 0 and t ¼ T, the impor-
tant point here is that the characteristic time τ� ¼
πη

ffiffiffiffiffiffiffiffiffiffiffiffi
μ=jϵsj

p
which emerges is short, in the sense that η is

assumed the smallest length scale of the problem and ϵs the
largest energy scale of the problem. This is consistent
with the fact that during its formation, the soliton can
be considered immobile and centered around x̄. The
terminal condition, on the other hand, does not involve
directly mðxÞ as what is fixed is the final cost function
cTðxÞ. Using again that near T the density remains
localized on a scale ∼Σ� ∼ η which is short, one can show,
however, that one has for the center of the soliton x̄ðtÞ the
terminal condition
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μ
dx̄
dt

ðTÞ ¼ −ð∂xcTÞ½x̄ðTÞ�: ð19Þ

As an illustration, let us consider a simple population
dynamics model in a one dimensional space (say some
aquatic species living along a river). Here the state X is the
physical position of each individual, the potential U0ðxÞ
represents the intrinsic quality of the location x (for
instance for finding food) and the mutual interaction
V½m�ðxÞ the incentive to stay within the group (as a defense
against predators). If the optimization process is running
over a day, m0ðxÞ would be the initial distribution of the
group in the morning, and cTðxÞ would represent the
intrinsic quality of shelter found at the end of the day.
Figure 1 shows a comparison between a numerical solution
of Eqs. (3), (4) for a potential as in Eq. (10) with fðmÞ ¼
gm and the predictions derived from the above analysis
(see caption for the precise parameters). The quantitative
agreement is seen to be very good.
More generally, we can now give a fairly complete

description of the solution of this population dynamics
model in the regime of strong short-ranged positive
interactions that we consider here. One can distinguish
three distinct periods of time.
In the first one (the formation of the herd, which takes

place on the shortest time scale τ�), the individuals
coordinate themselves through their strong mutual

interaction and evolve from their initial distribution
m0ðxÞ to a localized one whose extension Σ� results from
a balance between the agents’ interaction (which tends
to reduce Σ�), and noise (which tends to increase it).
Whenever the Gaussian ansatz is accurate during this
phase, Eqs. (17), (18) provide a quantitative description
of the time evolution of the density of agent. If m0ðxÞ is
not well approximated by a Gaussian this description is
presumably a bit more qualitative. Note, however, that the
only place where the Gaussian form has been explicitly
used here is when expressing hHinti in terms of the variance
Σ2ðtÞ of mðx; tÞ. As long as this relation is approximately
maintained, and given that mðx; tÞ has to converge to a
soliton form which is well approximated by a Gaussian, the
description Eqs. (17), (18) should be reasonably accurate.
The third (and last) time period extends also over the

short time scale τ� just before T, when the population
density slightly relaxes from the soliton form to adjust to
the final cost function cTðxÞ. Since the boundary condition
does not involve the final density mðx; TÞ one can assume
there a compact form for mðx; tÞ with a finite spread on a
scale ∼Σ�.
In between, assuming of course T ≫ τ�, most of the time

period ½0; T� is characterized by the relatively slow motion
of the population following Eq. (16). Because τ� is so short,
and because the dynamics of hX̂i and hΠ̂i are controlled by
the external potential U0ðxÞ, their values barely move
during the formation or the dispersion of the herd, and
thus Eq. (16) can be assumed to be valid all along ½0; T�.
Therefore, the precise way in which the herd is initially
formed and eventually dispersed will not change drastically
what will happen during the propagation phase.
In the intermediate phase, the dynamics is therefore

determined by m0ðxÞ, which fixes the initial position of the
herd, by cTðxÞ, which sets the final velocity of the herd, and
by the confining potential U0ðxÞ which drives the motion
between the two. We arrive thus at this relatively non-
intuitive result that the details of the strong coordination
between the agents, which is assumed to be the largest force
at work here, plays little role in the global picture.
Considering now the long time limit studied by

Cardialaguet and co-workers [29], the picture we obtain
is the following: the simplest way to form a trajectory
fulfilling the boundary condition x̄ ¼ x̄0 at t ¼ 0 and
Eq. (19) at t ¼ T for very large T, is to use an initial
velocity _̄x0 such that the energy E≡ μ _̄x20=2þUðx̄0Þ is
almost equal to U0ðxmaxÞ, with xmax the maxima of U0ðxÞ
(which is thus an unstable fixed point). In this way, the
trajectory reaches xmax with an almost zero velocity, thus
staying there for an arbitrarily long time, before picking
speed again to fulfill Eq. (19) at t ¼ T. The ergodic state
appears in this way as m�ðxÞ≡ ½ψ�ðx − xmaxÞ�2, and is
approached exponentially quickly if U0ðxÞ is at least
quadratic around xmax.

FIG. 1. Solution of the mean field game equations for the
density of agents in a typical configuration. Solid black: numeri-
cal solution of Eqs. (3), (4); Dashed gray: Solution for the
Gaussian ansatz solution of Eqs. (16)–(18). The initial density is
mðx; t ¼ 0Þ ¼ ð1=2ηiÞcosh−2ðx − xi=ηiÞ with xi ¼ 0.3, ηi ¼ 0.2,
and the final cost cTðxÞ ¼ 2π2ðx − 0.8Þ2. The parameters of the
model are σ ¼ 0.45, μ ¼ 1, T ¼ 4; the potential is as in Eq. (10)
with fðmÞ ¼ gm (g ¼ 2), and U0ðxÞ ¼ −ðπ2=8Þðx − 0.5Þ2.
To make more visible the creation and relaxation of the soliton,
the time scale of the initial and final time periods have been
magnified.
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We stress, however, that dealing with a boundary
condition problem (implying initial and final times) rather
than an initial value problem (initial position and velocity
fixed) considerably changes things compared to classical
mechanics, especially with respect to the uniqueness of the
solution. Indeed, if there is more than one local maxima
of U0ðxÞ, one can in most circumstances build more than
one solution to the problem [depending on the energy
U0(x̄ðt ¼ 0Þ) and U0(x̄ðt ¼ TÞ), and on the location of
the local maxima relative to x̄ðt ¼ 0Þ and x̄ðt ¼ TÞ]. Taking
the solution associated with the lowest value of the cost
function Eq. (2) will make it possible to select the correct
one, but this process should imply some phase transition: a
very small variation of some parameter, for instance, the
optimization time T, may provoke a discontinuous change
and lead the group to explore a completely different area.
In this Letter, we have stressed a natural connection

between nonlinear Schrödinger equations and mean field
games expressed by Eqs. (5), (6), which makes possible the
transfer to this latter field of a large variety of tools to
analyze, both qualitatively and quantitatively, a wide class
of systems which appear significantly more difficult to
address directly in the original form. We have focused on
the regime of strong short-ranged interactions but other
cases (long range interactions, strong confining potential),
and higher dimensional problems, could be addressed very
similarly. Exploiting fully this connection provides both a
new playground for physicists familiar with the nonlinear
Schrödinger equation and a path to powerful approximation
schemes for mean field games equations. We have illus-
trated our finding with a stylized population dynamics
model, but the analysis of real socioeconomic problems
should eventually benefit from these progresses.
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