New Result in the Production and Decay of an Isotope, 278113, of the 113th Element

KOSUKE MORITA1,*, KOJUI MORIMOTO1, DAIIY KAI1, HIROMITSU HABA1, KAZUTAKA OZEKI1, YUKI KUDOU1, TAKAYUKI SUMITA1,*, YASUO WAKABAYASHI1, AKIRA YONEDA1, KENGO TANAKA2,*, SAYAKA YAMAKI3,*, RYUTARO SAKAI1,*, TAKAHIRO AKIYAMA1,*, SHIN-ICHI GOTO5, HIROO HASEBE1, MINGHUI HUANG1, TIANHEN HUANG5, EJI IDEGUCHI5,*, YOSHITAKA KASAMATSU1,*, KENJI KATORI1,*, YOSHIKI KARIYA5, HIDETOSHI KIKUNAGA8, HIROYUKI KOURA7, HISAAKI KUDO4, AKIHIRO MASHIKO10, KEEITA MAYAMA10, SHIN-ICHI MITSUKA9, TORU MORIYA10, MASASHI MURAKAMI5, HIROHUMI MURAYAMA5, SAORI NAMAI10, AKIRA OZAWA11, NOZOMI SATO9, KEISUKE SUEKI11, MIREI TAKEYAMA10, FUYUKI TOKANAI10, TAKAYUKI YAMAGUCHI10, and ATSUSHI YOSHIDA1

1RIKEN Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198, Japan
2Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
3Department of Physics, Saitama University, Saitama 338-8570, Japan
4Department of Chemistry, Saitama University, Saitama 338-8570, Japan
5Department of Chemistry, Niigata University, Niigata 950-2181, Japan
6Institute of Modern Physics, Chinese Academy of Science, 730000 Lanzhou, P. R. China
7Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198, Japan
8Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan
9Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
10Department of Physics, Yamagata University, Yamagata 990-8560, Japan
11University of Tsukuba, Tsukuba, Ibaraki 305-8071, Japan

(Received August 29, 2012; accepted September 10, 2012; published online September 27, 2012)

An isotope of the 113th element, i.e., 278113, was produced in a nuclear reaction with a 70Zn beam on a 209Bi target. We observed six consecutive α-decays following the implantation of a heavy particle in nearly the same position in the semiconductor detector under an extremely low background condition. The fifth and sixth decays are fully consistent with the sequential decays of 262Db and 258Lr in both decay energies and decay times. This indicates that the present decay chain consisted of 278113, 274Rg (Z = 111), 270Mt (Z = 109), 266Bh (Z = 107), and 262Db (Z = 105) (SF)1,2) These assignments were based on the fact that the chains connected to the known sequential α-decays of 266Bh and 262Db as daughters of 278113.1,3,4) In the continuation of our research program, we observed a new decay chain consisting of six consecutive α-decays, i.e., 278113 (α1) → 274Rg (Z = 111) (α2) → 270Mt (Z = 109) (α3) → 266Bh (Z = 107) (α4) → 262Db (Z = 105) (SF).1,2) These assignments were based on the fact that the chains connected to the known sequential α-decays of 266Bh and 262Db as daughters of 278113.3,4) In the continuation of our research program, we observed a new decay chain consisting of six consecutive α-decays, i.e., 278113 (α1) → 274Rg (α2) → 270Mt (α3) → 266Bh (α4) → 262Db (α5) → 258Lr (Z = 103) (α6) → 254Md (Z = 101), providing an unambiguous determination of the atomic number (Z) and mass number (A) of 278113. Note that the α-decay branching ratio of 262Db is 67%, a fact that led us to search for the α-decay of 262Db in the present study.

KEYWORDS: new element 113, gas-filled recoil ion separator, α-decay chain

In the experimental program aiming at confirming the existence of an isotope of the 113th element, i.e., 278113, produced in the 209Bi + 70Zn → 278113 + n reaction, we previously observed two convincing candidate events, both consisting of four consecutive α-decays followed by a spontaneous fission (SF) immediately after the implantation of a heavy particle in the semiconductor detector under a low-background condition of typically 5 s−1.1,2) We assigned the decay events to those originating from the primary products 278113 and the sequential decays 278113 (α1) → 274Rg (Z = 111) (α2) → 270Mt (Z = 109) (α3) → 266Bh (Z = 107) (α4) → 262Db (Z = 105) (SF).1,2) These assignments were based on the fact that the chains connected to the known sequential α-decays of 266Bh and 262Db as daughters of 278113.1,3,4) In the continuation of our research program, we observed a new decay chain consisting of six consecutive α-decays, i.e., 278113 (α1) → 274Rg (α2) → 270Mt (α3) → 266Bh (α4) → 262Db (α5) → 258Lr (Z = 103) (α6) → 254Md (Z = 101), providing an unambiguous determination of the atomic number (Z) and mass number (A) of 278113. Note that the α-decay branching ratio of 262Db is 67%, a fact that led us to search for the α-decay of 262Db in the present study.

1E-mail: morita@rnhf.riken.jp
2Present address: Research Center for Nuclear Physics, Osaka University.
3Present address: Department of Chemistry, Osaka University.
for the thicker targets, two separate foils were used as one target to reduce the energy deposit in a single target. We mounted 16 (32 for the double target system) targets on a separator to reduce the energy deposit in a single target. We used the energy loss table,5) in the foil separating the gas and detection regions, and in kinematics, and energy losses in the target, in the filling gas, number of the ER is 278. By taking into account the reaction points in the target that we could not determine. The energy calibration of the detectors for decay α-particles was performed simultaneously. Note that, because the α-decays used for the energy calibration were ground-state transitions, no γ-ray was emitted with the α-decays.

The α1-, α2-, α4-, α5-, and α6-particles were detected by only the PSD. The energy resolution measured using only the PSD was 55 keV in full width at half maximum (FWHM). For α3, the decaying α-particles were ejected from the PSD and implanted to the SSD. Therefore, the energies of the decaying α-particles were measured partly by the PSD and those of the residual ones by the SSD. The resolution in the case that the energy of a decaying particle was measured by both the PSD and the SSD was 73 keV in FWHM. The position resolution of the PSD for the ER and α-measurements was measured to be 0.58 mm in FWHM.

The decay chain observed in this work consisted of six consecutive α-decays after the implantation of an ER in the focal plane detector of the GARIS. The ER and all of the α-particles were detected at strip #7 of PSD. The α-energies, time intervals from the previous decay (or implantation of ER), and positions in a strip of PSD of the decays are listed in the third column of Table II together with those observed in previous runs (first and second columns). In the third α-decay of the second chain, we consider that only a portion of the α-energy was measured owing to the limited solid angle coverage (85%) of the detector box. In Table II, the times indicated in the cells for ER in nanosecond units are the TOF measured along the 295 mm flight path just before implantation into the focal plane detector. The mean lifetimes obtained from the three decay chains are also listed in the last column in Table II with 1σ statistical errors for α1, α2, α3, α4, and SF/α5. The value for α6 is simply the observed one for chain 3 with a 1σ statistical error for one event.

For the ER event, the TOF between the timing counters was 42.6 ± 0.5 ns, which was somewhat shorter than those of the first and second events (44.6 ± 0.5 and 45.7 ± 0.5 ns) because of a finite difference of the kinetic energies of ER, as discussed below. The implantation energies observed for the first, second, and third events were 36.8, 36.5, and 41.9 MeV, respectively. The kinetic energies of ER for the first, second, and third events were measured partly by the TOFs along the 295 mm path length to be 62.9, 59.9, and 41.9 MeV, respectively, assuming that the atomic mass number of the ER is 278. By taking into account the reaction kinematics, and energy losses in the target, in the filling gas, in the foil separating the gas and detection regions, and in the foil of the first TOF counter using the energy loss table,5) the kinetic energies of ERs just after the first foil of the timing counter are calculated to be 62 MeV for the first and second events, and 66 MeV for the third event. These values are in good agreement considering the uncertainty of the energy losses of ERs in the target due to the depths of the reaction points in the target that we could not determine. The
long strip. Thus, the effective counting rate was $2.6 \times 10^{-5} \text{s}^{-1}$. With time differences of 0.667 ms for α_1, 10.6 ms for α_2, 45.5 ms for α_3, 5.7 s for α_4, 131 s for α_5, and 135 s for α_6, the probabilities of the accidental coincidence were evaluated to be 1.7×10^{-8}, 2.8×10^{-7}, 1.2×10^{-5}, 1.5×10^{-4}, 3.5×10^{-3}, and 3.5×10^{-1}, for ER-α_1, ER-α_2, ER-α_3, ER-α_4, ER-α_5, and ER-α_6, respectively. The probability of producing all six of these decays accidentally is the product of these numbers, i.e., 1.1×10^{-28}, which excludes the possibility of an accidental coincidence.

The α-decay mode was first observed for the fifth decay in the third (present) chain, while the modes observed in the first and second decay chains were the SF decay. The observed α-energy of $E_\alpha = 8.63 \pm 0.06 \text{MeV}$ is in good agreement with the adopted values for ^{262}Db: $E_\alpha = 8.450 \pm 0.020 \text{MeV}$ ($I_\alpha = 75\%$), $8.530 \pm 0.020 \text{MeV}$ (16\%), and $8.670 \pm 0.020 \text{MeV}$ (9\%).

The mean life obtained from the three decays (1 α-decay and 2 SFs) is 56^{+7}_{-5}ms which corresponds to the half-life of $T_{1/2} = 39^{+5}_{-14} \text{s}$. The obtained $T_{1/2}$ value is also in good agreement with the adopted value of $T_{1/2} = 34 \pm 4 \text{s}$.

In the present decay chain, the sixth α-decay (α_6) of $E_\alpha = 8.66 \pm 0.06 \text{MeV}$ was also observed with a decay time of 3.78 s, which corresponds to $T_{1/2} = 2.6^{+12}_{-11} \text{s}$. These decay properties are in good agreement with the adopted properties for the α-decay daughter of ^{262}Db, ^{258}Fr: $8.565 \pm 0.025 \text{MeV}$ (20\%), $8.595 \pm 0.010 \text{MeV}$ (46\%), $8.621 \pm 0.010 \text{MeV}$ (25\%), and $8.654 \pm 0.010 \text{MeV}$ (9\%), $T_{1/2} = 3.92^{+0.35}_{-0.42} \text{s}$ and $b_{\alpha} = 97.5^{+4}_{-20}$.

The decay time distributions of individual generations in the three decay chains are shown in Fig. 2, where the logarithm of the decay time is taken as the abscissa. The distribution of a simple one-component exponential decay is expressed by a Gaussian-like universal curve whose peak position corresponds to the mean life with a tail on the shorter-decay-time side. It was found that the decay time of each generation closely follows a single universal curve, as shown in Fig. 2. This indicates that the mean lifetime of each generation has a single component; the observed decays originated from nuclides with the same mean life.

The α-decay energies of $^{278}113$, ^{274}Rg, ^{270}Mt, and ^{266}Bh show some discrepancies among the three chains. However, differences between the observed implantation energies for the three events, i.e., 36.8, 36.5, and 41.9 MeV, and the values calculated using the TOFs, i.e., 62.9, 59.9, and 69.0 MeV, are well described by the energy losses in the foil of the second timing counter and pulse height defects, the so-called plasma effect, and nuclear stopping in silicon PSD, for ions with a large atomic number.

Figure 1 shows a scatter plot of the energy and TOF for the run in which the decay chain was observed. In the figure, only events detected by strip #7 of the PSD are plotted. The point corresponding to the implantation event is indicated by a circle with an arrow. Loci corresponding to projectile-like particles ($A \approx 70$) and target-like particles ($A \approx 209$) (target recoil and transfer reaction products) are seen in the figure. The implantation event is well separated from the locus of the target-like particles that may contribute to the background of the measurement. The figure indicates that the mass of the implanted particle is higher than that of the target-like particles. The mass number of ER was roughly estimated to be 291 ± 15 using a method similar to that described in ref. 8.

The probabilities of an accidental coincidence between the implantation of ER and individual decays were estimated as follows. The counting rate of decay events at strip #7, which yielded no TOF signal for a decay energy greater than 8 MeV, was $2.6 \times 10^{-3} \text{s}^{-1}$. The decay events were uniformly distributed along the strip, and a position window for decay identification was set to 0.6 mm, which is the measured position resolution in FWHM, over the 60-mm-long strip. Thus, the effective counting rate was $2.6 \times 10^{-5} \text{s}^{-1}$. With time differences of 0.667 ms for α_1, 10.6 ms for α_2, 45.5 ms for α_3, 5.7 s for α_4, 131 s for α_5, and 135 s for α_6, the probabilities of the accidental coincidence were evaluated to be 1.7×10^{-8}, 2.8×10^{-7}, 1.2×10^{-5}, 1.5×10^{-4}, 3.5×10^{-3}, and 3.5×10^{-1}, for ER-α_1, ER-α_2, ER-α_3, ER-α_4, ER-α_5, and ER-α_6, respectively. The probability of producing all six of these decays accidentally is the product of these numbers, i.e., 1.1×10^{-28}, which excludes the possibility of an accidental coincidence.

The α-decay mode was first observed for the fifth decay in the third (present) chain, while the modes observed in the first and second decay chains were the SF decay. The observed α-energy of $E_\alpha = 8.63 \pm 0.06 \text{MeV}$ is in good agreement with the adopted values for ^{262}Db: $E_\alpha = 8.450 \pm 0.020 \text{MeV}$ ($I_\alpha = 75\%$), $8.530 \pm 0.020 \text{MeV}$ (16\%), and $8.670 \pm 0.020 \text{MeV}$ (9\%).

The mean life obtained from the three decays (1 α-decay and 2 SFs) is 56^{+7}_{-5}ms which corresponds to the half-life of $T_{1/2} = 39^{+5}_{-14} \text{s}$. The obtained $T_{1/2}$ value is also in good agreement with the adopted value of $T_{1/2} = 34 \pm 4 \text{s}$.

In the present decay chain, the sixth α-decay (α_6) of $E_\alpha = 8.66 \pm 0.06 \text{MeV}$ was also observed with a decay time of 3.78 s, which corresponds to $T_{1/2} = 2.6^{+12}_{-11} \text{s}$. These decay properties are in good agreement with the adopted properties for the α-decay daughter of ^{262}Db, ^{258}Fr: $8.565 \pm 0.025 \text{MeV}$ (20\%), $8.595 \pm 0.010 \text{MeV}$ (46\%), $8.621 \pm 0.010 \text{MeV}$ (25\%), and $8.654 \pm 0.010 \text{MeV}$ (9\%), $T_{1/2} = 3.92^{+0.35}_{-0.42} \text{s}$ and $b_{\alpha} = 97.5^{+4}_{-20}$.

The decay time distributions of individual generations in the three decay chains are shown in Fig. 2, where the logarithm of the decay time is taken as the abscissa. The distribution of a simple one-component exponential decay is expressed by a Gaussian-like universal curve whose peak position corresponds to the mean life with a tail on the shorter-decay-time side. It was found that the decay time of each generation closely follows a single universal curve, as shown in Fig. 2. This indicates that the mean lifetime of each generation has a single component; the observed decays originated from nuclides with the same mean life.

The α-decay energies of $^{278}113$, ^{274}Rg, ^{270}Mt, and ^{266}Bh show some discrepancies among the three chains. However,
the observation in the rather widely distributed decay energies of the decay chains of odd–odd nuclei, for example, starting from 272Rg. A natural feature due to the decays to the many excited states in their daughters, and due to the possible summing effect of α-energy with a conversion electron or γ-ray energy, which is emitted simultaneously with α-decay inside the detector.

Therefore, we could conclusively assign the sixth decay to that of 258Lr. Consequently, we could unambiguously assign the third decay chain to 278113 \rightarrow 274Rg \rightarrow 270Mt \rightarrow 266Bh \rightarrow 262Db \rightarrow 258Lr \rightarrow 254Md.

The isotopes 254Md/254mMd are known to decay dominantly by electron capture (EC) ($b_e \approx 100\%$) with half-lives $T_{1/2} = 10 \pm 3$ min and 28 ± 8 min, respectively. We did not observe the corresponding event following the assigned decay of 258Lr, because the energy deposit of X-rays (the highest energy of characteristic X-rays of 254Fm is 142 keV) associated with the EC decay is smaller than the energy threshold of the focal plane detector, i.e., 800 keV. The isotope 254Fm, which is the daughter of 254Md, is known to decay dominantly by α-emission ($b_\alpha = 99.94\%$) with a half-life $T_{1/2} = 3.240 \pm 0.002$ h. The adopted decay energies and relative intensities are 6.898 ± 0.003 MeV (0.0066%), 7.050 ± 0.002 MeV (0.82%), 7.150 ± 0.002 MeV (14.2%), and 7.192 ± 0.002 MeV (84.9%). We observed two candidate events corresponding to the decay of 254Fm. One ($\alpha_{7,1}$) was observed 3.96 h after the decay of 258Lr with a decay energy and a position in the detector of 7.26 (0.07) MeV and 5.2 mm, respectively. The other ($\alpha_{7,2}$) was observed 6.42 h after the decay of 258Lr with a decay energy and a position of 7.18 (0.06) MeV and 5.1 mm, respectively. Using the counting rate of the decay event mentioned above, but for a decay energy greater than 7 MeV, i.e., 3.0×10^{-3} s$^{-1}$, the probabilities of an accidental coincidence between the implantation of ER and the observed decays, $\alpha_{7,1}$ and $\alpha_{7,2}$, were estimated to be 0.43 and 0.70, respectively. We consider that one of these was the possible decay of 254Fm.