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Bipartite and tripartite entanglement in a Bose-Einstein acoustic black hole
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We investigate quantum entanglement in an analog black hole realized in the flow of a Bose-Einstein con-
densate. The system is described by a three-mode Gaussian state and we construct the corresponding covariance
matrix at zero and finite temperature. We study associated bipartite and tripartite entanglement measures and
discuss their experimental observation. We identify a simple optical setup equivalent to the analog Bose-Einstein
black hole which suggests a different way of determining the Hawking temperature and gray-body factor of the
system.
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I. INTRODUCTION

Analog gravity aims at providing platforms making it
possible to conduct laboratory studies of phenomena at the in-
terface between general relativity and quantum physics, such
as Hawking radiation [1] and black hole superradiance [2],
for which in the gravitational context direct observation is
not possible or no complete theory exists. It has also been
suggested that analog models can bring some insight on the
information loss paradox [3,4]. The concept has now broad-
ened so as to include experimental tests of physical effects of
relevance in cosmological scenarii, such as dynamical Casimir
effect, Kibble-Zurek mechanism, Zakharov oscillations, Hub-
ble friction, etc.; see, e.g., [5] and references therein.

In order to reach meaningful results based on the study
of an analog model, it is important to precisely character-
ize the experimental system supporting the analysis and to
correctly circumscribe the phenomenon under scrutiny. The
present work aims at following this line of research in the
case of an analog of event horizon realized in a Bose-Einstein
condensed (BEC) ultracold atomic vapor. The use of a BEC
as an analog model has been first suggested by Garay et al.
[6], followed by many others. This motivated Steinhauer and
his group to develop and then ameliorate an experimental
setup making it possible to realize an acoustic horizon in a
quasi one-dimensional BEC [7–11]. Particular attention has
been devoted to the study of the analogous Hawking radiation,
which corresponds to the emission of a pair of quasiparticles
consisting of a “Hawking quantum” and a “Partner.” Con-
comitantly, the theoretical study of this system by means of
a Bogoliubov decomposition has been first suggested in [12],
then gradually refined [13–15] until a point where a detailed
comparison with experiments has been possible [16]. There
is now compelling evidence that analog Hawking radiation
has been observed in different systems [10,11,17,18] but the
crucial question of the quantum nature of the phenomenon has
been debated: is the phenomenon mostly triggered by noise

or does it correspond to spontaneous quantum emission as
in Hawking’s original scenario? A natural test of the latter
consists in demonstrating entanglement of the Hawking pair.
Indeed, experimental observation of correlated pairs of exci-
tations does not suffice to demonstrate the quantum nature of
the Hawking process, since the phenomenon also exists, e.g.,
in the nonquantum setting of water waves [19]. Also, as can be
inferred from the quantitative results presented in Ref. [16], in
BEC systems the corresponding signal is robust with respect
to temperature: its observation therefore does not rule out the
possibility that the analog Hawking radiation is mostly trig-
gered by thermal and not quantum fluctuations. By contrast,
the presence of entanglement between the Hawking quantum
and its Partner demonstrates the presence of quantum effects.
Additionally, a quantitative measure of entanglement is nec-
essary for evaluating the respective impacts of quantum and
thermal effects. However, it has not always been checked
whether the measures used up to now in the literature provide
good quantitative estimates of entanglement in the system.
An important goal of the present work is to identify which,
among different measures of entanglement, enable a quantita-
tive, monotone, experimentally relevant determination of the
degree of bipartite entanglement in a finite-temperature BEC
analog of black hole.

Several theoretical works have addressed the issue of en-
tanglement in analog gravity systems. Most of them [20–27]
discuss qualitative measures such as the Peres-Horodecki or
Cauchy-Schwarz criteria, which indicate if a state is entangled
or not but—as shown below—do not provide good estimates
of its degree of entanglement. In the present work we follow
Refs. [28–31] and focus on quantitative measures. It is im-
portant to take into account the specificities of BEC physics
in order to conduct the corresponding theoretical analysis. In
particular, dispersive effects and the lack of Lorentz invariance
complexify the standard Hawking quantum-Partner picture by
introducing new propagation channels; accordingly the sys-
tem is described by a three-mode Gaussian state. Its detailed
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description makes it possible to quantify its bipartite and also
tripartite entanglement. We advocate for the use of a measure
of entanglement based on the Gaussian contangle, and we
show that this is an experimentally accessible quantity which
can provide a signature of the quantum nature of Hawking
radiation. We also show how entanglement can be localized
in our system in an effective two-mode state, which makes it
possible to propose a simple and appealing equivalent opti-
cal model. This description suggests an alternative definition
of the analog Hawking temperature and of the associated
gray-body factor, in closer agreement with the gravitational
paradigm. Another interesting outcome of this construction
is the understanding that genuine tripartite entanglement may
occur between the three modes, although two of them are not
entangled.

The paper is organized as follows. In Sec. II we present
the theoretical description of an acoustic black hole realized
in an ultracold atomic vapor. In Sec. III we review the basics
of Bogoliubov transformations and apply it to our situation.
The description of Gaussian states appearing in the scatter-
ing processes involved in black hole analogs is discussed in
Sec. IV. Section V is dedicated to the investigation of two-
mode and three-mode entanglement in the Gaussian states we
are considering here. The case of a finite-temperature setting
is examined in Sec. VI, where we also provide a proof of
principle of the measurability of the quantities we use for
assessing the degree of entanglement. Concluding remarks
are presented in Sec. VII. Some technical points are given
in the Appendixes. In Appendix A we recall some properties
of Bogoliubov transformations. In Appendix B we give some
useful explicit expressions of the elements of the covariance
matrix. In Appendix C we recall the low frequency behavior
of the coefficients describing the scattering of linear waves
by the acoustic horizon. Appendix D details the construction
making it possible to localize entanglement in our system.
In Appendix E we establish a formula making it possible to
compute the Gaussian contangle at finite temperature.

II. ANALOG BLACK HOLE IN BECS

We consider a stationary flow of a one-dimensional (1D)
BEC which is upstream subsonic and downstream supersonic.
This “transonic” configuration mimics a black hole since
acoustic excitations generated in the downstream supersonic
region are dragged by the flow, and not detected in the up-
stream region.

A. The background flow

The complex quantum field �̂ describing the bosonic gas
is decomposed into a classical part � (describing the station-
ary flow of the condensate) supplemented by small quantum
fluctuations (described by an operator ψ̂) according to

�̂(x, t ) = exp(−iμt/h̄)[�(x) + ψ̂ (x, t )], (1)

where μ is the chemical potential [32]. The function � is solu-
tion of a classical Gross-Pitaevskii equation, with the addition
of an external potential U (x) used to implement the transonic

flow:

μ�(x) = − h̄2

2m
�xx + [g|�|2 + U (x)]�, (2)

where g > 0 is a nonlinear coefficient accounting for re-
pulsion between the atoms in a mean-field approach. The
operator ψ̂ describes the quantum fluctuations on top of the
background �.

The experimental implementation of the 1D configura-
tion (2) is obtained by a tight transverse confinement of a
guided BEC. In the large density limit the transverse degrees
of freedom cannot be discarded and the 1D reduction fails.
Also, the so-called Bogoliubov decomposition (1) implies
a long-range coherence (off-diagonal long-range order; see,
e.g., [32]) which, in one dimension, is destroyed by phase
fluctuations. Nonetheless a description of the system relying
on Eqs. (1) and (2) can be ascribed a domain of applicability
in the so-called 1D mean field regime [33]. For a Bose gas
with s-wave scattering length a transversely confined by a har-
monic trap of angular frequency ω⊥, this regime corresponds
to the range of densities

ma2ω⊥
h̄

� ntypa � 1, (3)

where ntyp is a typical order of magnitude of the linear density
n(x) = |�(x)|2. For 87Rb or 23Na atoms, the domain of valid-
ity (3) ranges over four orders of magnitude in density1 and in
this case g = 2h̄ω⊥a [34].

Several configurations realizing an analog black hole have
be proposed in the past [13–15,35–38]. The approach we use
in this work is valid in a general setting, but for the sake of
illustration we will present numerical results for the so-called
“waterfall configuration” [15] which has been experimentally
realized in [9,10] and which has been shown to lead to a
significant violation of the Cauchy-Schwarz criterion in [26].
In this configuration U (x) = −U0�(x), where U0 > 0 and �

is the Heaviside step function. The corresponding solution of
Eq. (2) is a plane wave flow of density nd and velocity Vd > 0
in the downstream region (x > 0) and half a dark soliton in
the upstream region (x < 0) with asymptotic density nu and
velocity Vu > 0, meaning that

�(x > 0) = √
nd exp (imVd x/h̄) exp(i βd ),

�(x → −∞) = √
nu exp (imVu x/h̄) exp(i βu),

(4)

where βu and βd are constant phase factors. This setting is
illustrated in Fig. 1 (see details in [15]).

In the following we will loosely state that the horizon is
located at x = 0. However, it is important to note that, in
any dispersive analog model, the location of the horizon is
ill-defined, as it depends on frequency. A commonly accepted
way to circumvent this difficulty is to take the zero-frequency
value: the analog horizon is then the point where the velocity
of the flow v(x) = h̄

m Im(�∗�x )/n(x) is equal to the local
sound velocity c(x). This definition makes sense because it
has been shown that the characteristics of analog Hawking

1A more detailed discussion of the domain of applicability of the
Bogoliubov decomposition (1) can be found, e.g., in [26].
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FIG. 1. Waterfall configuration. The flow is directed from left to
right. The downstream classical field �(x > 0) is exactly a plane
wave of density nd and velocity Vd . �(x < 0) is the half profile of
a dark soliton which is asymptotically a plane wave of density nu

and velocity Vu; see Eqs. (4). The far upstream flow is subsonic,
with a velocity 0 < Vu < cu, and the downstream flow is supersonic
with a velocity Vd > cd > 0, where cα = (gnα/m)1/2 is the speed of
sound in region α = u (upstream) or d (downstream). The shaded
region x > 0 corresponds to the interior of the analog black hole;
the gradient of gray around x � 0 depicts the (ill-defined; see text)
position of the horizon. The coordinate x is plotted in units of the
upper healing length ξu = h̄/(mcu ).

radiation are governed by long wave-length physics; see, e.g.,
[39–41]. However, in the BEC context, the definition of a
local sound velocity c(x) is only legitimate in regions where
the density varies over a length scale large compared to the
healing length. This is not the case around x � 0 for the
waterfall configuration and this forbids a rigorous definition
of an horizon. Nevertheless, the system still emits a spon-
taneous analog Hawking radiation, because the feature that
triggers this process is the mismatch between the left subsonic
asymptotic flow and the right supersonic one (this is at the
heart of the Bogoliubov transform discussed in Sec. III). One
may wonder, however, if the concept of Hawking temperature
is still meaningful in the absence of a proper location of the
horizon, since, strictly speaking, the widely used semiclassical
result (C5) which defines the Hawking temperature as the
analog surface gravity is not valid here.2 The solution lies in
the study of the low-frequency behavior of the spectrum of the
analog Hawking radiation which is thermal-like. This makes it
possible to determine an effective Hawking temperature; see,
e.g., [13–15]. We will come to this point in more detail in
Secs. IV D and V C.

B. Elementary excitations

Since the far upstream and downstream background flows
are uniform, the elementary excitations which form a basis
set for the quantum operator ψ̂ are plane waves in these two
regions, with dispersion relations of Bogoliubov type (see,
e.g., [32]):

(ω − q Vα )2 = ω2
B,α (q), α = u or d, (5)

2Note that this issue is also encountered in profiles smoother than
that of the waterfall; see, e.g., [13].

where Vu and Vd are the upstream and downstream velocities,
and ωB,α is the Bogoliubov dispersion relation

ωB,α (q) = cαq
√

1 + ξ 2
αq2/4, (6)

cα = (gnα/m)1/2 being the speed of sound and ξα = h̄/(mcα )
the “healing length,” in the far upstream region if α = u and in
the downstream region if α = d . The left-hand side of Eq. (5)
includes a Doppler shift caused by the velocity Vα of the
background.

It will be useful in the following to define the quantities

mα = Vα

cα

, α = u or d, (7)

known as the upstream (α = u) and downstream (α = d)
Mach numbers. It was shown in [15] that the waterfall con-
figuration, which we use below to exemplify our results, is
uniquely characterized once the value of mu, say, is fixed.
In particular the parameters of the flow are related by the
following relations:

Vd

Vu
= nu

nd
= 1

m2
u

= md =
(

ξd

ξu

)2

=
(

cu

cd

)2

. (8)

The flow being upstream subsonic (Vu < cu, i.e., mu < 1) and
downstream supersonic (Vd > cd , i.e., md > 1), the graphs of
the corresponding dispersion relations are of different types,
as illustrated in Fig. 2. In the upstream region the spectrum
has two branches which we label as 0|in and 0|out. In the
downstream supersonic region there are four branches: 1|in,
1|out, 2|in and 2|out, the last two branches being limited
to ω ∈ [0,
], where 
 is the frequency at which these two
branches coalesce, and whose value is given by


 = q∗Vd − ωB,d (q∗) with

q∗ξd =
(

−2 + m2
d

2
+ md

2

√
8 + m2

d

) 1
2

. (9)

For future convenience (see Sec. VI) we define functions
q0|in(ω), q1|in(ω) and q2|in(ω) as the reciprocal of the Bogoli-
ubov dispersion relation (5) along some of these branches;
q0|in(ω) and q1|in(ω) are defined for ω > 0 and q2|in(ω) only
for ω ∈ [0,
]. A number of previous works [15,16,20,26,37]
followed the convention introduced in [14], in which indices
u, d1, and d2 are employed instead of the indices 0, 1, and 2
we use here. We changed convention in order to simplify the
manipulation of the matrix notation introduced below.

The particular transonic configuration we consider corre-
sponds, for angular frequencies ω lower than the threshold

, to a specific scattering process of elementary excitations
onto the analog event horizon. For instance, a wave issued
from the interior region along the channel identified as 1|in
in Fig. 2 is transmitted to the exterior along the 0|out channel
and reflected back along the 1|out and 2|out channels. The
corresponding (complex) transmission and reflection ampli-
tudes are denoted as S10(ω), S11(ω), and S12(ω), respectively.
They are obtained by imposing matching conditions at x = 0,
as explained in Ref. [15]. The quantum boson operator corre-
sponding to this whole process is denoted as b̂1(ω). Similarly,
a wave incident along the 0|in channel is transmitted towards
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FIG. 2. Graphical representation of the positive frequency part of the dispersion relation (5) in the far upstream (left plot) and downstream
(right plot) regions. The downstream region (gray background) is the interior of the analog black hole, while the upstream region (white
background) is the exterior. In the upstream region, to any given ω (represented by a horizontal dashed line) correspond two channels of
propagation denoted as 0|in and 0|out. In the downstream region there are four or two channels, depending if ω is smaller or larger than 
.
The arrows indicate the direction of propagation of the corresponding waves, and the channels are labeled 1 or 2, with an additional “in”
(or “out”) indicating if the wave propagates towards (or away from) the horizon.

the interior of the black hole along channels 1|out [ampli-
tude S01(ω)] and 2|out [amplitude S02(ω)] and reflected along
0|out [amplitude S00(ω)]; the corresponding quantum mode
is associated with operator b̂0(ω).3 A third mode describes
the scattering of a wave issued from the channel 2|in onto
the outgoing channels 0|out, 1|out, and 2|out. The channels
labeled 2|in and 2|out are particular, in the sense that they
have a negative norm, i.e., a negative energy in the rest frame
of the fluid [42–45]. As a result, the mode initiated by the
incoming channel 2|in should be quantized using an operator
b̂†

2(ω), i.e., inverting the role of the creation and annihilation
operators used for the two other modes. Only in this way do
the propagating modes behave as bosons satisfying the usual
commutation relations

[b̂i(ω), b̂†
j (ω

′)] = δi, j δ(ω − ω′),

[b̂i(ω), b̂ j (ω
′)] = [b̂†

i (ω), b̂†
j (ω

′)] = 0,
(10)

for i and j ∈ {0, 1, 2}. Another consequence is that the 3 × 3
scattering matrix S(ω) whose elements are the Si j (ω) obeys a
skew-unitarity relation [14]:

S†ηS = η = SηS†, η = diag(1, 1,−1). (11)

For ω > 
 the situation is drastically different: the channels
2|in and 2|out disappear (cf. Fig. 2), as well as the operator
b̂2(ω), and the S-matrix becomes 2 × 2 and unitary.

We denote the b modes as “incoming” since they cor-
respond to scattering processes initiated by a single wave
incident along one of the three “in” channels directed to-
wards the horizon: 0|in, 1|in, and 2|in. One could equivalently
choose to work with “outgoing modes” [12] describing pro-
cesses each resulting in the emission of a single wave along
one of the three “out” channels 0|out, 1|out, and 2|out. We
denote the corresponding quantum operators as ĉ0(ω), ĉ1(ω),

3In the terminology we use, it is important to make a distinction
between the “quantum modes” and the “propagation channels”: a
mode corresponds to a whole process typically involving one or
several incoming channels and one or several outgoing channels.

and ĉ2(ω). They relate to the incoming operators via [14]⎛⎜⎝ĉ0

ĉ1

ĉ†
2

⎞⎟⎠ =

⎛⎜⎝S00 S01 S02

S10 S11 S12

S20 S21 S22

⎞⎟⎠
⎛⎜⎝b̂0

b̂1

b̂†
2

⎞⎟⎠, (12)

where for legibility we omit the ω dependence of all the terms.
The definition (12), together with the property (11), ensures
that the ĉ operators obey the same commutation relations (10)
as the b̂ operators and thus describe bosonic quasiparticles.

In the setting we consider, the analog of the Hawking
radiation spectrum is the number of excitations emitted per
unit time and per unit frequency into the subsonic region
(x < 0), that is, the expectation value of ĉ†

0(ω)ĉ0(ω) over the
state vector. From relation (12) one sees that this current is
nonzero when the state vector is the vacuum |0〉b of incoming
modes: b〈0|ĉ†

0(ω)ĉ0(ω)|0〉b = |S02(ω)|2; this is the analogous
Hawking effect [13,14,45,46]. The mode associated with op-
erator ĉ0 is thus denoted the Hawking outgoing mode. The
other outgoing modes, associated with operators ĉ1 and ĉ2,
are denoted the Companion and the Partner, respectively.

As can be seen from expression (12), the outgoing opera-
tors ĉ and ĉ† are expressed as a combination of the ingoing
annihilation and creation operators b̂ and b̂†. Therefore, it is
possible to associate a Bogoliubov transformation with our
analog system. This is the aim of the next section.

III. BOGOLIUBOV TRANSFORMATIONS

Bogoliubov transformations are linear transformations of
creation and annihilation operators that preserve the canonical
commutation rules [47]. In the context of quantum field theory
in curved spacetime, these transformations are at the heart of
the Hawking process; indeed, since they mix annihilation and
creation operators they can give rise to spontaneous emission
of particles from vacuum [48–53]. This mixing of operators
also occurs for analog black holes, as is clear from Eq. (12).
This way of viewing the emergence of the analog Hawk-
ing radiation through a Bogoliubov transformation makes a
direct connection with the gravitational case: as shown by
Hawking in 1974 [48,49], one of the parameters involved in
the Bogoliubov transformation, the so-called β-coefficient, is
directly related to the number of particles created by black
holes. In our case, we can derive such a parameter and
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compare its properties with Hawking’s β-coefficient; in par-
ticular, through this approach, we will be able to question the
thermality of the analog Hawking radiation (see Sec. IV C).
Furthermore, identifying the Bogoliubov transformation will
be an important step to understand and study the entanglement
properties of the analog Hawking radiation (see Sec. V).

The present section is divided into two parts. First, we
consider an arbitrary (but unitary) Bogoliubov transformation
and derive its properties. Then, we apply these results to the
particular case of analog black holes in BECs starting from
expression (12).

A. General setting

We start by briefly recalling some well-known facts con-
cerning unitary Bogoliubov transformations [42,47,54]. Some
useful intermediate results are given in Appendix A.

Let us consider N boson operators b̂1, . . . , b̂N satisfying
the usual commutation relations [b̂i, b̂†

j] = δi, j . Defining the
column vector

b = (b̂1, . . . , b̂N, b̂†
1, . . . , b̂†

N )T, (13)

the Bose commutation relations can be rewritten as

[bi, b j] = J̃i j, with J̃ =
(

0 1N

−1N 0

)
, (14)

where 1N is the N × N identity matrix. A (unitary) Bogoli-
ubov transformation is a linear transformation mapping the
operators b̂i onto new operators ĉi defined through

ci =
2N∑
j=1

Ti j b j, or equivalently c = T b. (15)

For unitary Bogoliubov transformations c has the form

c = (ĉ1, . . . , ĉN, ĉ†
1, . . . , ĉ†

N )T, (16)

i.e., ci+N = c†
i . In this case the matrix T admits the block

decomposition

T =
(

α∗ −β∗

−β α

)
, (17)

where α and β are N × N matrices. Operators ĉi and b̂i can
then be related by a unitary operator T such that

ĉi = T † b̂i T, (18)

whose explicit construction from matrix T is detailed in
Appendix A.

In general, the transformation T in (15) mixes creation and
annihilation operators, so that the vacua |0〉b and |0〉c, defined
by

b̂i |0〉b = 0, and ĉi |0〉c = 0, i ∈ {1, . . . , N}, (19)

differ. These vacua are related via the identity

|0〉b = T |0〉c, (20)

as is clear from the fact that b̂i T |0〉c = T ĉi|0〉c = 0.
Defining the N × N matrix X = −β∗ α−1 and using the

decomposition (A6), it is possible to write Eq. (20) under the

explicit form

|0〉b = 1

(det α)
1
2

e
1
2

∑
i, j Xi j ĉ

†
i ĉ†

j |0〉c. (21)

A simple example of a Bogoliubov transformation is the
one leading to two-mode squeezed states [55,56]. For a real
squeezing parameter r, a two-mode squeezed state is obtained
by applying the two-mode squeezing operator

T = exp[r(ĉ†
1ĉ†

2 − ĉ1ĉ2)] (22)

to the vacuum state |0〉c. The corresponding Bogoliubov trans-
formation is of the form (17) with N = 2 and α, β given by

α =
(

cosh r 0
0 cosh r

)
, β = −

(
0 sinh r

sinh r 0

)
. (23)

In this case (21) reads

|0〉b = (cosh r)−1 exp(tanh r ĉ†
1ĉ†

2) |0〉c. (24)

B. Bogoliubov transformation in a transonic BEC

In the case described in Sec. II of a transonic flow re-
alized in a BEC, b and c correspond to sets of ingoing
and outgoing modes. The associated column vectors b =
(b̂0, b̂1, b̂2, b̂†

0, b̂†
1, b̂†

2)T and c = (ĉ0, ĉ1, ĉ2, ĉ†
0, ĉ†

1, ĉ†
2)T are re-

lated by Eq. (12). One can express this relation equivalently
as c = T b, with T a Bogoliubov transformation of the form
(17) with

α =

⎛⎜⎝S∗
00 S∗

01 0
S∗

10 S∗
11 0

0 0 S22

⎞⎟⎠, β = −

⎛⎜⎝ 0 0 S∗
02

0 0 S∗
12

S20 S21 0

⎞⎟⎠, (25)

where for legibility we do not write the ω-dependence of the
scattering amplitudes. This yields

X = 1

S22

⎛⎜⎝ 0 0 S02

0 0 S12

S02 S12 0

⎞⎟⎠. (26)

From relation (11) one can show that det α = |S22|2, and thus
(21) takes the simple form

|0〉b = 1

|S22| e(X02 ĉ†
0+X12 ĉ†

1 ) ĉ†
2 |0〉c. (27)

A word of caution is in order here. The case we consider
in the present section is different from the discussion of the
previous Sec. III A because, as explained in Sec. II B, the
modes are here continuously distributed along the energy axis
[compare, for instance, the commutation relations (10) and
(14)]. A natural way to set up a framework encompassing both
situations consists in discretizing the energies with a small
mesh ω and to define coarse-grained operators

B̂i,p = 1√
ω

∫ ωp+1

ωp

dω b̂i(ω) (28)

and

Ĉi,p = 1√
ω

∫ ωp+1

ωp

dω ĉi(ω), (29)
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where i ∈ {0, 1, 2}, p ∈ N and ωp = pω. It is easy to check
that these operators obey the standard Bose commutation
rules, such as [B̂i,p, B̂†

j,q] = δi, jδp,q for instance. If ω is small
compared to the typical scale of variation of the elements of
the S-matrix, then the Ĉi,p and the B̂ j,p are related by a relation
analogous to (12):⎛⎜⎝Ĉ0,p

Ĉ1,p

Ĉ†
2,p

⎞⎟⎠ =

⎛⎜⎝S00 S01 S02

S10 S11 S12

S20 S21 S22

⎞⎟⎠
⎛⎜⎝B̂0,p

B̂1,p

B̂†
2,p

⎞⎟⎠, (30)

where the Si j should be evaluated at ωp. Thus the relation (27)
should be replaced by

|0〉b = 1∏∞
p=0 |S22(ωp)|

× e
∑∞

p=0 (X02(ωp) Ĉ†
0,p+X12(ωp) Ĉ†

1,p) Ĉ†
2,p |0〉c. (31)

This remark being made, in the following we favor legibility
over formal rigor: We will continue to write relations of the
type (27), instead of the more rigourous but cumbersome
Eq. (31), keeping in mind that the correction of “naive”
expressions—such as Eq. (32), (33), (38), or (97) below—is
straightforward.

From (27), if we define the Fock state basis of quasiparti-
cles of type c by

|n〉i = 1√
n!

(ĉ†
i )n|0〉c, (32)

where i is the mode number, then the explicit expansion of the
vacuum |0〉b reads

|0〉b = 1

|S22|
∞∑

n,n′=0

√(
n + n′

n

)
X n

02X
n′

12 |n〉0|n′〉1|n + n′〉2. (33)

It is convenient for future use in Secs. IV D and V C to in-
troduce a new set of operators e = (ê0, ê1, ê2, ê†

0, ê†
1, ê†

2)T. By
writing

Si j (ω) = vi j (ω)eiϕi j (ω), vi j � 0, 0 � i, j � 2, (34)

we define the operators ê0, ê1 and ê2 as

ê0 = e−iϕ02 ĉ0, ê1 = e−iϕ12 ĉ1, ê2 = eiϕ22 ĉ2 (35)

(note the + sign in front of ϕ22). This defines a local unitary
Bogoliubov transformation, as it does not mix annihilation
and creation operators. In particular |0〉e = |0〉c. Using the
notations of Sec. III A, this transformation can be cast in the
form

e = R c, (36)

where

R = diag(e−iϕ02 , e−iϕ12 , eiϕ22 , eiϕ02 , eiϕ12 , e−iϕ22 ). (37)

Then, using expression (26) and this new set of creation and
annihilation operators e, Eq. (27) becomes

|0〉b = 1

v22
ev−1

22 (v02 ê†
0+v12 ê†

1 ) ê†
2 |0〉e. (38)

IV. THREE-MODE GAUSSIAN STATES

In the context of analog gravity, the general description of
the system by means of a Gaussian state has been presented in
the monograph [46]. The importance of Gaussianity has been
implicitly or explicitly assumed in many articles, but it has
been thoroughly discussed only in Ref. [25]. In the present
work we will extend in Secs. V and VI the analysis of [25]
to build quantitative and monotone measures of bipartite and
tripartite entanglement. Since Gaussianity is a central point in
our approach, in the present section we briefly present general
properties of Gaussian states, then construct the covariance
matrix of the three-mode Gaussian pure state which describes
our system [|0〉b defined by Eq. (33)] and discuss in more
detail the covariance matrix of the reduced state ρ (0), in con-
nection with the determination of the Hawking temperature.

A. Gaussian states

In order to set up notations we start by reviewing the
formalism for Gaussian states (see [57] for a review). Gaus-
sian states are states whose Wigner function is a Gaussian.
A Gaussian state ρ can be entirely described by its first and
second moments. We define the covariance matrix σ of ρ as
the real symmetric positive-definite matrix

σi j ≡ 1
2 〈ξ̂i ξ̂ j + ξ̂ j ξ̂i〉 − 〈ξ̂i〉 〈ξ̂ j〉, (39)

where ξ̂i are components of the vector ξ =√
2 (q̂1, p̂1, . . . , q̂N, p̂N )T of quadratures relative to mode

i, defined so that [q̂i, p̂ j] = i δi, j . In the definition (39) and
in all the following the averages 〈· · · 〉 are taken over the
density matrix ρ characterizing the state of the system, which,
in the simpler case, is the projector onto the vacuum state
|0〉b. We shall discuss in Sec. VI how to generalize to a
finite-temperature configuration.

The commutation relations between the ξ̂i can be expressed
as [ξ̂i, ξ̂ j] = 2 i Ji j, ∀ i, j ∈ {1, . . . 2N} with

J = N⊕
1

Ji, Ji =
(

0 1
−1 0

)
. (40)

Entanglement properties of a quantum state are unchanged
by local unitary (LU) operations, so that the mean values of
position and momentum operators can be set to 0. An N-
mode Gaussian state is then entirely specified by its 2N × 2N
covariance matrix, which can be rewritten in terms of 2 × 2
blocks as

σ =

⎛⎜⎜⎜⎜⎝
σ1 ε12 · · · ε1N

εT
12

. . .
. . .

...
...

. . .
. . . εN−1N

εT
1N

· · · εT
N−1N σN

⎞⎟⎟⎟⎟⎠, (41)

with

εi j = 2

(〈q̂i q̂ j〉 〈q̂i p̂ j〉
〈p̂i q̂ j〉 〈p̂i p̂ j〉

)
(42)

and

σi =
( 〈

2q̂2
i

〉 〈{q̂i, p̂i}〉
〈{q̂i, p̂i}〉

〈
2 p̂2

i

〉 )
, (43)
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{., .} denoting the anticommutator. A covariance matrix σ

satisfies the inequality

σ + i J � 0, (44)

which is a consequence of the canonical commutation rela-
tions and positivity of the density matrix [58,59]. In particular,
σ is a positive matrix.

B. Transformations of Gaussian states

Partial tracing a Gaussian state is particularly simple. The
covariance matrix of the reduced state is simply obtained by
discarding the lines and columns corresponding to the modes
over which the partial trace is done (see, e.g., [60]). For
instance, the two-mode state obtained from (41) by tracing
out all modes but i and j has covariance matrix

σi j =
(

σi εi j

εT
i j σ j

)
, (45)

where the 2 × 2 blocks are the same as the ones in (41). In the
same way, the reduced density matrix ρ (i) of mode i obtained
by tracing out all the other modes is a single-mode Gaussian
state entirely specified by the covariance matrix σi.

Let us now turn to the modification of the covariance
matrix under a Bogoliubov transformation. It is important to
stress here that we change operators but keep the same quan-
tum state over which the averages 〈· · · 〉 are performed. For the
vector of creation and annihilation operators b, we denote by
ξb the corresponding vector of position and momentum oper-
ators ξb = √

2 (q̂1, p̂1, . . . , q̂N, p̂N )T with q̂ j = (b̂ j + b̂†
j )/

√
2

and p̂ j = i(b̂†
j − b̂ j )/

√
2. We thus have ξb = Ub, with

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 . . . 1√
2

0 0 . . .

− i√
2

0 0 . . . i√
2

0 0 . . .

0 1√
2

0 . . . 0 1√
2

0 . . .

0 − i√
2

0 . . . 0 i√
2

0 . . .

0 0 . . . . . . 0 0 . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(46)

a 2N × 2N unitary matrix. Similarly, ξc = Uc. The Bogoli-
ubov transformation c = T b then entails that ξc = ST ξb
with

ST = UT U †. (47)

It can be proved that the matrix ST ∈ Sp(2N,R) is real and
symplectic [59]. Since this transformation is linear, we get
from Eq. (39) that a Gaussian state with covariance matrix
σb in mode b is a Gaussian state in mode c with covariance
matrix

σc = ST σb ST
T (48)

in mode c.
As guaranteed by Williamson theorem [61], it is al-

ways possible to find a symplectic transform that brings
any covariance matrix σ to a canonical diagonal matrix
diag(ν1, ..., νN , ν1, ..., νN ), which is unique up to the ordering
of the ν j . The ν j are called the symplectic eigenvalues of σ .
They can be directly obtained from the eigenvalues of the
matrix Jσ , which are given by ±iν j [62]. In terms of the

ν j , given the uncertainty relation (44), the positivity of ρ is
equivalent to

ν j � 1, j = 1, . . . , N. (49)

C. Thermal states

The symplectic eigenvalues have an appealing physical in-
terpretation. Indeed, they can be related with the mean particle
number of a thermal state.

Recall that a generic (single-mode) thermal state is a state
whose density matrix in the Fock space spanned by vectors
|n〉 is of the form

ρ th (a) = 2

a + 1

∞∑
n=0

(
a − 1

a + 1

)n

|n〉 〈n|, (50)

with a some parameter. Denoting as n̂ the corresponding
number operator, since n̄ ≡ 〈n̂〉 = tr(ρ thn̂) = 1

2 (a − 1), the
parameter a is simply related with the mean particle number
as a = 2n̄ + 1. The state ρ th (a) is in fact a Gaussian state
with 2 × 2 covariance matrix σ th = a12. This means that a
single-mode covariance matrix in diagonal form describes a
thermal state with mean particle number n̄ = (a − 1)/2 and
symplectic eigenvalue ν = a. Another way of representing a
thermal state is to set n̄ = sinh2 r, which yields

ρ th (a) = 1

cosh2 r

∞∑
n=0

(tanh r)2n |n〉〈n|, a = cosh(2r). (51)

The purity of ρ th (a) can be readily calculated from (50) or
(51); it reads tr[ρ th (a)]2 = 1/ cosh(2r) = 1/a. The quantity
a being the inverse of the purity of a single-mode reduced
density matrix, it is referred to as the local mixedness [63].
Note that the vacuum state is a thermal state ρ th (1) with mean
occupation numbers n̄ j = 0 and local mixedness unity.

More generally [64], an N-mode Gaussian state with ar-
bitrary covariance matrix σ can be brought to a product of
thermal states

ρν = N⊗
j=1

ρ th (ν j ). (52)

Indeed, if S is the symplectic transformation that diagonal-
izes σ as diag(ν1, ν1, . . . , νN , νN ) = SσST, then it can be
realized on the Gaussian state by a unitary evolution gener-
ated by a quadratic Hamiltonian (see, e.g., [59]). Therefore
Williamson’s theorem ensures that any Gaussian state can
be decomposed into a product of thermal states whose mean
occupation number in mode j is obtained from the symplectic
eigenvalue ν j as n̄ j = (ν j − 1)/2 [59]. The condition ν j � 1
in (49) simply corresponds to the fact that the mean occu-
pation numbers have to be positive. Note that the purity of
state (52) is simply given in terms of the covariance matrix by
tr(ρν )2 = 1/

√
det σ .

D. Vacuum as a three-mode Gaussian state

The Bogoliubov transformation associated with the scat-
tering process (12) leads to a three-mode Gaussian pure state,
given by (33). The covariance matrix of the vacuum |0〉b is
the identity matrix 16. Applying (48) we thus get that the
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covariance matrix of state (33) is

σc = ST ST
T . (53)

Using the explicit expression of T derived from (25), and the
explicit expression (46) for U , we obtain the 6 × 6 matrix
given in Eq. (B1) of Appendix B. Note that using (42) and
(43) the 2 × 2 matrices σi and εi j , i ∈ {0, 1, 2}, simply read

σi = (1 + 2 〈ĉ†
i ĉi〉)12 (54)

and (for i �= 2)

εi2 =
(

2 Re〈ĉi ĉ2〉 2 Im〈ĉi ĉ2〉
2 Im〈ĉi ĉ2〉 −2 Re〈ĉi ĉ2〉

)
,

ε01 =
(

2 Re〈ĉ0 ĉ†
1〉 2 Im〈ĉ0 ĉ†

1〉
−2 Im〈ĉ0 ĉ†

1〉 2 Re〈ĉ0 ĉ†
1〉
)

. (55)

In the two-mode and three-mode cases, it is known [65,66]
that all pure Gaussian states can be brought by LLUBOs (local
linear unitary Bogoliubov transformations) to a standard form
where matrices σi are proportional to the identity and matrices
εi j are diagonal. In order to get such a standard form, we use
the set of operators ê j related with the ĉ j by e = Rc, where
R has been defined in (37). Using the results of Sec. IV B and
applying Eq. (48), the covariance matrix of state (38) in mode
e is

σe = SRST ST
T ST

R. (56)

Note that SR is a rotation operator. Indeed, one can easily
show that SR = diag{R(ϕ02), R(ϕ12), R(−ϕ22)}, where

R(φ) =
(

cos φ sin φ

− sin φ cos φ

)
. (57)

Then, one proves that the covariance matrix σe defined by (56)
is in the standard form, with σi given by (54) and

εi j = 2 |〈ĉi ĉ†
j 〉|12 = 2 vi2 v j2 12, i, j = 0, 1,

εi2 = 2 |〈ĉi ĉ2〉|σz = 2 vi2 v22 σz, i = 0, 1,
(58)

where σz is the third Pauli matrix. Following the notation
introduced in Sec. IV C for thermal states, we define real
parameters ri � 0 and ai � 1 such that

n̄i = 〈ĉ†
i ĉi〉 = sinh2(ri) = ai − 1

2
. (59)

To be completely accurate, we recall that the operators ĉi =
ĉi(ω) all depend on the energy h̄ ω of the elementary excita-
tions. Therefore, the above defined quantities ai also depend
on ω. They can be written explicitly as functions of the coef-
ficients of the scattering matrix:

a0(ω) = 1 + 2 |S02(ω)|2,
a1(ω) = 1 + 2 |S12(ω)|2,
a2(ω) = −1 + 2 |S22(ω)|2 (60)

(see Appendix B). From the solution of the scattering prob-
lem in the waterfall configuration, we calculate the scattering
amplitudes Si j (ω) following [15]. This makes it possible to
compute the three local mixednesses a0, a1, and a2 as func-
tions of the frequency. In particular we have

a0(ω) + a1(ω) = a2(ω) + 1, (61)

FIG. 3. Local mixedness ai(ω) [see Eqs. (60)] for each mode 0,
1, and 2 as functions of the dimensionless quantity h̄ ω/(gnu), for a
waterfall configuration with mu = 0.59. The frequency ωc indicates
the turning point above which a0 becomes lower than a1. The upper-
bound frequency 
 corresponds to the vanishing of the mode 2 [see
Eq. (9)].

which stems from relations (60) and (11). Figure 3 shows the
associated curves. Here, these coefficients are computed for a
waterfall configuration with downstream Mach number md =
2.9, which is the one for which the experiment of [10] has
been realized. In our case, this corresponds to an upstream
Mach number mu = 0.59.

We can identify two regimes in Fig. 3: below a frequency
denoted ωc the lowest of the three parameters is a1; above
this frequency, the minimum value becomes a0. The value
of this frequency is determined numerically and is equal to
ωc ≈ 0.56 gnu/h̄ for mu = 0.59. We observe that the ratio
ωc/
 (where 
 is the frequency (9) at which mode 2 vanishes
and also depends on mu) decreases when mu decreases. The
local mixednesses a0, a1 and a2 go to 1 when ω → 
, which
means that the populations of all modes vanish.

Using Eqs. (60) one may rewrite expressions (54) and (58)
in terms of the ai as

σi = ai 12, i = 0, 1, 2,

εi j =
√

ai − 1
√

a j − 112, i, j = 0, 1 (i �= j),

εi2 =
√

ai − 1
√

a2 + 1 σz, i = 0, 1. (62)

The 6 × 6 covariance matrix defined by Eqs. (41) and (62)
is no longer the covariance matrix associated with modes c,
but the covariance matrix associated with modes e defined by
Eq. (36); since c and e differ only by phases, the entanglement
properties are the same. When considering entanglement in
Sec. V we will therefore use the standard form (62). In the
case of a pure three-mode Gaussian state, the three local sym-
plectic invariants ai fully determine the entanglement content
of any given bipartition [66]. As we shall see in Sec. V, the
blocks of the covariance matrix σ in the form of expressions
(62) are the key ingredients to compute the amount of bipartite
and tripartite entanglement.

As mentioned in Sec. IV B, σi is the covariance matrix
of the reduced state ρ (i) of mode i. Given its diagonal form,
one gets from Sec. IV C that ρ (i) is a thermal state with local
mixedness ai. It can also be considered as a reduced state
of a two-mode squeezed state with squeezing parameter ri
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FIG. 4. Blue continuous curve: Effective temperature T (0)
eff de-

fined in Eq. (64) plotted as a function of the frequency ω for a
waterfall configuration with mu = 0.59. The dashed red line is the
Hawking temperature T (0)

H given by (65).

[56,67,68]. In this respect, the study of the reduced state ρ (0)

is of particular interest in the context of analog gravity, since
the number of emitted quanta in the 0 mode gives access to
the Hawking radiation spectrum. In the context of general
relativity, this spectrum is exactly Planckian4 [48,49], with a
temperature which is called the “Hawking temperature.” For
the analog model we consider, dispersive effects significantly
affect this result. Indeed, if one defines an effective tempera-
ture T (0)

eff such that

n̄0(ω) = 1

exp
(
h̄ω/T (0)

eff

)− 1
, (63)

one finds from (51), (59), and (60) that T (0)
eff is frequency-

dependent:

T (0)
eff (ω) = h̄ω

2 ln{coth[r0(ω)]} = h̄ω

ln[1 + |S02(ω)|−2]
. (64)

Figure 4 represents T (0)
eff (ω) for a waterfall configuration with

mu = 0.59. We note here that the same type of results has been
obtained numerically in [13]. In the long wavelength limit
the effective temperature tends to a constant analog Hawking
temperature T (0)

H = limω→0 T (0)
eff (ω). Based on the expansion

(C1) and on the formula (C2) one gets

T (0)
H

gnu
= 2

mu(1 − mu)
3
2
(
1 + m2

u

) 3
2

(1 + mu)
1
2
(
1 + mu + m2

u

)2 . (65)

This long wavelength determination of the analog Hawking
temperature is physically sound, since the reduced density
matrix of mode 0 is indeed thermal (in the sense of Sec. IV C).
However, it has the drawback of depending of the mode
considered (here the outgoing Hawking mode). The reduced
density matrices of modes 1 and 2 are also thermal, and on
the basis of the present reasoning there is another, different
Hawking temperature for the Companion (which could be
denoted as T (1)

H ), and still another one for the Partner (T (2)
H ). In

Sec. V C we use a different reasoning and argue that T (2)
H gives

4We do not consider here possible effects of a gray-body factor.
These will be accounted for in Sec. V C.

a more satisfactory definition of the Hawking temperature,
valid for the whole system.

V. ENTANGLEMENT IN THREE-MODE
GAUSSIAN STATES

Entanglement detection and characterization has attracted
a great deal of effort in the past two decades, as it has been
identified as a key resource for quantum information process-
ing [69]. A quantum state is entangled if it is not separable,
i.e., if it cannot be written as a convex sum of product states
[70]. One of the simplest necessary separability criteria is
given by the positivity of the partial transpose (PPT), first
proposed for discrete variables [71,72] and extended to the
continuous case in [73]. A wealth of entanglement measures
were discussed in the literature, for both discrete and continu-
ous variables. For bipartite pure states, quantitative measures
of entanglement include the entanglement entropy (which can
be shown to be unique if some additional natural requirements
are imposed) [74], or the concurrence [75]. In the mixed state
case, it is possible to construct “good” entanglement measures
in many different ways, which are inequivalent in the sense
that they lead to different orderings of entangled states [69].
A possible way is to extend measures for pure states via a
convex roof construction: entanglement of a mixed state is
then defined by a minimization over all its possible pure state
decompositions. For instance, entanglement entropy general-
izes for mixed states to the entanglement of formation [76].

A striking difference between classical correlations and
quantum entanglement is that the latter is monogamous
[77,78]. This means that a particle which is maximally en-
tangled with a Partner cannot be entangled with a third party,
or in other words that any amount of entanglement shared
with a particle limits the entanglement that can be shared with
another particle. In the case of three qubits, this limitation
to bipartite entanglement was expressed in [79] through an
inequality that must be satisfied by an entanglement measure
called the concurrence, or more precisely by its square, the
tangle. This monogamy inequality was later generalized to an
arbitrary number of qubits [80], to three-qutrit systems [81]
and to continuous variables [82,83], as we now discuss.

In the case of continuous variables, to which the situation
of black hole analogs pertains, Gaussian states are the most
natural objects with which one is led to deal. From a qualita-
tive point of view, entanglement can be detected by the PPT
criterion, which is a necessary and sufficient separability con-
dition for 1 × N-mode Gaussian states [73]; the three-mode
case, which is relevant to our situation, was investigated in
[84], and will be considered in Sec. V A. From a quantitative
point of view, entanglement can be measured by the logarith-
mic negativity, which quantifies by which amount the PPT
criterion is violated [85].5 In [82] it was proposed to construct

5For continuous variables it is generally highly difficult to make use
of the convex roof construction, both analytically and numerically, as
the optimization has to take place over all pure state decompositions.
To circumvent this issue, Gaussian entanglement of formation was
defined in [86], restricting the convex roof construction to Gaussian
pure state decompositions. This quantity provides an upper bound for
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a specific measure of entanglement, the contangle (continuous
tangle), defined as the convex roof extension of the square
of the logarithmic negativity. In that manner, the monogamy
inequality expressed by this measure also holds for Gaussian
states. The amount by which both sides of the monogamy
inequality differ provides an estimate for multipartite entan-
glement. In the present section, we will make use of this
measure of entanglement to quantify tripartite entanglement
in our analog black hole system. For consistency purposes we
shall also quantify bipartite entanglement using the contangle.

In the domain of analog gravity, previous approaches have
already considered quantitative measures of entanglement.
Using a relation [89] between entanglement entropy and cu-
mulants of the full counting statistics, Ref. [28] expresses
the (long wave-length limit of the) entanglement entropy of
a pure two-mode Gaussian state in terms of number fluctu-
ations in a given region. Although this approach bears some
similarity with the one we discuss at the end of Sec. VI C we
cannot directly compare it with ours because for our three-
mode Gaussian state the reduced two-body state is mixed.
Reference [30] studies the dynamical Casimir effect in a BEC
and quantifies the nonseparability after a quench by means
of the entanglement of formation, which takes an exact an-
alytic expression for symmetric two-mode Gaussian states
[90]. Although we cannot directly compute this quantity,6 the
spirit of our approach is similar to theirs and to the one of
Refs. [29,31], which use the symplectic spectrum to construct
quantitative measures of entanglement in the context of ion
rings and nonlinear optics analog, respectively.

A. Bipartite entanglement

The criterion usually used to detect entanglement in bipar-
tite systems is the Peres-Horodecki (or PPT) criterion [71,72].
It is a necessary and sufficient separability condition for bipar-
tite 1 × (N − 1)-mode Gaussian states [73]. This corresponds
to all possible bipartitions occurring in three-mode states:
indeed, we will have to consider either bipartitions i| jk or,
after tracing out mode k, bipartitions i| j. This criterion states
that a state ρ is separable if and only if its partial transpose ρPT

with respect to the first mode (mode i in the above notation) is
positive. Partial transposition of an N-mode Gaussian state is
equivalent to mirror reflection in phase space for the Wigner
function [73]. The covariance matrix of ρPT is given by

σ PT = �σ �, with � = σz ⊕ 12N−2. (66)

According to the criteria (49), the necessary and sufficient
separability criterion ρPT � 0 is equivalent to

νPT
j � 1, j = 1, . . . , N, (67)

where νPT
j are the symplectic eigenvalues of σ PT.

In our case N = 3. Let us investigate bipartite entangle-
ment of two-mode states obtained by tracing out the third one.

the entanglement of formation and is more amenable to calculations.
In [87,88] it was shown that Gaussian entanglement of formation and
entanglement measured by negativity are inequivalent measures.

6In our case the reduced state of modes i and j is nonsymmetric,
since in general ai �= aj (i and j in {0, 1, 2}).

As discussed in Sec. IV B, the covariance matrix associated
with the two-mode state i, j obtained by tracing out mode k is
σi j given by (45). Its symplectic eigenvalues ν± are given by

2 ν2
± = i j ±

√
2

i j − 4 det σi j, (68)

with i j = det σi + det σ j + 2 det εi j [91]. The symplectic
eigenvalues νPT

± of σ PT
i j associated with the partial transpose are

given by

2 (νPT
± )2 = PT

i j ±
√(

PT
i j

)2 − 4 det σi j, (69)

with PT
i j = det σi + det σ j − 2 det εi j . For a two-mode state,

the PPT criterion is in fact equivalent to condition νPT
− � 1

only, since νPT
+ is always larger than 1 [64].

From (62) one readily derives the expressions for νPT
− in our

case. Note that, again, since the local mixednesses appearing
in Eq. (62) depend on the frequency ω, the lowest symplectic
eigenvalue νPT

− also depends on ω. By using the fact that ai �
1, i = 0, 1, 2 and the relation (61), one can prove easily that
νPT

− � 1 for the bipartition 0|1, independently of the frequency.
Therefore, the reduced state of modes 0|1 is always separable:
the Hawking quantum and the Companion are not entangled.
On the other hand, the eigenvalues νPT

− of the reduced covari-
ance matrices σ PT

02 and σ PT
12 are lower than 1, which implies

that the reduced state of modes 0|2 (Hawking-Partner) and
1|2 (Companion-Partner) is entangled for all frequencies ω;
see, for instance, Fig. 9(a), where the blue curve represents
1 − νPT

− (ω) computed for the reduced state of modes 0|2.
The same results are obtained with the “Cauchy-Schwarz

criterion” (see, e.g., Ref. [92]), which has been often used in
the context of analog gravity [20–22,24,26,27]. According to
this criterion modes i and j are entangled if the following
inequality is verified:

|〈ĉi ĉ j〉|2 > 〈ĉ†
i ĉi〉 〈ĉ†

j ĉ j〉, for i ∈ {0, 1}, j = 2,

〈ĉi ĉ†
j 〉|2 > 〈ĉ†

i ĉi〉 〈ĉ†
j ĉ j〉, for i �= j ∈ {0, 1}.

(70)

Using Eqs. (58) and (62), one finds 〈ĉ†
i ĉi〉 〈ĉ†

j ĉ j〉 =
sinh2 ri sinh2 r j , |〈ĉi ĉ2〉|2 = sinh2 ri cosh2 r2 (i �= 2) and
|〈ĉ0 ĉ†

1〉|2 = sinh2 r0 sinh2 r1. Therefore, when considering the
bipartition 0|1, one concludes immediately that the second
inequality of (70) is never true; one has instead the equality
|〈ĉ0 ĉ†

1〉|2 = 〈ĉ†
0 ĉ0〉 〈ĉ†

1 ĉ1〉 for all frequencies ω. Therefore, the
reduced state 0|1 is separable. For bipartitions 0|2 and 1|2,
since tanh(r2) < 1 (with r2 > 0, finite), the first inequality of
(70) is always true. The criterion of violation of the Cauchy-
Schwarz inequality thus leads to the same conclusion as the
PPT criterion for the reduced states 0|2 and 1|2: these states
are always entangled.

However, the Cauchy-Schwarz criterion does not give any
clue about the amount of entanglement shared by each bi-
partition. Indeed, as will be discussed in Sec. VI C, in an
experimental setup for which the temperature of the sys-
tem cannot be exactly equal to zero, a stronger violation of
the Cauchy-Schwarz inequality does not necessarily imply a
greater amount of entanglement.

063302-10



BIPARTITE AND TRIPARTITE ENTANGLEMENT IN A … PHYSICAL REVIEW A 104, 063302 (2021)

B. Tripartite entanglement

1. Monogamy inequality

Monogamy is a fundamental property of entanglement
correlations. It can be described by monogamy inequalities,
which in the case of a tripartite system with subsystems la-
beled by (i, j, k) takes the form

E (i| jk) − E (i| j) − E (i|k) � 0, (71)

where E (A|B) is a proper measure of bipartite entanglement
between subsystems A and B [nonnegative on separable states
and monotonic under (G)LOCC]. This inequality expresses
the fact that the total amount of entanglement that can be
shared between i and j and between i and k is upper bounded
by the amount of entanglement between i and jk taken as
a whole. The left-hand side of inequality (71) provides a
quantifier of genuine tripartite entanglement.

Not all entanglement measures satisfy a monogamy in-
equality. However, it is possible to find and construct proper
measures of entanglement which satisfy these relations, both
in the qubit case and in the continuous-variable case. In
the case of qubits, the monogamy inequality holds for en-
tanglement measured by the square of the concurrence. For
Gaussian states a measure satisfying (71) was constructed
in [82]; it is called the contangle Eτ and it corresponds to
the squared logarithmic negativity. For an arbitrary pure state
ρ = |ψ〉〈ψ | with covariance matrix σ p (p stands for pure), it
is defined as

Eτ (σ p) = (ln ‖ρPT‖1)2
, (72)

where ‖Ô‖1 = tr
√

Ô†Ô is the trace norm.
The state considered in our case is a pure three-mode

Gaussian state; thus, any bipartition i| jk is a pure state, for
which the term E (i| jk) in (71) can be computed easily (see
Sec. V B 2 below). On the contrary, the two other terms of
(71) correspond to reduced two-mode states, which are mixed.
The squared logarithmic negativity can be extended to mixed
states by taking the infimum over all convex decompositions
of ρ in terms of pure states {|ψi〉}. In order to get a quantity
more amenable to computations, the Gaussian contangle Gτ

was defined by restricting this convex-roof construction to
decompositions over pure Gaussian states only. The Gaussian
contangle can be expressed as

Gτ (σ ) = inf
σ p�σ

Eτ (σ p), (73)

where the notation σ p � σ means that the matrix σ − σ p is
positive semidefinite. It is an upper bound to the true contan-
gle Eτ obtained from unrestricted pure-state decompositions,
but for pure states both coincide.

For three qubits the residual tangle (or three-way tangle)
E (i| jk) − E (i| j) − E (i|k) provides a measure of tripartite entan-
glement. It has an explicit expression [79], which is symmetric
in the three qubits. The corresponding quantity in the contin-
uous case is no longer symmetric in the three modes. One can
however define a permutation-invariant quantity by minimiz-
ing it over all permutations of the modes [82]. This measure
of tripartite entanglement shared among Gaussian modes was

called residual contangle [66]. Its explicit expression reads

Gres
τ = G(i| j|k)

τ = min
i, j,k

(
G(i| jk)

τ − G(i| j)
τ − G(i|k)

τ

)
. (74)

2. Pure-state contangle

Let us consider first a bipartition i| jk. For a pure state, the
Gaussian contangle G(i| jk)

τ coincides with the true contangle
E (i| jk)

τ . In general, for a multimode Gaussian state |ψ〉 with
covariance matrix σ p and generic bipartition i1 . . . iN−1|iN
(N = 3 in our case), the squared logarithmic negativity can
be written as [82]

Ei1...iN−1|iN
τ (σ p) =

⎛⎝ ∑
j:νPT

j <1

ln νPT
j

⎞⎠2

, (75)

where νPT
j are the symplectic eigenvalues associated with the

partial transpose state ρPT.
It is actually possible to write Eq. (75) in terms of the local

mixedness aiN associated with mode iN . Indeed, for any co-
variance matrix σ associated with a pure multimode Gaussian
state and generic bipartition i1 . . . iN−1|iN , there exists a local
symplectic transformation S such that [93]

S σ ST = 12 (N−2) ⊕ σsq, (76)

where σsq is the covariance matrix of a two-mode squeezed
state and reads⎛⎜⎜⎜⎜⎜⎜⎜⎝

aiN 0
√

a2
iN

− 1 0

0 aiN 0 −
√

a2
iN

− 1√
a2

iN
− 1 0 aiN 0

0 −
√

a2
iN

− 1 0 aiN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (77)

In the case of a tripartite system (N = 3), a direct proof of
Eqs. (76) and (77), as well as explicit expressions of the
symplectic matrix S for each bipartition, 12|0 and 02|1 and
01|2, can be found in Appendix D.

The symplectic eigenvalues of σ PT (corresponding to taking
the partial transpose with respect to mode iN ) are then read-
ily obtained from (69), using the form (77); the symplectic
eigenvalue 1 has degeneracy 2 (N − 2), while the ones as-
sociated with (77) are e±2riN , with twofold degeneracy. They
can be related to the local mixedness aiN through the relations
aiN = cosh(2 riN ). Equation (75) then gives

Ei1...iN−1|iN
τ (σ p) = arsinh2

(√
a2

iN
− 1

) = 4 r2
iN , (78)

which only depends on the local mixedness of mode iN and
has a simple expression in terms of riN . We will perform
explicit calculations for our system in the next section.

3. Residual contangle

Equation (78) provides an explicit expression for the first
term G(i| jk)

τ in (74). For a pure three-mode Gaussian state, an
explicit expression of G(i| j)

τ and G(i|k)
τ can also be obtained.

Indeed, in this specific case, any reduced two-mode state
saturates the uncertainty relation (44) and belongs to a class of
states called Gaussian least entangled mixed states (GLEMS).
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For GLEMS, one has [66]

G(i| j)
τ = arsinh2[

√
mGLEMS(ai, a j, ak ) − 1], (79)

where mGLEMS can be explicitly calculated as a function of the
three local mixednesses, as shown in Appendix E. In our case
[see Eqs. (E24)–(E27)], we obtain

G(0|1)
τ = 0,

G( j|2)
τ = arsinh2

[
2

1 + ak

√
(a2 + 1) (a j − 1)

]
= arsinh2

(
2 |〈ĉ j ĉ2〉|
1 + 〈ĉ†

k ĉk〉

)
, (80)

with j = 0, k = 1 or j = 1, k = 0. Let us now introduce the
quantity

Gres(i)
τ = G(i| jk)

τ − G(i| j)
τ − G(i|k)

τ , (81)

such that the residual contangle is given by

Gres
τ = min

i∈{0,1,2}
[
Gres(i)

τ

]
. (82)

Using (78) and (80), Eq. (81) yields

Gres(0)
τ = arsinh2

(√
a2

0 − 1
)

− arsinh2

[
2

1 + a1

√
(a2 + 1) (a0 − 1)

]
, (83)

Gres(1)
τ = arsinh2

(√
a2

1 − 1
)

− arsinh2

[
2

1 + a0

√
(a2 + 1) (a1 − 1)

]
, (84)

and

Gres(2)
τ = arsinh2

(√
a2

2 − 1
)

− arsinh2

[
2

1 + a1

√
(a2 + 1) (a0 − 1)

]
− arsinh2

[
2

1 + a0

√
(a2 + 1) (a1 − 1)

]
. (85)

The residual contangle only depends on the three local
mixednesses a0, a1 and a2 (this is no longer true at finite
temperature; see Sec. VI B and Appendix B). The minimum
over all possible permutations of i, j, and k in Eq. (82) can
be obtained by choosing as reference mode i the one with
smallest local mixedness [66].

We can then compute the residual Gaussian contangle for
our three-mode Gaussian state using the expression of the
ai’s given in (60). The results for mu = 0.59 are shown7 in
Fig. 5. Tripartite entanglement naturally emerges from quan-
tum fluctuations around a sonic horizon and diverges when
the energy goes to zero. This divergence always comes from
the first term in Eqs. (83), (84), and (85). Indeed, this term
diverges as ln2 ω (see discussion in Sec. V B 4). On the other
hand, it may be proven that G( j|2)

τ given by expressions (80)

7These results have been previously presented in [94].

FIG. 5. Residual contangles Gres(0)
τ (blue), Gres(1)

τ (green), Gres(2)
τ

(red). The upper-bound frequency 
 corresponds to the vanishing of
the mode 2. The frequency ωc is the value above which a0 becomes
lower than a1 (see Fig. 3) and coincides with the point above which
Gres(0)

τ < Gres(1)
τ . The inset displays the difference Gres(0)

τ − Gres(1)
τ

(cyan).

for j = 0, 1 is bounded at zero energy for any mu < 1. Indeed,
for j = 0, k = 1 or j = 1, k = 0,

G( j|2)
τ =

ω→0
arsinh2

(
2 |F22 Fj2|

|Fk2|2
)

, (86)

where the explicit expressions of the constant coefficients
|Fi2|2, i ∈ {0, 1, 2} are given in Appendix C. It means in par-
ticular that the entanglement of bipartitions j|2, j ∈ {0, 1}
remains finite at zero energy, while the tripartite entanglement
becomes infinite. Then, for higher frequencies, the residual
contangle decreases rapidly to zero and vanishes at the upper-
bound frequency 
.

Moreover, we show in the inset of Fig. 5 (cyan curve)
that while at low frequency Gres(1)

τ < Gres(0)
τ the situation is

reversed for ω > ωc, i.e., when a0 < a1 (the difference is
anyway quite small). We note that this result may be different
for Mach numbers different from the value mu = 0.59 we
consider here. In particular, based on the estimate (87) below,
one can show that, when mu < 0.17, at low frequency Gres(0)

τ

becomes the contribution which minimizes (82).

4. Experimental perspectives

The waterfall model we use has proven to provide a fairly
good description of the experimental setting [16]. In this sec-
tion we use the relevance of our model to assess what is the
best choice of parameters for an experimental measure of tri-
partite entanglement. Figure 6 displays the amount of genuine
tripartite entanglement Gres

τ expected in our 1D analog black
hole as a function of frequency (horizontal axis) and upstream
Mach number mu (vertical axis). For most cases, as proved
by this two-dimensional graph, the entanglement is indeed
shared among the Hawking, the Partner, and the Companion
quanta. Therefore, the Companion plays an important role in
the distribution of entanglement within the emitted quanta.

From Fig. 6 one sees that the amount of tripartite entangle-
ment is maximal for mu = 0.14, in the sense that the integral
of Gres

τ (ω) over all frequencies is maximal for this value of

063302-12



BIPARTITE AND TRIPARTITE ENTANGLEMENT IN A … PHYSICAL REVIEW A 104, 063302 (2021)

FIG. 6. Measure of tripartite entanglement Gres
τ as a function of

the (dimensionless) energy h̄ ω/(gnu) and of the upstream Mach
number mu ∈ [0.05, 0.95] defined in Eq. (7). The pink curve corre-
sponds to the upper bound frequency 
 (9). For a fixed value mu

mode 2 exists only for a frequency ω lower than 
(mu). Beyond
this value the tripartite system {0, 1, 2} no longer exists; this is the
reason why the corresponding area is left blank. The horizontal red
line corresponds to the value mu � 0.59, corresponding to md = 2.9
as realized in the experiment of [10]. The right plot shows the integral∫

Gres
τ dω over frequencies ω ∈ [0,
] for each value of mu. The red

dot pinpoints the numerical estimate of the integral for the specific
value mu � 0.59, while the blue dot locates the maximum of the
black curve reached for mu = 0.14. The light blue horizontal line
on the left graph corresponds to this value.

upstream Mach number. This specific value of mu is indicated
by the light blue horizontal cut on the graph. It has been
determined by numerical integration of the residual contangle
(82). One can also obtain an analytic estimate of this value of
mu, as we now explain. From the low-frequency behavior (C1)
of the components of the S-matrix involved [through Eq. (60)]
in (83), (84), and (85), one obtains the following expression
for the low-frequency residual contangle:

Gres
τ (ω) �

ω→0
min

i∈{0,1,2}

[
ln2

(
4 |Fi2|2
h̄ω/gnu

)]
. (87)

The value of mu for which Gres
τ (ω) in (87) is the largest is thus

simply the value for which the minimum of |F02|, |F12| and
|F22| reaches a maximum. From the analytic expressions (C2),
(C3), and (C4) of these coefficients one obtains mu = 0.17.
Although this value has been determined using a different
criterion than the numerical estimate mu = 0.14 plotted in
Fig. 6 (the former is based on the low ω behavior and the
latter on the integrated signal) the fact that both are quite close
confirms their relevance.

C. Entanglement localization

The tripartite entanglement of our system can be con-
centrated in a two-mode state by applying a local linear
Bogoliubov transformation [95,96]; this is called entangle-
ment localization. This transformation can be obtained by
means of the symplectic transformation S given by (76). To

the mapping (76) between σ and its three-mode localized
version 12 ⊕ σsq one can associate the Bogoliubov transfor-
mation T = U †SU [see Eq. (48)]. The modes e defined
in (35) (which coincide with the modes c up to a phase)
are mapped through this Bogoliubov transformation to new
modes f . The Bogoliubov transformation from e to f =
( f̂0, f̂1, f̂2, f̂ †

0 , f̂ †
1 , f̂ †

2 )T is denoted Te→f , and thus we have
f = Te→f e. This transformation is such that the tripartite en-
tanglement e0|e1|e2 gets completely localized in a two-mode
squeezed state.

Let us consider in turn the different cases. If we consider
bipartitions i j|k = 12|0 and 02|1 for modes e, as derived
explicitly in Appendix D [see in particular Eq. (D22)], the
new operators f̂i and f̂2 correspond to a mixing of annihi-
lation and creation operators êi, ê2 and ê†

i , ê†
2. In the case of

bipartition i j|k = 01|2 of modes e, entanglement can also
be localized but without mixing annihilation and creation
operators. The corresponding Bogoliubov transformation is
given by Eq. (D25) and corresponds to a change of basis from
{ê0, ê1, ê2} to { f̂0, f̂1, f̂2} given by

f̂0 = − sin θ ê0 + cos θ ê1, (88a)

f̂1 = cos θ ê0 + sin θ ê1, (88b)

f̂2 = ê2, (88c)

where (see Appendix D 4)

cos θ = sinh r0

sinh r2
and sin θ = sinh r1

sinh r2
. (89)

The transformation leading to entanglement localization is
thus particularly simple in the case of bipartition 01|2. Insert-
ing (88) into Eq. (38) leads to

|0〉b = T |0〉 f , where T = exp[r2( f̂ †
1 f̂ †

2 − f̂1 f̂2)]. (90)

The operator T is a two-mode squeezing operator [compare
with the generic form (22)] between f̂1 and f̂2, with squeezing
parameter r2(ω) defined in (59). Note that the modes ê0 and
ê1 that are combined in (88a) and (88b) are those of positive
norm; this leads to a squeezed state between the only mode
of negative norm (mode 2) and a combination of the modes
of positive norm (modes 0 and 1), exactly as occurs in the
gravitational case [97].

To summarize, the tripartite entanglement in our system
can be unitarily localized by linearly combining modes ê0 and
ê1 as in Eqs. (88a) and (88b) to obtain mode f̂1, which forms
a two-mode squeezed state with f̂2 = ê2. Besides, using the
definition (89) and noticing that 〈ê†

1ê0〉 = |〈ĉ†
1ĉ0〉| one obtains

〈 f̂ †
0 f̂0〉 = sin2 θ 〈ĉ†

0ĉ0〉 + cos2 θ 〈ĉ†
1ĉ1〉 − 2 sin θ cos θ |〈ĉ†

1ĉ0〉|
= (sin θ |S02| − cos θ |S12|)2 = 0. (91)

This means that mode f0 is not occupied. This comes as no
surprise since the corresponding local mixedness is equal to
1 in the transformed covariance matrix given by (76), which
entails from (59) that the mean particle number is equal to 0.
One can thus schematically describe the Bogoliubov transfor-
mation (88) operating in our analog black hole by means of the
equivalent optical setup represented in Fig. 7: nondegenerate
parametric down-conversion in a nonlinear crystal creates a
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FIG. 7. Schematic representation of an optical process equivalent
to the Hawking emission in the transonic BEC system we consider.
Entanglement is localized in the two-mode squeezed state f1| f2. The
mode f0 being empty is represented by a dashed line.

two-mode squeezed state.8 One of the modes is the Partner
f̂2 = ê2. The other one, f̂1, is directed to a beamsplitter that
generates the two other outgoing channels ê1 and ê0 which
are, up to a phase, the Companion and the Hawking mode,
respectively.

We note that various theoretical proposals and experi-
mental works have addressed the issue of generating and
measuring tripartite entangled states for continuous variables,
based on different setups of nonlinear optical parametric os-
cillators [96,98–100]. The analog black hole we consider here
is another such setup. It is quite peculiar in the sense that
genuine tripatite entanglement is realized although two of the
outgoing modes (0 and 1) are not entangled.

An interesting outcome of the present study is a redef-
inition of the analog Hawking temperature, associated to a
so-called gray-body factor. Redoing for the f1 and f2 modes
at the output of the parametric down conversion process the
analysis done for the Hawking mode at the end of Sec. IV D,
it is clear that these two modes have the same occupation
number

〈 f̂ †
2 f̂2〉 = 〈 f̂ †

1 f̂1〉 = sinh2 r2, (92)

and the same effective temperature

T (2)
eff (ω) = h̄ω

2 ln{coth[r2(ω)]}
= h̄ω

ln
[ |S22(ω)|2

|S22(ω)|2−1

] . (93)

The f1 mode being sent to the beamsplitter is transmitted onto
the Hawking mode with a transmission coefficient cos2 θ , and
indeed one can easily check that

〈ê†
0ê0〉 = cos2 θ 〈 f̂ †

1 f̂1〉. (94)

We saw in Sec. IV D that the Hawking mode could be
considered as a thermal state with temperature T (0)

eff (ω). Equa-
tion (94) shows that it can also be considered as a thermal

8We note here that the relevance of a nondegenerate parametric
amplifier model has already been pointed out in Ref. [25].

FIG. 8. Hawking temperature as a function of the upstream Mach
number in the waterfall configuration. The blue solid line is the result
(65), and the red solid line comes from expression (95). The dashed
line is the semiclassical expectation (C8).

state of temperature T (2)
eff (ω) affected by a gray-body factor

�(ω) = cos2 θ . Such a factor is invoked in general relativity
for explaining that the Hawking radiation is subject to an
effective potential at the horizon which affects its thermal
character [101]. The introduction of a gray-body term in
the present analysis has the advantage to ascribe a single,
global effective temperature to the analog system: T (2)

eff . In
this framework, the difference in population of the modes is
explained by the transmission coefficients cos2 θ and sin2 θ

of the beamsplitter, not by a difference in temperature. In the
long wavelength limit it yields an analog Hawking radiation
T (2)

H = limω→0 T (2)
eff (ω) which explicit expression in the wa-

terfall configuration reads (from Appendix C)

T (2)
H

gnu
= 1

2

(
1 − m4

u

) 3
2(

1 + mu + m2
u

)2 , (95)

and a gray-body factor

�0 = lim
ω→0

�(ω) = lim
ω→0

|S02|2
|S22|2 − 1

= 4 mu

(1 + mu)2
. (96)

It is satisfactory to note that the present approach yields
a result for �0 identical to the universal limit obtained in
Refs. [102–104] by means of a different technique.

Another advantage of the present definition of the Hawking
temperature over the one introduced at the end of Sec. IV D,
is that T (2)

H defined in Eq. (95) is in good agreement with
the semiclassical result (C8). This is to be contrasted with
T (0)

H , defined in Eq. (65) by studying the thermal character
of the reduced mode 0 state. The discrepancy between the
two behaviors is illustrated in Fig. 8. T (0)

H has the unpleasant
property of vanishing at mu → 0, although in this limit the
“surface gravity” is the largest. For the model sketched in
Fig. 7 instead, the disappearance of Hawking radiation when
mu → 0 is due to a vanishing gray-body factor, which is phys-
ically more satisfactory. One sees also in Fig. 8 that in the limit
mu → 1 all definitions of the Hawking temperature coalesce
to zero: in this regime �0 → 1 hence T (0)

H = T (2)
H . Also, in

this limit the density profile is smoother, the semiclassical
approach is more legitimate (cf. the discussion at the end of
Appendix C), and the surface gravity vanishes: the semiclassi-
cal estimate of the Hawking temperature thus vanishes as T (2)

H
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does. However, the behavior near mu = 1 is not exactly the
same: whereas T (2)

H /(gnu) ∼ 4
9 (1 − mu)3/2 the semiclassical

expression (C8) behaves as 2
π

√
3
(1 − mu)3/2. In this limit, the

reasoning leading to expression (95) is not at question be-
cause, as stated above, the behavior of the traditional estimate
(65) is identical to that of T (2)

H . The discrepancy between
expressions (C8) and (95) when mu → 1 rather suggests that
the semiclassical evaluation leading to Unruh expression (C8)
should be modified in the presence of a nonanalyticity of
the potential (in the waterfall configuration we consider the
second derivative is discontinuous at x = 0).

VI. FINITE TEMPERATURE

We previously considered the zero-temperature case,
where all the averages 〈· · · 〉 in Sec. IV A are taken over the
vacuum state |0〉b. In the present section we study a finite-
temperature system.

A. Finite-temperature states

Because of the existence of negative-energy modes, the
transonic flow we consider is energetically unstable and
cannot support a thermal state. However, one can define a
finite-temperature configuration [13,14,26] as follows: One
considers a uniform BEC (with density nu) initially flowing
at constant velocity Vu, at thermal equilibrium at temperature
TBEC in the frame moving along with the fluid. Then the po-
tential U (x) of Eq. (2) is slowly ramped up until the system
reaches the configuration described in Sec. II A and Fig. 1. At
the end of this adiabatic branching process one can define an
occupation number n̄i(ω, TBEC) for each of the incoming modes
b̂i. As explained, e.g., in [26], for a fixed frequency ω these
occupation numbers are given by

〈b̂†
i (ω)b̂i(ω)〉 = n̄i(ω, TBEC) = nth{ωB,α[qi|in(ω)]}, (97)

where nth (� ) = [exp(h̄�/TBEC) − 1]−1 is the thermal Bose
occupation distribution. In this expression ωB,α(qi|in ) is the
Bogoliubov dispersion relation (6), with α = u if i = 0 and
α = d if i = 1 or 2, and the functions qi|in(ω) are defined
above [just after Eq. (9)].

The regime in which the separation (1) between a classical
field and quantum fluctuations is valid and where the Bogoli-
ubov treatment of the fluctuations applies has been denoted
as the “weakly interacting quasicondensate regime” in [105].
It is valid up to a temperature TBEC � gnu [16], where g is the
coefficient of the nonlinearity in the Gross-Pitaevskii equation
(2). For typical experimental parameters gnu � 3 nK [10].
While it is difficult to precisely determinate the experimental
temperature, we note that the agreement between the exper-
imental results of [10] and the theoretical expectations [16]
suggests that the temperature of the condensate in the analog
black hole realized by Steinhauer and collaborators is possibly
lower than 3 nK.

At a finite temperature TBEC, the vacuum state |0〉b is re-
placed by a product of thermal states of b modes given by

ρab = 2⊗
i=0

ρ th
(
ab

i

)
, ab

i = 1 + 2n̄i(ω, TBEC), (98)

where n̄i is given by Eq. (97). We recall that we use the
term “thermal” to designate that state in a loose sense,
since, as explained in the beginning of this section, the
occupation numbers (97) do not correspond to an equilib-
rium distribution in the transonic configuration we consider.
The covariance matrix associated with this state is given by
σ th

b = diag(ab
0, ab

0, ab
1, ab

1, ab
2, ab

2). After the Bogoliubov trans-
formation c = T b, the covariance matrix becomes σ th

c =
ST σ th

b ST
T [see Eq. (48)]. The 2 × 2 matrices σi and εi j in

the block decomposition (41) of σ th
c are given by expressions

(54) and (55) where the averages 〈. . .〉 should be replaced by

〈. . .〉th = Tr[ρab . . .]. (99)

In particular,

σi = ai,th12, (100)

where

ai,th = 1 + 2 〈ĉ†
i ĉi〉th, i ∈ {0, 1, 2} (101)

is the corresponding local mixedness [compare to (54) and to
the first of Eqs. (62)].

We conclude this short section by noting that the optical
analog proposed in Fig. 7 remains relevant at finite temper-
ature. The difference with the zero-temperature case is just
the occupation number of the f -modes: they now acquire an
incoherent contribution. In particular the occupation 〈 f̂ †

0 f̂0〉
is no longer zero as in Eq. (91). This suggests a possible
experimental study of the effects of temperature on tripartite
entanglement: one could realize the optical setup of Fig. 7,
send a noncoherent beam along the mode f0, and evaluate the
associated effect on entanglement in the system.

B. Detection of entanglement

Contrary to the zero-temperature case, σ th
c = ST σ th

b ST
T is

associated with a mixed state with no special symmetry, and it
cannot be put in a standard form where the matrices εi j are
all diagonal [66]. In this section we thus restrict our study
to bipartite entanglement. In this case, the 4 × 4 covariance
matrix associated with the reduced two-mode state i j can
always be brought by LLUBOs to its standard form [65]. One
easily proves that matrices εi j have, mutatis mutandis, the
same form as those in the zero-temperature case, namely

εi j = 2 |〈ĉi ĉ†
j 〉th|12, i, j = 0, 1, i �= j,

εi2 = 2 |〈ĉi ĉ2〉th| σz, i = 0, 1. (102)

As a consequence, the lowest symplectic eigenvalue associ-
ated with the partial-transposed reduced two-mode state i j
takes the same form as in the zero-temperature case. Eq. (69)
still holds, and in particular

2 (νPT
− )2 = PT

i j −
√(

PT
i j

)2 − 4 det σi j, (103)
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FIG. 9. Evolution of the PPT measure 1 − νPT
− (blue), of the Cauchy-Schwarz parameter CS (red) and of the Gaussian contangle G(0|2)

τ

(green) for the bipartite system 0|2 (i.e., the analog Hawking pair) as functions of the dimensionless frequency h̄ω/(gnu) and for different
temperatures of the system, denoted by TBEC, ranging from 0 (a) to 1.8 gnu (f). All the plots are obtained for an upstream Mach number
mu = 0.59. The dashed blue curves in panels (b)–(f) correspond to the zero-temperature value of 1 − νPT

− . The gray areas indicate the range of
frequencies for which the bipartite system is entangled [see text and Eqs. (105) and (107)]. The purple dots locate the upper-bound frequency

 at which mode 2 vanishes.

with here

det σ01 = (
a0,th a1,th − 4 |〈ĉ0 ĉ†

1〉th|2
)2

,

PT
01 = a2

0,th + a2
1,th − 8 |〈ĉ0 ĉ†

1〉th|2,
det σi2 = (

ai,th a2,th − 4 |〈ĉi ĉ2〉th|2
)2

, i = 0, 1,

PT
i2 = a2

i,th + a2
2,th + 8 |〈ĉi ĉ2〉th|2, i = 0, 1. (104)

Note that the above expressions only involve moduli of mean
values, so that we could equivalently use operators êi instead
of ĉi since the transformation defined by Eqs. (36) and (37)
is diagonal. The explicit form of the quantities appearing
in Eqs. (104) is given in Eqs. (B2). At variance with the
zero-temperature case they do not depend only on the lo-
cal mixednesses. They should be experimentally accessible
through the measurement of the structure form factor and of
real space density correlations [106], meaning that the PPT
criterion can be used to experimentally detect entanglement
(cf. the discussion at the end of Sec. VI C).

The PPT criterion asserts that the bipartite state is entan-
gled iff

1 − νPT
− > 0. (105)

In the following we denote this quantity as the “PPT mea-
sure.” It is of particular interest to focus on the bipartition 0|2
since it corresponds to the Hawking-Partner pair. In this case
expression (103) leads to

νPT
− = a0,th + a2,th

2

−
√(a0,th − a2,th

2

)2

+ 4|〈ĉ0 ĉ2〉th|2. (106)

The corresponding value of the PPT measure 1 − νPT
− is rep-

resented in Fig. 9 as a function of the frequency ω of the
elementary excitations and for different temperatures ranging
from 0 to 1.5 gnu (blue curves). In each plot the dashed
blue curves display the same quantity at zero temperature for
comparison.
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It is instructive to compare the conclusions drawn from
the study of the PPT measure with those obtained using the
criterion of violation of the Cauchy-Schwarz inequality (70).
According to this criterion, the analog Hawking-Partner pair
0|2 is entangled iff

CS ≡ |〈ĉ0 ĉ2〉th|2 − (a0,th − 1) (a2,th − 1)

4
> 0. (107)

In the following we denote CS as the “Cauchy-Schwarz pa-
rameter.” It is represented by the red curves in Fig. 9 which
confirm the results obtained with the PPT criterion: the blue
and red curves are positive in the same region and cross zero
exactly at the same frequency. This means, as expected, that
both criteria lead to the same qualitative result for entan-
glement detection. However, as we shall see in Sec. VI C,
they lead to different quantitative estimation of the amount
of entanglement.

The analog Hawking pair is entangled in the range of
frequencies for which inequalities (105) and (107) hold. This
corresponds to the gray shaded regions bounded by two verti-
cal black dot-dashed lines in Fig. 9. The range of parameters
over which entanglement can be observed decreases when
the temperature of the Bose gas increases. In agreement with
the findings of Refs. [23,30], we observe that when TBEC

increases entanglement first disappears at low ω. It eventu-
ally completely disappears when TBEC � 1.8 gnu; cf. Fig. 9(f).
Therefore the temperature of the experimental system should
not exceed this limiting value to be able to observe entan-
glement. It is interesting to compare this value to the one
obtained in Ref. [23], which studies an analog black hole
configuration different from the waterfall we consider here (it
had been denoted as “flat profile” in Ref. [15]) with values of
the upper and lower Mach numbers not significantly different
from ours.9 The authors of Ref. [23] find a disappearance of
entanglement for TBEC � 0.195 gnu, i.e., at much lower tem-
perature than what is observed here. This is in agreement
with the findings of Ref. [26] where entanglement was shown
to be much less resilient to temperature in the flat profile
configuration than in the waterfall configuration.

In order to perform a more detailed discussion of the effects
of temperature on entanglement, we represent in Fig. 10(a) the
PPT measure 1 − νPT

− of the Hawking pair 0|2 at temperature
TBEC = 0.5 gnu for different configurations parameterized by
the upstream Mach number mu. As already seen in Fig. 9,
which corresponds to the specific case mu = 0.59, a finite
temperature reduces the range of frequencies for which en-
tanglement occurs. One observes in this new plot that the
entanglement of the Hawking pair persists for a larger frac-
tion of the available frequency domain when the parameter
mu is closer to unity. This is in agreement with the results
obtained in [22]; it was noticed that not only the temperature
TBEC destroys the entanglement of the analog Hawking pair,
but also that a strong “coupling” of mode 1 with the other
modes can affect their entanglement. This coupling is mea-
sured through the squared modulus of the scattering matrix
coefficients |S01(ω)|2 and |S21(ω)|2. One finds numerically

9They have mu = 0.75 and md = 1.5, whereas here mu = 0.59 and
md = 2.9.

FIG. 10. PPT measure 1 − νPT
− of the Hawking pair 0|2 plotted as

a function of the upstream Mach number mu and of the frequency ω,
for temperatures (a) TBEC = 0.5 gnu and (b) TBEC = 1.8 gnu. The pink
curve corresponds to the upper-bound frequency 
 (9). For a fixed
value mu, i.e., along a horizontal cut on the graph, mode 2 only exists
for a frequency ω lower than 
(mu) (see Fig. 2). The dashed black
curve corresponds to 1 − νPT

− = 0 and thus delimits the region where
the analog Hawking pair is entangled.

(and analytically in the low-ω sector [15]) that these two quan-
tities decrease when mu increases. This exactly corresponds
to the results presented in Fig. 10(a): when mu increases, the
coupling between 0-1 and 1-2 decreases, and indeed leads to
a stronger violation of PPT criterion for a larger fraction of
frequencies. However, it is important to note that this phe-
nomenon is valid only at low enough temperatures. This is
illustrated in Fig. 10(b): for a temperature as large as T =
1.8 gnu the region where the pair is entangled greatly dimin-
ishes and entanglement only survives at moderate values of
mu (at variance with the conclusion of the above discussion).
Likewise, at this temperature, even in the region where en-
tanglement is present, the PPT measure is significantly lower
than in the equivalent regions in Fig. 10(a).

It is also interesting to study the entanglement of the Hawk-
ing pair, not as a function of the absolute temperature, but
as a function of the Hawking temperature T (2)

H (95). There is
no obvious reason why entanglement between modes should
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FIG. 11. Same as Fig. 10 for TBEC = 5 T (2)
H .

disappear when the temperature of the system exceeds the
Hawking temperature. This is indeed what is observed in
Fig. 11: entanglement persists in sizable regions even when
TBEC = 5 T (2)

H .
We can conclude from the above discussion that whereas

entanglement persists for temperatures noticeably larger than
T (2)

H , it is significantly reduced when TBEC becomes larger than
the chemical potential gnu.

C. Measurement of entanglement

The violation of the Cauchy-Schwarz inequality is often
used to study the entanglement between the elementary ex-
citations in the context of analog gravity [20–22,24,26,27].
However, while this criterion tells us whether the bipartite
system is entangled or not, the Cauchy-Schwarz parameter
CS it is not a good measure of the amount of entanglement
at finite temperature.

To clarify this point, we compute the amount of en-
tanglement at finite temperature for the bipartition 0|2, as
measured by the Gaussian contangle G(0|2)

τ defined in Eq. (73).
This computation is slightly more difficult here than in the
zero-temperature case, where it is given by Eq. (80). In the
presence of temperature the reduced two-mode state 0|2 is not
a GMEMMS, a GMEMS, or a GLEMS, for which analytic
expressions hold [87]. Nevertheless, the Gaussian contangle
can be put under the form [87]

G(0|2)
τ = arsinh2

{√
min

θ
[m(θ )] − 1

}
, (108)

where m(θ ) is explicitly given by Eq. (E23). In Fig. 9 we rep-
resent by a green solid line the value of G(0|2)

τ in the range of
frequencies for which the system is entangled [the minimum
over the angle θ in Eq. (108) is obtained numerically]. The
results for G(0|2)

τ confirm that the PPT and Cauchy-Schwarz
criteria correctly determine the region where entanglement
exists.

As expected, entanglement decreases as the temperature in-
creases. In the zero-temperature case [Fig. 9(a)], both 1 − νPT

−
and CS vary in the same way as G(0|2)

τ . The situation at finite

FIG. 12. Evolution of CS given by Eq. (107) as a function of the
measure of bipartite entanglement G(0|2)

τ given by expressions (108)
and (E23), for the same set of temperatures as in Fig. 9, ranging from
TBEC = 0 (blue curve) to TBEC = 1.5 gnu (red curve), with mu = 0.59.
When possible, the corresponding temperature for each curve is
indicated on the graph (we dropped the factor gnu for readability).
Note that for TBEC > 0, the curves describe a loop.

temperature is different: while the quantities 1 − νPT
− and G(0|2)

τ

appear to behave similarly, being increasing and decreasing in
the same regions and having a maximum at the same value of
ω, this is not the case for CS whose maximum is shifted with
respect to the two others; see Figs. 9(b)–9(f).

In order to illustrate this phenomenon, in Fig. 12 we plotted
CS as a function of G(0|2)

τ for several temperatures. These are
parametric curves obtained from expressions (107) and (108),
ω playing the role of the parameter. Except at TBEC = 0, CS

is not a monotonous function of G(0|2)
τ , as demonstrated by

the closed loops with regions of negative slope observed for
each finite temperature. Another way to note the same point is
to remark that the maximal violation of Cauchy-Schwarz in-
equality (CS maximal) is not reached when G(0|2)

τ is maximal.
This confirms that the parameter CS is not an entanglement
monotone.

In Fig. 13 we underline the difference between the behav-
iors of the Cauchy-Schwarz parameter and the PPT measure
by plotting 1 − νPT

− as a function of G(0|2)
τ .

The difference with Fig. 12 is striking. For each tempera-
ture, 1 − νPT

− is a monotonous increasing function of G(0|2)
τ . It

is not easily seen in the figure, but for finite TBEC the relation
between the two quantities is not one to one: for each G(0|2)

τ

there are two (close) values of 1 − νPT
− which coalesce at the

common maximum of the two quantities, marked with a point
on Fig. 13. This confirms without ambiguity that the PPT mea-
sure is still an entanglement monotone at finite temperature.
We also note that all the curves in Fig. 13 almost superimpose,
meaning that relation between the two quantities 1 − νPT

− and
G(0|2)

τ is very weakly dependent on temperature, which makes
the PPT measure an even better candidate for quantifying
entanglement.

In view of the results presented in Figs. 12 and 13, it is
of interest to also discuss the generalized Peres-Horodecki
(GPH) parameter, which has been used in [23,25] for witness-
ing entanglement in analog systems. As shown by Simon [73],
nonseparability of modes 0 and 2 can be defined as P < 0,
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FIG. 13. Evolution of 1 − νPT
− given by Eq. (106) as a function

of the measure of bipartite entanglement G(0|2)
τ given by expressions

(108) and (E23), for the same set of temperatures as in Fig. 9,
ranging from TBEC = 0 (blue curve) to TBEC = 1.5 gnu (red curve),
with mu = 0.59. When possible, the corresponding temperature for
each curve is indicated on the graph (we dropped the factor gnu for
readability). For each temperature the common maximal value of
1 − νPT

− and G(0|2)
τ is marked with a point.

where, using our conventions, the GPH parameter reads

P = det σ0 det σ2 + (1 − | det ε02|)2

− tr(σ0 J ε02 J σ2 J εT
02 J ) − det σ0 − det σ2, (109)

and the matrix J is defined in (40). This yields

P = (1 − 4|〈ĉ0 ĉ2〉th|2 + a0,tha2,th )2 − (a0,th + a2,th )2. (110)

As is clear from expressions (106), (107), and (110), negativ-
ity of P is equivalent to the positivity of 1 − νPT

− and to that
of CS: these three criteria are equivalent in terms of quali-
tative assessment of nonseparability. This being ascertained,
we want to check if −P is a good quantitative measure of
entanglement. To this end, we plot it as a function of G(0|2)

τ

in Fig. 14. It appears clearly that, as CS, −P is not an
entanglement monotone at finite temperature.

We would like to insist on the positive aspects of using
the PPT measure in future experimental studies of analog
black hole configurations: (1) as just seen, contrary to the
Cauchy-Schwarz and GPH parameters, the PPT measure is

FIG. 14. Same as Figs. 12 and 13 for the GPH parameter −P
defined in Eqs. (109) and (110).

a good quantitative measure of entanglement, whatever the
temperature of the system is; (2) from Fig. 13 it appears
that 1 − νPT

− is almost as good a measure of entanglement as
G(0|2)

τ , but it has a much simpler expression in terms of the
local mixednesses and mode correlation functions [compare
Eq. (106) with Eqs. (108) and (E23)]; and (3) the calculations
of Sec. VI B show that the computation of the lowest sym-
plectic eigenvalue requires essentially the knowledge of the
the same quantities (104) as CS and P [compare Eqs. (106),
(107), and (110)]. This means that the value of νPT

− is experi-
mentally accessible and can be measured, for instance, from
the density correlations along the acoustic black hole, as we
now demonstrate.

An experimental evaluation of the quantities used in
the present work for characterizing bipartite and tripartite
entanglement necessitates to experimentally determine the co-
efficients of the covariance matrix (41). For our three-mode
Gaussian state this matrix is 6 × 6, and its coefficients are all
expressed in terms of correlation functions of the c-operators
[see, e.g., Eqs. (100), (101), and (102)]. Steinhauer [106]
has devised a clever method for determining such quantities
from the knowledge of the static structure factor and the
density-density correlation function, which are both experi-
mentally accessible quantities. This technique has been used
in Refs. [9,10] and can be in principle extended for evaluating
all the relevant averages of c-operators. Note, however, that
there are potential practical difficulties: the method neces-
sitates the computation of windowed Fourier transforms of
the real space density-density correlation function and this
quantity has to be accurately determined over a large spatial
range in order to correctly perform all the necessary Fourier
transforms. Also the windows used to evaluate these Fourier
transforms have to be selected with special care, as discussed
in Refs. [16,25,26].

In order to give a proof of concept of the method, we
performed the following computation: considering a zero-
temperature system we neglected the occupation of the
Companion mode, which, from Eq. (61) yields a0 � a2. This
makes it possible, through (58) and (62), to express the sym-
plectic eigenvalue (69) as

νPT
− �

√
1 + 4|〈ĉ0ĉ2〉|2 − 2 |〈ĉ0ĉ2〉|. (111)

The corresponding value of 1 − νPT
− is reported in Fig. 15. We

determined the quantity |〈ĉ0ĉ2〉| appearing in (111) by com-
bining the results of the experimental analysis of [10] with the
theoretical value of the structure form factor. A self-contained
experimental analysis should resort to the experimentally de-
termined value of this quantity. Also, as discussed in Ref. [16],
(1) neglecting the occupation number of the Companion mode
is too crude an approximation, or at least necessitates an
independent experimental confirmation and (2) the windowed
Fourier analysis of the experimental density-density correla-
tion function deserves a careful analysis. This is the reason
why Fig. 15 does not provide an experimental signature of
bipartite entanglement in the BEC analog realized in Ref. [10],
but is rather a proof of concept, demonstrating that the theoret-
ical techniques employed in the present work provide valuable
tools for analyzing experimental data.
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FIG. 15. Zero-temperature PPT measure as a function of energy
in a waterfall configuration with mu = 0.59. The blue solid curve is
the same as in Fig. 9(a). The points with error bars are evaluated from
Eq. (111), extracting the value of |〈ĉ0ĉ2〉| from the experimental data
of Ref. [10] as discussed in the text. The dashed line represents the
result of Eq. (111) obtained by assuming that |〈ĉ0ĉ2〉| � 1

2

√
a2

0 − 1 �√
n̄0(n̄0 + 1), where n̄0(ω) is a thermal Bose occupation evaluated at

the Hawking temperature TH = 0.124 gnu determined in [10].

VII. CONCLUSION

In the present work, we have investigated entanglement
properties of modes emitted from an analog black hole real-
ized in the flow of a Bose-Einstein condensate. The ground
state of the system is seen by an external observer as a
three-mode Gaussian state. Gaussian states are entirely char-
acterized by their first and second moments. Thus, their
entanglement properties can be expressed in terms of their
covariance matrix. We have characterized bipartite and tri-
partite entanglement in the system using tools developed in
the field of continuous-variable entanglement. We identified
the best configuration for the experimental measurement of
tripartite entanglement: the Gaussian residual entanglement
Gres

τ is larger for waterfall configurations with moderate up-
stream Mach number (mu � 0.15) and at small frequencies.
An interesting result is the finiteness of bipartite entanglement
(for instance, between the Hawking and the Partner) at zero
energy, while the tripartite entanglement diverges. This point
sheds light on the importance of the Companion particle,
which is sometimes discarded when studying entanglement
in analog black holes. We also showed that, quite counter-
intuitively, while there is no bipartite entanglement between
two of the outgoing modes (tracing out the third one), there is
nevertheless genuine tripartite entanglement between the three
modes.

Our detailed investigation of the distribution of entangle-
ment in the system in Sec. V enabled us to propose a table top
optical setup modeling the physical process we study. This,
in turn, suggested an alternative manner to define the analog
Hawking temperature and the associated gray-body factor, in
better agreement with the gravitational paradigm.

In Sec. VI we studied the effect of temperature on bipartite
entanglement and obtained several results. The Cauchy-
Schwarz and the GPH criteria which have been studied in
previous studies of analog systems merely give a qualitative
assessment of whether the system is entangled or not. In this
paper, we go beyond this qualitative approach by evaluating

the amount of entanglement in the Hawking pair using the
Gaussian contangle. We assess the capability of several pa-
rameters to correctly quantify the amount of entanglement
between the Hawking pair by comparing them with our mea-
sure of entanglement. Our results should be relevant in future
experiments: as a main message, we advise to use the PPT
measure 1 − νPT

− instead of the Cauchy-Schwarz or the gen-
eralized Peres-Horodecki parameters as a good quantifier of
entanglement. We have also observed that the connection be-
tween the PPT measure and the contangle is weakly affected
by thermal effects, which strengthens even more its relevance
in the context of analog black holes in BEC.

Extensions of the present work include the investigation of
zero-norm modes, which were shown in [16] to play an im-
portant role in the correct quantum description of Bogoliubov
excitations. The study of the influence of thermal effects on
the amount of tripartite entanglement also constitutes a natural
continuation of the present study.

During the completion of this work, we became aware of
the preprint [107] which studies tripartite entanglement in an
analog system thanks to the residual contangle, as done in the
present paper. The model in [107] corresponds to a “sublumi-
nal” dispersion relation, whereas in the BEC case we consider,
the dispersion is rather “superluminal.” Also, the authors of
the recent preprint [108] use a quantum description of an
analog black hole similar to the one we present in Sec. V C and
define the Hawking temperature from the squeezing parameter
of the associated parametric amplifier, as done in Eq. (93).
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APPENDIX A: BOGOLIUBOV TRANSFORMATIONS

In this Appendix we detail some intermediate steps useful
for establishing the results presented in Sec. III A.

The form (13) and (16) of vectors b and c implies that the
2N × 2N matrix T defining the unitary Bogoliubov trans-
formation (15) has a block structure given by (17). In order
that the ĉi defined in Eq. (15) satisfy bosonic commutation
relations, the matrix T must verify

T J̃T T = J̃, (A1)

where J̃ is defined in Eq. (14). Equation (A1) means that
T belongs to the symplectic group Sp(2N,C). As a conse-
quence, one has

T −1 = −J̃T T J̃ =
(

αT β†

βT α†

)
. (A2)
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Condition (A1) can be reexpressed in terms of the two N × N
matrices α and β as

α α† − β β† = 1N, α βT − β αT = 0,

α† α − βT β∗ = 1N, αT β∗ − β† α = 0. (A3)

The matrix T being symplectic, it can be written as

T = exp(̃JQ), (A4)

with Q a 2N × 2N symmetric matrix.

The unitary operator T relating operators ĉi and b̂i accord-
ing to (18) is defined as

T = exp
(

1
2 bT Q b

)
, (A5)

as can be shown by using the Baker-Campbell-Hausdorff
formula [42]. Note that using Eqs. (15) and (A4) one has
bT Q b = cT (T −1)T Q T −1 c = cT Q c. This indicates that T
has the same expression in term of the c’s and in term of the
b’s.

It is possible to show [47,54,109] that T can be uniquely decomposed into the product

T = (det α)−1/2 exp

[
1

2

N∑
i, j=1

Xi j ĉ†
i ĉ†

j

]
exp

[
N∑

i, j=1

Yi j ĉ†
i ĉ j

]
exp

[
1

2

N∑
i, j=1

Zi j ĉi ĉ j

]
, (A6)

where X , Y , Z are N × N matrices defined by

X = −β∗ α−1, e−Y T = α, Z = α−1 β. (A7)

The interest of the decomposition (A6) lies in the fact that all annihilation operators have been put to the right. Therefore, when
applied to the vacuum |0〉c, T only acts through matrix X . This directly yields Eq. (21).

APPENDIX B: EXPLICIT EXPRESSION OF THE COVARIANCE MATRIX

In this Appendix we give a useful formula for the covariance matrix, present explicit expressions necessary for evaluating its
finite-temperature form, and discuss their zero-temperature limit.

The decomposition (34) makes it possible to write the covariance matrix σc of Eq. (53) under the form

σc=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2 v2
02 0 2v02v12 cos(φ01) −2v02v12 sin(φ01) 2v22v02 cos(φ02) 2v22v02 sin(φ02)

0 1 + 2 v2
02 2v02v12 sin(φ01) 2v02v12 cos(φ01) 2v22v02 sin(φ02) −2v22v02 cos(φ02)

2v02v12 cos(φ01) 2v02v12 sin(φ01) 1 + 2 v2
12 0 2v22v12 cos(φ12) 2v22v12 sin(φ12)

−2v02v12 sin(φ01) 2v02v12 cos(φ01) 0 1 + 2 v2
12 2v22v12 sin(φ12) −2v22v12 cos(φ12)

2v22v02 cos(φ02) 2v22v02 sin(φ02) 2v22v12 cos(φ12) 2v22v12 sin(φ12) −1 + 2 v2
22 0

2v22v02 sin(φ02) −2v22v02 cos(φ02) 2v22v12 sin(φ12) −2v22v12 cos(φ12) 0 −1 + 2 v2
22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(B1)

where vi j and ϕi j are defined in Eq. (34) and φi j = ϕi2 − ϕ j2.
Also, for explicitly computing the finite-temperature entanglement properties studied in Sec. VI B [see Eqs. (104) and (107)]

one uses the formulas:

〈ĉ0ĉ†
1〉th =S00S∗

10(1 + n̄0) + S01S∗
11(1 + n̄1) + S02S∗

12n̄2,

〈ĉ†
i ĉi〉th =|Si0|2n̄0 + |Si1|2n̄1 + |Si2|2(1 + n̄2), i = 0, 1,

〈ĉiĉ2〉th =Si0S∗
20(1 + n̄0) + Si1S∗

21(1 + n̄1) + Si2S∗
22n̄2, i = 0, 1,

〈ĉ†
2ĉ2〉th =|S20|2(1 + n̄0) + |S21|2(1 + n̄1) + |S22|2n̄2,

(B2)

where the quantities n̄0 n̄1 and n̄2 are defined in Eq. (97), and, as in Eq. (B1), we do not write the explicit ω dependences for
legibility.

At zero temperature the above equations reduce to

〈ĉ0ĉ†
1〉 =S00S∗

10 + S01S∗
11 = S∗

12S02,

〈ĉ†
i ĉi〉 =|Si2|2, i = 0, 1,

〈ĉiĉ2〉 =Si0S∗
20 + Si1S∗

21 = Si2S∗
22, i = 0, 1,

〈ĉ†
2ĉ2〉 =|S20|2 + |S21|2 = −1 + |S22|2,

(B3)

where use has been made of property (11). Using Eqs. (B3)
and expressions (60), one may show that the finite-
temperature components (100) and (102) of the covariance
matrix reduce at TBEC = 0 to the form (62) as they should.
However, at finite temperature, Eq. (B2) holds instead of (B3),
implying that, contrarily to the zero-temperature case, the
covariance matrix, its symplectic eigenvalues, and thus the
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entanglement properties of the system, do not depend only on
the local mixednesses.

APPENDIX C: LONG WAVELENGTH LIMIT OF
THE SCATTERING AMPLITUDES

In the long wavelength limit, the Si2 coefficients of the S-
matrix (12) behave as

Si2(ω) = Fi2

√
gnu

h̄ω
+ O(ω1/2), i ∈ {0, 1, 2}, (C1)

where the Fi2 are dimensionless constant coefficients. For the
waterfall configuration we consider here, analytic expressions
of their moduli have been determined in [15]:

|F02|2 = 2
mu(1 − mu)

3
2
(
1 + m2

u

) 3
2

(1 + mu)
1
2
(
1 + mu + m2

u

)2 , (C2)

|F12|2 = 1

2

(1 − mu)
7
2
(
1 + m2

u

) 3
2

(1 + mu)
1
2
(
1 + mu + m2

u

)2 , (C3)

and

|F22|2 = 1

2

(
1 − m4

u

) 3
2(

1 + mu + m2
u

)2 , (C4)

where mu is the upstream Mach number.
From the low-frequency behavior of the scattering co-

efficients it is possible in to evaluate the analog Hawking
temperature of the waterfall configuration; see Eqs. (65) and
(95). An alternative way to evaluate the Hawking temperature
is to use the semiclassical analog surface gravity expression
[1,110]

TH = h̄

2π

(
dv

dx
− dc

dx

)
xH

, (C5)

where v(x) is the velocity of the flow, c(x) = √
gn(x)/m is

the local sound velocity and xH is the position of the horizon,
defined as the point at which

v(xH ) = c(xH ). (C6)

However, as argued in Sec. II A the definition (C5) is not
expected to apply in the case we consider because, strictly
speaking, the local sound velocity is ill-defined for the water-
fall profile around x = 0. A blindfolded use of Eqs. (C6) and
(C5) leads to

xH

ξu
= − 1√

1 − m2
u

arcosh

√
1 − m2

u

1 − m2/3
u

(C7)

and

TH

gnu
= 3

2π

(
1 − m2/3

u

)√
1 − m4/3

u . (C8)

This expression is compared with alternative definitions of the
Hawking temperature in Fig. 8. Note that when mu increases,
xH goes deeper in a region of smooth density profile where
the concept of local sound velocity becomes relevant: xH �
−ξu when mu → 1. In this regime expression (C5) and the
corresponding result (C8) are mathematically sound.

APPENDIX D: ENTANGLEMENT LOCALIZATION
IN A TRIPARTITE SYSTEM

In this Appendix we present the specifics of the process
of entanglement localization discussed in Sec. V C. Let σ be a
covariance matrix associated with a pure three-mode Gaussian
state. We want to determine the explicit form of the symplectic
matrix S which transforms σ according to

S σ ST = 12 ⊕ σsq, (D1)

where σsq is the covariance matrix of a two-mode squeezed
state [see Eq. (77)].

1. General form of the symplectic matrix

Consider a bipartition i j|k. The covariance matrix asso-
ciated with the subsystem k is denoted as σk and the one
associated with subsystem i j reads

σi j =
(

σi εi j

εT
i j σ j

)
. (D2)

The whole covariance matrix associated with the tripartite
system is then

σ =

⎛⎜⎝σi εi j εik

εT
i j σ j ε jk

εT
ik εT

jk σk

⎞⎟⎠. (D3)

Consider the case where the covariance matrix is in its stan-
dard form (62), i.e., σk = ak 12 and either

σi j =

⎛⎜⎜⎜⎝
ai 0 c 0

0 ai 0 −c

c 0 a j 0

0 −c 0 a j

⎞⎟⎟⎟⎠, c =
√

ai − 1
√

a j + 1

(D4)
for bipartitions i j|k = 02|1 and 12|0 (for which εi2 = cσz) or

σi j =

⎛⎜⎜⎜⎝
ai 0 c 0

0 ai 0 c

c 0 a j 0

0 c 0 a j

⎞⎟⎟⎟⎠, c =
√

ai − 1
√

a j − 1 (D5)

for the bipartition 01|2 (for which ε01 = c12). The difference
in the sign in front of c between (D4) and (D5) is actually
of great importance and leads to two different types of sym-
plectic transformations in Eq. (D1). Note that we also impose
ai < a j in (D4); in fact, the order of the local mixednesses
does not matter in (D5), as shall be clear at the end of this
section.

The symplectic eigenvalues σk = ak 1 are νk = ak . Using
Williamson theorem, we can bring σi j to a diagonal matrix

(σi j )
′ = Si j σi j (Si j )

T = diag{νi, νi, ν j, ν j}, (D6)

where we ordered the symplectic eigenvalues such that νi <

ν j . Easy calculations lead to

Si j =

⎛⎜⎜⎜⎝
a 0 b 0

0 a 0 ηb

ηb 0 −a 0

0 b 0 −a

⎞⎟⎟⎟⎠, (D7)
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with

a = −
√

a j ν j − ai νi

ν2
j − ν2

i

, b =
√

ai ν j − a j νi

ν2
j − ν2

i

, (D8)

and η = −1 for bipartitions i j|k = 02|1 and 12|0, and η = 1
for bipartition 01|2. The coefficients a and b satisfy the iden-
tity

a2 + ηb2 = ai + ηa j

νi + ην j
= 1. (D9)

The last equality is valid only if Si j is a symplectic matrix.
Expressions (D7) and (D8) are valid for any covariance

matrix σi j of the form (D4) and (D5). In our case, we can
further simplify these expressions using the purity constraint
of the three-mode Gaussian state under consideration. Indeed,
one can easily prove that for any reduced two-mode states
i j of a pure three-mode Gaussian state, i j = det σi j + 1 =
det σk + 1 [66]. Therefore, considering the reduced state jk,
Eq. (68) immediately gives νi = 1 and ν j = √

det σi j = ak ,
which imply from the last equality of (D9) that ai + ηa j =
νi + ην j = 1 + ηak . This expression is true for the case (D4)
iff ai < a j , because η = −1. For (D5), the order is not impor-
tant because η = 1. Thus, (D8) simplifies to

a = −
√

(a j − η) (ak + η)

a2
k − 1

,

b =
√

(ai − 1) (ak + η)

a2
k − 1

. (D10)

2. Standard form

The symplectic matrix defined by

S = Si j ⊕ Sk, (D11)

with Sk = ak12, transforms the covariance matrix (D3) to

σ ′ = S σST =
(

σ ′
i j K

KT σ ′
k

)
, (D12)

with K some matrix and

σ ′
i j =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 ak 0

0 0 0 ak

⎞⎟⎟⎟⎠, σ ′
k =

(
ak 0

0 ak

)
. (D13)

Following [93], we first notice that

−(J σ )2 = 16, (D14)

where we recall that J is given by Eq. (40). The previous
expression is not difficult to prove: the Williamson theorem
ensures the existence of a symplectic matrix O mapping the
covariance matrix σ to the identity (for a pure state all the
symplectic eigenvalues are equal to one); thus, one obtains
−(J σ )2 = −JOOT JOOT = 16. Note that one also has
−(J σ ′)2 = 16. Then, inserting expression (D12) in Eq. (D14)
and using the fact that σ ′

i j and σ ′
k are diagonal, it is easy to

prove the following conditions for the matrix K:

(σ ′
i j )

2 − Ji j K Jk KT = 14,

(σ ′
k )2 − Jk KT Ji j K = 12,

−σ ′
i j K + Ji j K Jk σ ′

k = 0,

(D15)

where Jk is defined in Eq. (40) and Ji j = Ji ⊕ Jj . The last
condition in (D15) implies that a given coefficient Kmn �= 0 iff
(σ ′

i j )mm = (σ ′
k )nn, i.e., if and only if the symplectic eigenvalue

on the row m of the subsystem i j matches with the one on
the column n of the subsystem k. Therefore, one can rewrite
expression (D12) in the form

σ ′ =
(
12 0

0 σ̃

)
, with σ̃ =

(
ak 12 K̃

K̃T ak 12

)
, (D16)

where we introduced a new 2×2 matrix K̃. Then, noticing that
−(Ji j σ̃ )2 = 14, one obtains

K̃ Jk K̃T = (1 − a2
k ) Jk,

Jk K̃ Jk = K̃. (D17)

The above conditions lead to

K̃ =
(

a
√

λ2 − a2

−√
λ2 − a2 −a

)
, (D18)

where λ =
√

a2
k − 1. Then, given that σ is in its standard form

[meaning that εik and ε jk are diagonal matrices; see Eq. (D3)]
and remembering that Si j is given by expression (D7), one
can see easily that K̃ must be diagonal; therefore, a = λ. As a
result, one finds that

σ̃ =
⎛⎝ ak 12

√
a2

k − 1 σz√
a2

k − 1 σz ak 12

⎞⎠, (D19)

which exactly corresponds to the covariance matrix of
a squeezed state with squeezing parameter rk > 0, with
cosh(2 rk ) = ak [see Eq. (77)]. This statement ends the proof:
the symplectic matrix S given by expression (D11), with Si j

explicitly written in Eqs. (D7) and (D8) and Sk = 12, indeed
lead to the transformation (D1).

3. Bipartitions 02|1 and 12|0
For bipartitions i j|k = 02|1 and 12|0 of modes e, the sym-

plectic transformation (D11) involves the matrix Si j (with j =
2) given by Eq. (D7) with η = −1. Using the identity (D9), we
introduce a parameter γ , such that a = cosh γ and b = sinh γ ,
where a and b are the coefficients of the Si j matrix. In this
case, one finds

Si2 =

⎛⎜⎜⎜⎝
− cosh γ 0 sinh γ 0

0 − cosh γ 0 − sinh γ

− sinh γ 0 cosh γ 0

0 sinh γ 0 cosh γ

⎞⎟⎟⎟⎠, (D20)

with cosh γ = cosh r2/ cosh rk , sinh γ = sinh ri/ cosh rk ,
computed from expressions (D10).
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To this symplectic transformation SσST at the level of the
covariance matrix corresponds a Bogoliubov transformation

f = Te→f e, with Te→f = U † S U (D21)

[see Eqs. (46) and (48)]. Using the explicit expression of the
symplectic matrix (D20), one finds

f̂i = − cosh γ êi + sinh γ ê†
j ,

f̂ j = − sinh γ ê†
i + cosh γ ê j,

f̂k = êk . (D22)

Therefore, entanglement can be localized in the subsystem
f2| fk with k = 0 or 1 only through a Bogoliubov transforma-
tion which mixes annihilation and creation operators.

4. Bipartition 01|2
For the bipartition i j|k = 01|2 the matrix S01 is given by

Eq. (D7) with η = 1. One finds

S01 =

⎛⎜⎜⎜⎝
− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

cos θ 0 sin θ 0

0 cos θ 0 sin θ

⎞⎟⎟⎟⎠, (D23)

with cos θ = sinh r0/ sinh r2, sin θ = sinh r1/ sinh r2, using
again the identity (D9) and expressions (D10). The associated
Bogoliubov transformation

Te→f = U † (S01 ⊕ S2)U (D24)

leads to the new set of operators

f̂0 = − sin θ ê0 + cos θ ê1,

f̂1 = cos θ ê0 + sin θ ê1,

f̂2 = ê2,

(D25)

where, as in the previous subsection, f0 and f1 are new com-
binations of modes e0 and e1, and f2 = e2. Here there is no
mixing of annihilation and creation operators, and the matrix
S01 ⊕ S2 is unitary.

APPENDIX E: COMPUTATION OF THE
FINITE-TEMPERATURE GAUSSIAN CONTANGLE

In this Appendix we explain how to obtain expression
(E23) used in Eq. (108) for evaluating the Gaussian contangle
at finite temperature. We could not find a derivation of this
formula in the literature, and since the explicit form given in
[87] appears to contains some missprints, we find it useful to
give the whole proof, following the same path as in [87]. For a
general (mixed or pure) two-mode Gaussian state, a measure
of bipartite entanglement is given by the Gaussian contangle
Gτ (σ ) defined in Eq. (73). It has been proven in [87] that
finding the infinimum over pure Gaussian states amounts to
minimize

m(x0, x1, x3) = 1 + x2
1

det �
, (E1)

with det � = x2
0 − x2

1 − x2
3, where x0, x1, and x3 must belong

to the following cones:

x0 = a + b

2
−
√

(x1 − c+)2 +
(

x3 − a − b

2

)2

,

x0 = a + b

2 d
+
√(

x1 + c−
d

)2
+
(

x3 + a − b

2 d

)2

,

(E2)

where a, b, c+, and c− are the coefficients of the covariance
matrix σ written in the standard form and associated with a
given two-mode Gaussian state:

σ =

⎛⎜⎜⎜⎝
a 0 c+ 0

0 a 0 c−
c+ 0 b 0

0 c− 0 b

⎞⎟⎟⎟⎠. (E3)

In Eqs. (E2), d = a b − c2
−. The minimum of expression (E1)

is located at the intersection of both cones (E2) [87]. There-
fore, in the following, we aim at finding this intersection,
which corresponds to an ellipse. To find the equation of this
ellipse, we first make a change of coordinates (Lorentz boost):

x′
0 = γ (x0 − v x3),

x′
3 = γ (x3 − v x0), (E4)

x′
1 = x1,

with

v = a − b

a + b

d + 1

d − 1
(<1 for d > 1),

γ = (a + b) (d − 1)

2
√

(a d − b) (b d − a)
. (E5)

We find after simplifications:

(x′
0 − α1)2 − (x′

1 − β1)2 − (x′
3 − γ1)2 = 0,

(x′
0 − α2)2 − (x′

1 − β2)2 − (x′
3 − γ2)2 = 0,

(E6)

with

α1 = γ (a − b)

2

(
a + b

a − b
− v

)
, β1 = c+,

α2 = γ (a − b)

2 d

(
a + b

a − b
+ v

)
, β2 = −c−

d
,

(E7)

and

γ1 = γ2 = −γ (a − b)

d − 1
. (E8)

Note that α1 and α2 simplify to

α1 = 2 a b d − a2 − b2

2
√

(a d − b) (b d − a)
,

α2 = d (a2 + b2) − 2 a b

2 d
√

(a d − b) (b d − a)
. (E9)

Let us now make another change of variables:

x′′
0 = x′

0 − L+,

x′′
1 = x′

1 − H+, (E10)

x′′
3 = x′

3 − γ1 = x′
3 − γ2,
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with

L+ = α1 + α2

2
= a b (d2 − 1)

2 d
√

(a d − b) (b d − a)
,

H+ = β1 + β2

2
= c+ d − c−

2 d
. (E11)

This leads to

(x′′
0 − L−)2 − (x′′

1 − H−)2 − x′′
3

2 = 0,

(x′′
0 + L−)2 − (x′′

1 + H−)2 − x′′
3

2 = 0,
(E12)

with

L− = α1 − α2

2
=

√
(a d − b) (b d − a)

2 d
,

H− = β1 − β2

2
= c+ d + c−

2 d
. (E13)

Looking at Eqs. (E12), one sees that the changes of coordi-
nates (E4) and (E10) make it possible to eliminate one variable
(x′′

3 ) and to symmetrize the equations. Note that both cone tops
belong to the plane x′′

3 = 0.
The intersection of the cones (E12) is now simple to find.

By combining Eqs. (E12), one can first eliminate x′′
3 to find the

relation between x′′
0 and x′′

1 :

x′′
0 = H−

L−
x′′

1 . (E14)

Inserting this relation in one of Eqs. (E12) yields(
1 − H2

−
L2−

)
x′′

1
2 + x′′

3
2 = L2

− − H2
−, (E15)

which exactly corresponds to the equation of an ellipse. Let
us define the angle θ such that

x′′
0 = H− cos θ,

x′′
1 = L− cos θ,

x′′
3 =

√
L2− − H2− sin θ. (E16)

At this stage, we have everything needed to express Eq. (E1)
only in terms of the parameter θ and coefficients of the covari-
ance matrix. Since the Lorentz boost preserves the relations
between both cones, one can find the minimum of the function

m in the basis (x′
0, x′

1, x′
3), that is to say

m = 1 + x′
1

2

x′
0

2 − x′
1

2 − x′
3

2 . (E17)

Using Eqs. (E10), (E11), (E13), and (E16), one finds

x′
0 = H− cos θ + L+,

x′
1 = L− cos θ + H+

= 1

2 d
[c+ d − c− +

√
(a d − b) (b d − a) cos θ ],

x′
3 =

√
L2− − H2− sin θ + γ1. (E18)

This gives

x′
0

2 − x′
1

2 − x′
3

2

= α1 α2 − β1 β2 − γ 2
1 − 2(L− H+ − H− L+) cos θ

− 2 γ1

√
L2− − H2− sin θ. (E19)

After some simplifications, the first right-hand side term of
Eq. (E19) reads

α1 α2 − β1 β2 − γ 2
1 = a2 + b2 + 2 c− c+

2 d
. (E20)

Expanding the coefficient of − cos θ in the second right-hand
side term of Eq. (E19) leads to

2(L− H+ − H− L+)

= α1 β2 − β1 α2

= {
2 a b c3

− + (a2 + b2) c+ c2
− + c−[a2(1 − 2 b2) + b2]

− a b c+(a2 + b2 − 2)
}

×[2 d
√

(a d − b) (b d − a)]−1. (E21)

The coefficient of − sin θ in the last right-hand side term of
Eq. (E19) reads

2 γ1

√
L2− − H2−

= −a2 − b2

2 d

√
1 − (c+ d + c−)2

(a d − b) (b d − a)
. (E22)

The last step consists of inserting expressions (E20), (E21),
and (E22) in Eq. (E19); then Eq. (E19) in expression (E17).
This leads to the final result

m(θ ) = 1 + 1

2 d
[
√

(a d − b) (b d − a) cos θ + c+ d − c−]2

×
{

(a2 + b2 + 2 c− c+) − cos θ
2 a b c3

− + (a2 + b2) c+ c2
− + c−[a2(1 − 2 b2) + b2] − a b c+(a2 + b2 − 2)√

(a d − b) (b d − a)

+(a2 − b2) sin θ

√
1 − (c+ d + c−)2

(a d − b) (b d − a)

}−1

. (E23)

The explicit expressions of a, b, c+, c−, and d = a b −
c2
− used for evaluating G(0|2)

τ in Eq. (108) are a = a2,th,
b = a0,th, c+ = 2 |〈ĉ0 ĉ2〉th|, c− = −c+, and d = a0,th a2,th −
4 |〈ĉ0 ĉ2〉th|2.
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Let us finally consider the case of a pure state (i.e., the
zero-temperature case) and compute the explicit expressions
of the Gaussian contangles G( j|2)

τ given by (79). We need to
evaluate

G( j|2)
τ = arsinh2

{√
min

θ
[m(θ )] − 1

}
, (E24)

where m(θ ) is given by Eq. (E23) and j = 0, 1. First, by
noticing that any reduced two-mode state of a pure three-
mode Gaussian state belongs to the class of GLEMS [66],
expression (E23) simplifies to [87]

mGLEMS(θ ) = 1 + (A cos θ + B)2

2 d[(g2 − 1) cos θ + g2 + 1]
, (E25)

where g = √
det σ , with σ given by (E3), A = c+ d + c− and

B = c+ d − c−. Using our notations and the explicit expres-

sion of the covariance matrix written in the standard form
(62), for a given bipartition j|2, one has a = a2, b = a j , c+ =
−c− = √

a j − 1
√

a2 + 1, d = g = ak; we recall that j = 0 or
1 and that the remaining (third) mode (1 or 0) is denoted as k.
One proves in this case that the minimum over θ in expression
(E25) is reached when θ = θ�, with [87]

cos θ� = −1 + 2

1 + ak
. (E26)

Inserting this expression in Eq. (E25) leads to

mGLEMS(θ�) =
(−1 + 2 a j + ak

1 + ak

)2

. (E27)

Using this result in Eq. (E24) and remembering that aj + ak =
a2 + 1 yields immediately expressions (80).
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