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1. Numerical and Analytical Studies on Sandpile Cellular Automata.

Sandpile models have been introduced long ago as simple 2-d cellular automata with a deterministic
updating rule [1]. In the absence of finely tuned external parameters, they are able to reach a self-organized
critical state (SOC), such that local perturbations may affect the system at every scale (propagation of
avalanches). The typical fingerprint of a SOC behavior is then the appearance of power-laws in the
spectrum of physical observables (duration and size of the avalanches).
The original model is defined on a square lattice with open boundaries, the dissipation of ’sand grains’
through the borders being essential in driving the system towards the critical state.
Many variants of the original version have since been proposed and analyzed, and together with my former
Bachelor’s thesis advisor Mario Casartelli, and with Luca Dall’Asta and Alessandro Vezzani, we gave
analytical and numerical results on a 2d model with closed boundaries [2, 3], the so-called Fixed-Energy
Sandpile (FES).
The phenomenology of FES is completely different with respect to the dissipative case, as the SOC state
is destroyed and the system enters a periodic orbit after a surprisingly short transient [4]. We explained
quantitatively the appearance of short-period attractors in terms of conserved quantities or dynamical
invariants, and extended the group-theoretical analysis of Abelian Sandpile Models [5] to conservative
models.

2. Modifications of gravity for low accelerations.

MOND (Modified Newtonian Dynamics) is a phenomenological theory of gravity proposed by M. Milgrom
in 1983 [6] as an attractively simple alternative to the Dark Matter (DM) hypothesis.
MOND is based on a quite elegant idea, aimed to shed light on one of the most fundamental and still
unsolved cosmological puzzles. It is by now well established that stars in the outer rings of spiral galaxies
rotate much faster than it is predicted by Newton’s and Kepler’s law if only the visible mass of the galaxy
is taken into account. The commonly accepted solution for this problem postulates that a large amount
of non-emitting and so far undetected kind of matter actually pervades the Universe. Although quite
appealing as a solution for the missing mass problem, this new kind of dark matter has so far escaped a
direct detection and also the quantitative details of the theory are often unsatisfactory and highly debated.
In contrast with the rather ad hoc prescriptions of DM theories, MOND simply postulates that Newton’s
law breaks down for accelerations lower than a threshold a0 ∼ 1.2 × 10−10m s−2, a scale which is of the
same order of cH0, where c is the speed of light and H0 is the Hubble’s constant.
Newton’s law !F = m!a is thus replaced by !F = mµ(a/a0)!a, where µ(x) is a phenomenological function
such that µ(x # 1) ∼ x and µ(x $ 1) ∼ 1. Unfortunately, the simple-minded MOND prescription is
not free of problems itself: the functional form of µ(x) is not strictly constrained by the theory and a
relativistic implementation is not straightforward. With my former advisor Enrico Onofri, I studied in my
Master’s thesis one of the relativistic formulation of MOND (TeVeS theory by J. Bekenstein [7]) in order
to find further constraints on the function µ(x).
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Postgraduate Studies (Sep 2005 - Sep 2008)

Brunel University - West London (United Kingdom)

I joined the Department of Mathematical Sciences at Brunel University (West London) in September 2005
after being awarded a Marie Curie Early Stage Training fellowship to start a Ph.D. within the NET-ACE
(Network Theory and Applications to Computer Science and Engineering) project.

During my Ph.D. under the supervision of Gernot Akemann, my main research interests have been focused
on the theory of non-Gaussian invariant random matrices with a statistical physics approach. I have been mainly
working on four lines of research, namely:

1. Large deviations of the maximum eigenvalue in Wishart random matrices.

2. Connections between real β index and rotational invariance.

3. Superstatistical models of covariance matrices.

4. The quantum transport problem and the Jacobi ensemble.

Historically, random matrices with appropriate symmetries were employed first to model Hamiltonians of
heavy nuclei, in order to extract some statistical information about the distribution of energy levels [8], but the
technical tools and the general philosophy of RMT have found more recent applications in biological systems
[9], finance and risk assessment [10], QCD [11], network theory [12], quantum chaos [13], number theory [14],
wireless communication systems [15] and beyond.

The Gaussian ensemble of random matrices is probably the simplest and most studied case in RMT. It is
composed by matrices X with real, complex or quaternion random entries following these two requirements:

1. the entries are independent;

2. the probability density P [X] for a matrix X to occur in the ensemble is invariant under a rotation in the
matrix space.

Invariant ensembles are characterized by the so-called Dyson index β = 1, 2, 4 according to the number of
real variables needed to specify a single entry. This index in turn identifies the symmetry group of the ensemble
(orthogonal, unitary and symplectic respectively). As a general feature, the joint probability density of the
eigenvalues {λi} for invariant ensembles contains a Vandermonde factor

∏
j<k |λj −λk|β which is responsible for

their peculiar strong correlations even when the entries are independent.
My research has been mainly focused on invariant ensembles with correlated entries, i.e. the condition 1)

above does not hold. I give here a brief account of my achievements.

1. Large deviations of the maximum eigenvalue in Wishart random matrices.

The Wishart matrices play a paradigmatic role among invariant non-Gaussian ensembles. Introduced for
the first time by Wishart [16], a Wishart matrix N ×N is a covariance matrix of a normally distributed
data matrix N × T . In the large N limit, with N/T fixed, the average density of eigenvalues follows
the so-called Marčenko-Pastur distribution on a compact support [x−;x+], whereas the largest eigenvalue
(rescaled with N1/3) has a Tracy-Widom distribution of order β around the upper edge x+ [17]. This
means that the largest eigenvalue fluctuates from one sample to another over a very narrow region of
∼ O(N1/3) around the upper edge.
However, from time to time the largest eigenvalue happens to be much smaller than expected, fluctuating
over a much wider region of ∼ O(N) to the left of the mean.
What is the probability of occurrence of such anomalous events for large N? This question is of theoretical
interest as the answer gives information about the efficiency of the PCA (Principal Component Analysis)
technique for detecting patterns in multivariate data.
In collaboration with S.N. Majumdar and O. Bohigas at LPTMS - Orsay we were able to answer this
question analytically in [18], giving a large deviation expression for the sought probability.
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2. Connections between real β index and rotational invariance.

Ensembles of non-invariant random matrices having a general β ∈ R+ index and independent entries have
been discovered by Dumitriu and Edelman [19]. Is it possible to generate an invariant version of these?
At first sight, this seemed a hopeless task, as the index β for an invariant ensemble is strictly constrained to
the values 1, 2 or 4 as described above. On the contrary, together with S.N. Majumdar I proved explicitly
that the two properties i) rotational invariance and ii) real β > 0 index, are in fact not incompatible [20],
of course at the price of introducing correlations among the entries.
Our explicit counterexample exhibits very curious and atypical features, and the technical tool we employed
(representation of the Vandermonde-squared on the basis of power sums) may hopefully prove useful in
future RMT studies.

3. Superstatistical models of covariance matrices.

Superstatistics is a concept recently introduced by Beck and Cohen [21]. It refers to probability distri-
butions of random variables which depend on one parameter, taken itself to be a random variable. The
interplay between these two independent sources of randomness can be used to achieve a variety of in-
teresting effects. Building on earlier works [22], together with my supervisor Gernot Akemann and Adel
Abul-Magd, I have studied random covariance models of the Wishart class where the variance of the data
is assumed to be a random variable (i.e. it changes from one matrix sample to another). We consider a χ2

[23] or inverse χ2 distribution [24] for the variances. Each case leads to analytical results for the spectral
density (displaying non-compact supports ) and for the level spacing distribution (where we generalized
the well-known Wigner’s surmise). Applications to the case of covariance matrices of financial data series
were also put forward and furtherly developed in [25].

4. The quantum transport problem and the Jacobi ensemble.

Electronic current fluctuations in mesoscopic devices have been subject to intense scrutiny in the past
decade. For open cavities brought out of equilibrium by an applied external voltage, it is well established
that current fluctuations (associated with the granularity of electron charge) persist down to zero temper-
ature. The Random Scattering Matrix framework [26] has been very effective as a theoretical model: it
is based on the assumption that the scattering matrix of the conductor may be well approximated by a
statistical ensemble of matrices, with the overall constraint of unitarity. The transport properties of the
cavity are encoded in the N transmission eigenvalues (if N denotes the number of electronic channels in
the two leads connecting the cavity to the external world), a set of correlated random variables {Ti} in
the range [0, 1] having the natural interpretation of probabilities that an electron gets transmitted through
the i-th channel. Despite the remarkable simplicity of the joint probability distribution of the Ti’s, the
available analytical results for their statistics was quite limited and thus did not catch up with existing
experimental capabilities. A part of my Ph.D. thesis was devoted to the derivation of the following:

• A formula for the average of integer moments of the T ′
is, 〈

∑N
i=1 Tn

i 〉, valid for a finite number of
open channels and previously unavailable [27]. This result is relevant for the statistics of the total
amount of charge transmitted through the cavity. This work has been done in collaboration with E.
Vivo (Parma).

• A large deviation formula for the full probability distribution of experimental observables (previously
unavailable) in the limit of a large number of open channels N $ 1 [28]. This work has been done
in collaboration with Satya N. Majumdar and O. Bohigas (LPTMS - Orsay).

My Ph.D. has been awarded on 13th September 2008 [External examiners: Yan V. Fyodorov (Nottingham) and
Zdzis#law Burda (Krakow)]. In July 2009, I was awarded the Brunel Vice-Chancellor’s Prize for doctoral research
’in recognition of outstanding research achievements’.
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Postdoctoral Experience (Sep 2008 onwards)

Abdus Salam ICTP - Trieste (Italy)

I joined the Abdus Salam International Centre for Theoretical Physics (ICTP) as a postdoctoral fellow at the
end of September 2008 in the Condensed Matter and Statistical Physics Section, a position that I am currently
holding. In the last year, I have broadened my network of collaborators including the following colleagues:

• Matteo Marsili and Antonello Scardicchio (ICTP).

• Fabio Caccioli and Raffaello Potestio (SISSA).

• Jean-Gabriel Luque (Rouen).

The lines of research I mainly pursued while at ICTP are as follows:

1. Models of financial markets.

2. Random Matrix approach to protein dynamics.

3. Selberg-like integrals, nonlinear statistics and applications to the quantum transport problems.

4. Distributions of the number of positive eigenvalues (the index ) of Gaussian random matrices.

5. Statistical properties of entangled random pure states in bipartite systems.

1. Models of financial markets. Together with Matteo Marsili and Fabio Caccioli, I studied the effect of
expanding the repertoire of derivative assets in a stylized model of interacting market [29]. The prolifer-
ation of financial instruments provides more tools for risk diversification, thus making the market more
efficient and closer to the theoretical limit of complete market, where risk can be eliminated altogether.
Nevertheless, a debate about the role of derivative contracts has surfaced in view of recent events [30].
In order to get some insights about the role of derivative contracts, we set up a model of the market as an
interacting system. In particular the impact of trading derivatives on underlying prices was considered.
We showed that uncontrolled proliferation of financial instruments drives the system to a state which
closely resembles the picture of the efficient arbitrage-free complete market described by Arbitrage Pricing
Theory (APT), the mathematical basis of financial engineering [31].
However, the same region of the phase space is also characterized by a phase transition between a supply-
limited equilibrium and a demand-limited one. Close to the transition, small perturbations on the risk
perception by credit institutions (banks) provoke dramatic changes in the volume of traded derivatives
and large fluctuations are observed in response functions. This suggests that market completeness, often
assumed in APT, may not be compatible with market stability.
An intuition we gain from these studies is that derivative markets with volumes much larger than the
underlying market are prone to be unstable. Indeed, when the market is complete, the production of more
financial instruments introduces directions in the phase space where fluctuations can grow unbounded
(Goldstone modes). This can be the ideal setting for the creation of bubbles, thus raising the challenging
question of the relation between information efficiency and bubbles.

2. Random Matrix approach to protein dynamics. Proteins are biomolecules that are essential to life.
The biological functionality of a protein often relies on its capability to undergo large-scale conformational
changes. In order to study such motions, one may resort to molecular dynamics simulations, which are
computationally very demanding. Alternatively, one may formulate elastic network models, where the pro-
tein structure is approximated by a network of anisotropic springs connecting aminoacids within a certain
cutoff distance. The covariance matrix of aminoacid displacements contains essential information about
the vibrational modes of the protein around its reference (equilibrium) structure. Together with my col-
laborators [32], I recently suggested that comparisons with randomly generated covariance matrices should
help answering in a solid, quantitative way the following question: how many vibrational modes should
we take into account to give a sufficiently reliable description of a protein’s overall motion? Our recent
proposal opens up a very promising direction of research, where the novel marriage between biophysical
issues and random matrix techniques is expected to play a fruitful role.
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3. Selberg-like integrals, nonlinear statistics and applications to the quantum transport prob-
lems. In collaboration with Jean-Gabriel Luque, I have studied a class of N -fold integrals of the Selberg
type, arising when computing nonlinear averages in random matrix models [33]. Such quantities involve
products of different eigenvalues and are notoriously harder to compute than the more standard sums (lin-
ear statistics). We based our analysis on the theory of hyperdeterminants (multidimensional generalizations
of the conventional determinants) and symmetric functions. The resulting formulae are computationally
very efficient and allow to perform a previously unattainable asymptotic analysis for N → ∞, which is
relevant for the statistics of experimental sample-to-sample fluctuations in ballistic chaotic cavities within
the random scattering matrix approach.

4. Distributions of the number of positive eigenvalues (the index) of Gaussian random matrices.
The Gaussian matrices are certainly the most studied and best understood among the classical ensembles.
Still, after more than half a century, certain natural questions about eigenvalue distributions have not
been answered yet, in spite of their relevance to a broad range of subjects.
As a paradigmatic example, classical disordered systems offer the ideal environment where RMT ideas
and tools may be applied. Physical systems such as liquids and spin glasses are known to exhibit a rich
energy or free energy landscape characterized by many extrema (minima, maxima and saddles) and rather
complex stability patterns [34] which play an important role both in statics and dynamics of such systems.
The stability of a stationary point of an N -dimensional potential landscape V (x1, x2, . . . , xN ) is decided
by the N real eigenvalues of the Hessian matrix Hij = [∂2V/∂xi∂xj ] which is evidently symmetric. The
number of positive eigenvalues 0 ≤ N+ ≤ N , called the index, is a key object of interest as it determines
the number of directions in which a stationary point is stable.
In many situations, important insights about the system can be gained by simply assuming that the
Hessian is a real symmetric random matrix drawn from a Gaussian ensemble, characterized by the Dyson
index β = 1 (real elements). This random Hessian model (RHM) has been studied extensively in the
context of disordered systems [35], landscape based string theory [36, 37] and quantum cosmology [38].
The index distribution of Gaussian random matrices was so far addressed in the work by Cavagna et al.
[35] by means of the replica trick and some additional approximations. In a recent work [39] with Satya
N. Majumdar and Céline Nadal (LPTMS) and Antonello Scardicchio (ICTP), we revisited the paper [35].
Using a Coulomb gas analogy and our newly devised technique to tackle singular integral equations on
disconnected supports, we have given a large deviation formula for the large N decay of the probability
distribution of the index. Close to the peak, an unusual logarithmic singularity appears which is responsible
for the slow (logarithmic) increase of the index variance with N , a feature that is confirmed by previous
independent studies and numerical simulations.

5. Statistical properties of entangled random pure states in bipartite systems. Entanglement of
random pure states in bipartite systems is currently a very active area of research, with possible applications
to quantum information and quantum computation problems. The Schmidt decomposition of density
matrices has been studied in the case where such states are distributed isotropically in certain manifolds.
For the simplest case (the so called Hilbert-Schmidt measure), the Schmidt eigenvalues are distributed
according to a fixed-trace Wishart-Laguerre measure. A delicate challenge is then to extract significant
entanglement quantifiers from this intricate measure. In the last year at ICTP, I have succeeded in
producing analytical results for ι) the density of Schmidt eigenvalues and average Rényi entropy for the
most difficult orthogonal case, and ιι) the density of the smallest eigenvalue for all symmetry classes, which
gives information about the degree of entanglement of such states [40, 41].

Teaching. In the Academic Years 2008-09 and 2009-10 I have been teaching the Tutorials in Basic Physics for
the ICTP Diploma courses.
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