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1. Introduction

Ensembles of matrices with random entries have been successfully employed in the most diverse
areas of physics and mathematics for almost a century. Many years before the well-known pioneering
applications of Gaussian random matrices to nuclear spectra by Wigner and Dyson [1], John Wishart
had already introduced some thirty years earlier random covariance matrices in his studies of multivari-
ate populations [2]. The Wishart ensemble and its progeny have enjoyed a broad range of unexpected
applications in more recent years, from wireless communications [3] and financial risk [4] to effec-
tive theories of strong interactions [5] and random fluctuating interfaces [6]. The Jacobi ensemble is
yet another set of random matrices beyond the classical Gaussian paradigm, which has found recent
applications in the theory of quantum transport in mesoscopic devices [7].

The two examples of classical ensembles stated above fall into the broad class of invariant matrix
models, whose probability distribution of entries remains unchanged after a global rotation of basis.
Such powerful symmetry is highly welcomed by random matrix theorists as it allows to write down
explicitly the joint probability density of the N eigenvalues, a crucial piece of information which is
otherwise unavailable. The lack of such symmetry, only partially compensated by the requirement of
independent entries, characterizes the second main class of matrix models usually considered in the
literature: examples of the latter include the adjacency matrix of random graphs [8] and Lévy matrices
[9].

The technical tools available to deal with random matrices depend crucially on whether the joint
density of eigenvalues is known (invariant ensemble) or not. In the former case, a wealth of analytical
methods (such as orthogonal polynomials, the Coulomb gas technique and symmetric function expan-
sions) are available, while in the latter the analytical results are usually limited to the average level
density, obtained by replicas and Green’s function techniques.

The joint density of real eigenvalues P(λ1, . . . ,λN ), when available, is a remarkable object. As a
consequence of integrating out the eigenvector components, a Vandermonde all-to-all coupling term∏

j<k |λj − λk|β appears, which is responsible for the peculiar strong correlations (long-range) among
the eigenvalues. The Dyson index β is classically quantized and can take only the values β = 1, 2, 4
according to the number of variables needed to specify a single entry (real, complex or quaternion
numbers). The same index in turn identifies the symmetry group of the ensemble (Orthogonal, Unitary
and Symplectic respectively).

The presence of this Vandermonde term leads to a natural and far-reaching interpretation of the
set of N real eigenvalues for N " 1 as particles of a 2-dimensional fluid confined to a line and subject
to a logarithmic (Coulomb) repulsion, a confining external potential plus (if needed) a series of other
constraints. This Coulomb gas analogy, originally due to Dyson, and in particular its constrained
version have recently seen a fruitful revival [10]. It indeed appears to be the most convenient way to
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tackle very difficult problems such as full probability distributions of linear statistics on the eigenvalues
of random matrices [11] and a wealth of recent results appeared recently in the literature.

Along with remarkable progresses in establishing connections between different areas and tools of
statistical physics, recent times have witnessed a remarkable boost towards formal developments of
the theory. The beautiful tools of symmetric functions and group theory [12] have been invaluable
in tackling very hard problems at the boundary between physics and mathematics. Questions related
to numerical efficiency of Random Matrix Theory (RMT) algorithms have attracted much attention
[13], not to mention the very recent ’topological recursion’ approach to free energy expansions of
matrix models [14]. At present, RMT provides one of the most promising roads towards a proof of the
celebrated Riemann’s hypothesis, a marvellous example of cross-fertilization between physics and pure
mathematics [15] with far-reaching and possibly spectacular outcomes.

In the realm of quantum phenomena, entanglement has played a major role as a fundamental break-
ing point with respect to the classical world. The properties of typical entangled states (pure or mixed)
have been recently addressed assuming that the coefficients of such states in a given basis are taken
at random from a certain distribution [16]. The properties of the reduced density matrices ρ of such
states have been conveniently framed in terms of Wishart eigenvalues with a fixed-trace constraint [17].
Notwithstanding remarkable progresses in the analysis of such eigenvalue problems, fundamental ques-
tions are still open, such as the distribution of extreme eigenvalues in the case of arbitrary dimensions
of the corresponding Hilbert spaces [18] and distributions of entanglement quantifiers (entropy, purity,
concurrence...) beyond the large-N paradigm [19].

Taking a broader perspective, random matrices are also rather useful in many interdisciplinary
contexts. Both biology and financial engineering, for instance, are disciplines beyond the traditional
borders which highly exploited RMT-related tools and techniques to tackle problems such as protein
folding [20], molecular dynamics [21], and risk assessment [4]. Such interdisciplinary applications are
expected to grow in number over the years and furtherly establish RMT as a unifying and powerful
language for a variety of scientific purposes.

In full generality, the eigenvalues of invariant matrix models are also of purely theoretical interest
as one of the rare examples of strongly correlated random variables for which a wealth of analytical
tools are available. Extreme value statistics for correlated variables is a young and fertile field which
is currently under intense scrutiny. The ultimate goal would be to establish universality classes for
the statistics of extremes mimicking the well-known Gumbel-Frechet-Weibull paradigm holding for
uncorrelated variables. At present, the Tracy-Widom distribution appears to be very robust and fairly
ubiquitous, even though hybridizations with other statistics have been reported in the literature [22].

Recent developments in the theory clearly highlight a few critical directions of research to be un-
dertaken in the future, as detailed in the following section.

2. Future directions of research

Statistical physics of disordered systems provides the technical tools to understand and classify
the behaviour of systems composed by a large number of interacting constituents. The introduction
of random ingredients (the disorder), at the microscopic (interactions) or macroscopic (environment)
level, poses formidable technical challenges and has unveiled the existence of a rich zoology of new
phenomena, such as freezing, aging, hybrid transitions and multifractality, whose experimental testing
in a variety of systems constitutes a remarkable success of the theory.

In recent years, the statistical mechanics community has also witnessed a growing interest in the
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properties of the largest (or smallest) element in a sequence of correlated random variables. Going be-
yond the traditional Gumbel-Frechet-Weibull paradigm holding for independent sequences, the presence
of strong correlations poses indeed quite serious challenges, and few analytical methods are presently
available.

My research activity so far has been mostly devoted to the study of rare events (large deviations) in
the behaviour of eigenvalues of random matrices as a prominent example of strongly correlated random
variables and the thermodynamics of Coulomb fluids with constraints. A coherent description of such
systems in a unifying framework is still far from being completed, as many fundamental questions
remain unanswered.

Looking at recent developments in the statistical mechanics community through the prism of ran-
dom matrix theory, a few outstanding problems emerge. The main research lines I shall be pursuing
are then as follows:

• Theory of quantum transport in non-ideal chaotic cavities.
Consider a cavity of submicron dimensions etched in a semiconductor, as sketched in next figure.
The cavity is connected by two leads to two electron reservoirs. When an external voltage
is applied, electrons flow inside the cavity, get scattered on the boundary and may leave the
cavity from either of the two leads. The statistical properties of electronic transport inside the
cavity may be described by an appropriate random matrix model of the scattering operator S.
The random scattering matrix framework is well established in the (idealised) case of perfectly
transparent leads. In real experiments, though, the leads are not perfectly transparent to the
incoming electrons: the presence of so-called tunnel barriers in the leads crucially affect the
chaotic motion of electrons inside the cavity and the probability of experimental outcomes. One
of my research goals is to develop a statistical theory of electronic motion inside non-ideal cavities,
based on the following technical steps:

1. computation of the joint probability density of transmission eigenvalues for a scattering
matrix S distributed according to the so-called Poisson’s kernel [23]. This framework is
suitable for treating the case of partially transparent junctions between the leads and the
cavity.

2. full probability distribution of conductance and shot noise computed via a Coulomb gas
technique in Laplace space [11].

It is expected that this research line should begin by dealing with the simplest case of average
scattering matrix proportional to the identity 〈S〉 = zI, for which some results are already
available.

• Tracy-Widom distribution for continuous β from Pandey-Mehta model.
The Pandey-Mehta matrix model was introduced in [24] as an analytical tool to study transitions
between different symmetry classes, namely the orthogonal (β = 1) and unitary (β = 2), with
possible applications to the study of intermediate spectral statistics in quantum chaos. The
model, depending on a continuous parameter α, has the merit of being exactly solvable, i.e.
n-point correlation functions of energy levels can be written down explicitly in terms of pfaffians
of a non-standard α-dependent kernel. Since this ensemble has been around for long time, it has
somehow been overlooked when, many years after its introduction, Tracy and Widom discovered
the distribution Fβ(x) that bears their names. The idea is now to dig this model out again as
a possible source of analytical transitions between Tracy-Widom distributions with a continuous
β. More precisely, the distribution of the largest eigenvalue of the Pandey-Mehta model, when
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suitably scaled, should converge to F2(x) or F1(x) for special values of α = 0, 1, and to a new
interpolating distribution for general α. It is then of great interest to study how the Painlevé
integrable structure (governing the distributions for β = 1, 2) gets deformed when a continuous
transition between the two classes is allowed.

• Statistics of number of filtered-out directions in Principal Component Analysis.
Principal Component Analysis (PCA) is a commonly used tool in detecting relevant patterns
in multivariate statistical data. The main idea is to collect eigenvalues and eigenvectors of the
covariance matrix of empirical data and then ’filter out’ the data which lie along the ’weakest’
directions (corresponding to the smallest eigenvalues). This procedure eventually produces a sim-
plified backbone of relevant correlations among data, washing out the noise-dressed components
that do not carry important informations. The question is then: how many directions (eigen-
values) should we neglect? There are no obvious and unique criteria telling us when to stop!
However, some ’rules of thumb’ do actually exist: the simplest and most widely used (although
highly questionable) is the so-called Kaiser-Guttman criterion [25], which prescribes to keep all
the directions corresponding to eigenvalues larger than the average (λj > 〈λ〉) while discarding
the others. Suppose now that the data were completely random (e.g. drawn independently from
a Gaussian distribution). Still, according to this criterion, we would keep N+ directions for each
instance and dub them ’significant’, even though they clearly are not! In real-world experiments,
we thus have to offset the effect of spurious (or false positive) correlations which would arise
even if the data were completely uncorrelated. In order to do so, we first need to understand the
statistics of the random variable N+. This can be done in the framework of Wishart-Laguerre
ensemble of random covariance matrices, extending the recent similar treatment of Gaussian
matrices [26].

• Continuous β models for complex matrices.
The discovery of β-ensembles of random matrices by Dumitriu and Edelman in 2002 [27] has
been a major breakthrough in the field. It is a beautiful mathematical construction leading to
a formidable increase in numerical efficiency, and it goes beyond the traditional quantization of
Dyson’s index β = 1, 2, 4 present in all traditional ensembles. Natural questions that I intend to
address are: is it possible to produce β-ensembles for matrices whose eigenvalues are scattered in
the complex plane (β-Ginibre ensembles)? What are the properties of the extreme eigenvalues,
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e.g. does the largest eigenvalue follow the Tracy-Widom distribution as the standard ’quantized’
ensembles? The tridiagonal mapping used in [27] appears non-trivial to generalize to the complex
plane, and yet there are hints that such a construction must exist. Equally interesting for
applications (in particular for numerical simulations) is a tridiagonal construction for Dyson’s
circular ensembles [12] which I plan to pursue along the same lines.

• Theory of multipartite entanglement of random states.
Consider a Hilbert space H wich is bipartite as the tensor product of two subspaces HA and
HB. Quantum states in H can then be decomposed (factorized states) or not (entangled states)
as products of states, one belonging to HA and the other to HB. Entangled states whose
coefficient in a given basis are random Gaussian variables are of paramount interest, as they
provide information about typical (unbiased) properties we should expect for such states, given
the dimensions M and N of the two subspaces. For random pure states, there is a natural
unitarily invariant measure on the eigenvalues of the reduced density matrix %A (so-called Schmidt
eigenvalues) which is nothing but a Wishart distribution with an extra trace-fixing constraint
(
∑

i λi = 1). An outstanding problems which I plan to address is the distribution of Von Neumann
and Rényi entropies for finite N, M as quantitative measures of entanglement. For such project,
which involve the computation of non-trivial Selberg-like integrals with several constraint, the
collaboration with J.-G. Luque in Rouen (an expert in the theory of symmetric functions) and
with O. Giraud at LPTMS (who has already produced interesting works on the same problems)
will prove crucial.

The case of random mixed states is even more interesting, as several measures on the eigenvalues
of the reduced density matrix can be used, and the available analytical results are surprisingly
scarce. For the Bures measure (enjoying many important mathematical properties), the full
distribution of entanglement quantifiers such as purity and von Neumann entropy is still unknown
[28]. In the Paris area, I will enjoy interactions with Satya N. Majumdar, Gregory Scher and
Massimo Vergassola, in an attempt to tailor the constrained Coulomb gas technique [10] to the
entanglement problem. The idea is to try to formulate a suitable singular integral equation (or
scalar Riemann-Hilbert problem) for the eigenvalue distribution of the reduced density matrix.
The solution will likely provide the rate (or large deviation) function for entanglement quantifiers
in the limits of large dimensions M, N . The question of finite N, M corrections is clearly much
more challenging and could perhaps be addressed by an appropriate use of the machinery of
symmetric functions. At present, such idea is merely speculative but I plan to pursue it and
attempt to tackle this very difficult problem, whose solution is very much called for.

• Statistical properties of configurations of many brownian walkers.
Sets of one-dimensional random walkers with different geometrical constraints are known to have
deep connections with random matrix theory (see next picture for so-called brownian bridges).
For example, self-avoiding walks are characterized by the property that the paths of different
walkers never intersect as time progresses. When several walkers starting at the origin have
prescribed ending points, an interesting connection with random matrices emerges, since the
joint probability density of the positions of the walkers at a fixed time τ generically displays a
Vandermonde-like repulsion. This sort of interaction arises from the use of a quantum-mechanic
formulation of the problem in terms of fermionic propagators [29]. This technique is very powerful
and allows to tackle many statistical questions related, for example, to the properties of maximal
excursions [30]. An interesting transition in the density of walkers on the real line at a fixed time
τ is expected if additional constraints are provided. For instance, one may impose that a certain
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fraction f of walkers ends up at the same location x1, while 1 − f walkers end up at x2. What
happens to the statistics of observables due to the presence of this hard extra-constraint? The
question is relevant as new universality classes for distribution of observables may arise from the
interplay between strong repulsion and hard constraints. In seeking signatures of new universal
distributions, I shall highly benefit from discussions and interactions with Satya N. Majumdar,
Alain Comtet and Alberto Rosso at LPTMS and Gregory Scher at LPT as leading experts in
this field.

• Adjacency Matrices of Random Graphs beyond the replica trick.
The adjacency matrix of random graphs is an ensemble of sparse matrices whose entry (i, j) is
equal to 1 if the nodes i and j of the corresponding graph are connected and 0 otherwise. The
eigenvalues of the adjacency matrices affect the static and dynamical properties of the underlying
graph in a non-trivial way [31]. It is therefore highly desirable to compute analytically spectral
properties of a graph given its topology. At present, the situation is however rather unsatisfactory,
as our knowledge is basically limited to the average spectral density for a few topologies [32],
and even when available, the resulting expressions are not quite explicit - typically, the density
is computed via replica calculations and comes out as the implicit solution of integral equations,
which can then be solved only numerically. Very little is known about level spacing distributions
or properties of extreme eigenvalues (with the exception of some algebraic bounds [33]), which
are however very effective in shaping dynamical processes occurring on networks [31]. Our
ignorance about the joint distribution of the eigenvalues is to blame, and it is a major theoretical
challenge with countless applications to overcome such limitations. As a large-scale project, I
would try to focus on such fundamental issues and attempt to make some progress towards our
understanding of the statistics of the eigenvalues of random graphs in a more systematic way.
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This may even require to change the way we represent graphs, in the spirit of portraits put
forward in a beautiful but not widely appreciated paper [34]. A related fundamental question
is how to implement rotational invariance (i.e. basis independence) in random graphs. Clearly,
the sparsity prescription is the major obstacle towards this goal. Is it possible to waive such
requirement and yet provide a reliable and faithful description of complex networks?

Perhaps a first step towards a better understanding of the complete eigenvalue statistics of
complex networks would be the study of two-population matrices: the entries of such matrices
are drawn partly from a Gaussian centred in zero, and partly from a Gaussian centred in one. In
the limit of very small variances, one expects to recover a sparsity pattern typical of adjacency
matrices, but for finite variances one may fully exploit the benefit of dealing with Gaussian
variables, a notorious technical advantage. Such two-population matrices have received very
little attention so far, even though a careful search reveals that some examples do actually
exist [35]. It is my intention to start a deep investigation of such ensembles, using standard
diagrammatic and Green’s function techniques.

Another route towards this goal would be to exploit ideas from superstatistics [36], which has
already shaped a few existing matrix models [37, 38, 39]. Taking the average of matrix elements
as a fluctuating quantity (instead of the commonly used variance), one may preserve rotational
invariance and yet mimic the sought sparsity pattern through a judicious choice of the supersta-
tistical distribution (for example, using a bimodal function with peaks in zero and one). Such
ideas may constitute the core of a long-term research activity I would like to pursue throughout
the next few years.

• Nonlinear Selberg-like integrals.
The theory of invariant random matrices heavily relies on evaluations of multiple integrals in-
volving the Vandermonde determinant. The theory of Selberg-like integrals is still under devel-
opments and many exciting results, highlighting the connection with the theory of symmetric
functions, have recently appeared in the mathematical literature [40]. One of the most interesting
case for applications has been nevertheless poorly considered so far, and it is related to certain
nonlinear averages involving products of different eigenvalues. Such integrals are notoriously
harder to compute than their ’linear’ counterparts. Surprisingly, a very efficient algorithmic so-
lution was found recently for the Jacobi case [41], whose main merit being that its complexity
does not grow at all with N , the number of integration variables. Such remarkable feature allows
to perform a N →∞ asymptotic analysis, revealing a fascinating combinatorial structure lurking
behind. This research field is very young and many interesting mathematical developments can
be foreseen, such as nonlinear extensions of q-Selberg integrals [40] and the generalization of inte-
gral formulas to the Gaussian and Wishart case. Given the remarkable connection between such
nonlinear Selberg integrals and the theory of Jack polynomials, I look forward to collaborating
with Raoul Santachiara at LPTMS who has recently completed some exciting works on this topic
[42].

• Universality for products of random matrices.
In many physical applications, one single random matrix is not enough: consider for example the
case of correlation matrices C among different data tables X and Y, C = XYT . Spectral properties
of products of random matrices have received adequate consideration only very recently [43]. A
preliminary result which is very appealing is the existence of a universal distribution law for
the eigenvalues of such products in the complex plane. Such universal law lies somehow on the
same footing as the celebrated Girko’s and Wigner’s laws, as the above mentioned distribution
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is independent on fine details of the matrix distributions. A new and very promising direction
of research I shall pursue is the extension of such works to the case of rectangular matrices and
heavy-tailed distributions of matrix entries, for which the diagrammatic technique used in [43] is
not directly applicable. A more insightful way to look at this problem is to try to compute the
joint distribution of the entries of the product matrix. A polar decomposition shall then bring
into play the complex eigenvalues whose universal density (albeit with the limitations stated
above) has been computed in [43]. Possible concrete applications are related to the study of
covariance matrices of pairs of independent random datasets.

• Theory of quantum quenches for random Hamiltonians.
The condensed matter physics community has recently witnessed a growing interest in physical
systems which are brought out-of-equilibrium by a sudden change in an external control param-
eter. For example, one can consider a slab of magnetic material at room temperature which is
suddenly cooled well below the critical temperature separating the paramagnetic and ferromag-
netic phases. One can ask: what happens to the inner structure of magnetic domains due to such
an abrupt change (a quench) in the external conditions? This question has been investigated
in detail for the case of specific models of microscopic interactions, on a case-by-case basis. My
goal is to formulate a random matrix theory of quantum quenches. In this approach, specific
interaction models are replaced by random energy matrices, whose entries depend continuously
on some parameter λ. Typically, the statistics of energy levels will oscillate between two extreme
cases (the so-called Poisson and Wigner-Dyson distributions). In particular, it is of paramount
interest to describe universal (i.e. model-independent) features of the work needed to change the
symmetry class of the ensemble. This general goal can be in principle achieved at a technical level
by introducing a parameter-dependent Rosenzweig-Porter matrix model [44] and then computing
the so-called Loschmidt echo [45], i.e. the squared overlap between the ground state eigenvectors
corresponding to two arbitrary values λ and λ′ of the parameter. I do expect this computation
to be technically involved but likely feasible with current (or slightly improved) analytical tools.

• Protein displacements and Molecular Dynamics.
The biological functionality of a protein often relies on its capability to undergo large-scale con-
formational changes. In order to study such motions, one may formulate elastic network models,
where the protein structure is approximated by a network of anisotropic springs connecting
aminoacids within a certain cutoff distance. The covariance matrix of aminoacid displacements
contains essential information about the vibrational modes of the protein around its reference
(equilibrium) structure. Together with my collaborators [21], I recently suggested that compar-
isons with randomly generated covariance matrices should help answering in a solid, quantitative
way the following question: how many vibrational modes should we take into account to give
a sufficiently reliable description of a protein’s overall motion? Our recent proposal opens up a
very promising direction of research, where the marriage between biophysical issues and random
matrix techniques is expected to play a fruitful role. Such interplay is in fact not completely
new. One of the most prominent result in this respect is the formulation of the RNA folding
problem (i.e. the prediction of the spatial arrangements of pairings between canonical base pairs)
in terms of a matrix field theory [20]. This proposal is rather fascinating and in the Paris area I
will have the opportunity to interact also with H. Orland at Saclay as one of the leading expert
in the interplay between field theories, random matrices and biological problems.
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3. Summary and Outlook

At present, there is an ongoing rapid expansion of the range of applicability of RMT and I have
witnessed the beginning of a cross-fertilization between different areas of statistical mechanics and
beyond. I have identified and detailed above a few fundamental and timely research issues involving
random matrix theory and correlated random variables that I plan to undertake at CNRS. While it is
admittedly difficult to provide a reliable forecast about the chances of success of the aforementioned
projects, I have the feeling that it is not unreasonable to expect tha the majority of the issues outlined
above will lead sooner or later to a positive outcome. For a few of my research topics, I tried to identify
eminent scientists in the Paris area with whom I expect to collaborate closely towards such goals,
and the Laboratoire I chose (LPTMS - Orsay) clearly provides the most fertile environment where my
research plans can be developed with the highest probability of success.
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