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LARGEST EIGENVALUE

Tracy-Widom distribution for )\,
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¢ (Amax) = V2N ; luctuation: [Amax — V2N| ~ N~/% (small)

e typical fluctuations are distributed via Tracy-Widom (1994):

Prob[Amax < t, N] — Fg (\/§N1/6(t _ \/2N))
e Prob. density (pdf): f3(z) = dFs(z)/dz

e F5(z) — obtained from solution of Painlevé-1l equation




Amax ~ V2N + agN_1/6X

Lo

P(x < x) = Fa(x)

Fy(z) = exp [— /w T 1) (z)dz]

q" = 2q¢° + 2q Painlevé ||




Tracy-Widom distribution for )\,

Probability densities £(x)

e Tracy-Widom density f;(x) depends explicitly on /3.
e Asymptotics: fg(x) ~ exp [— 21\x|3] as X — —00
~ exp [—%3 x32] as X — 00

Applications: Growth models, Directed polymer, Sequence Matching .....
(Baik, Deift, Johansson, Prahofer, Spohn, Johnstone,....)

A recent ‘simpler’ derivation of Tracy-Widom for 7 = 2 — [ Nadal and Majumd

ar 201 1]
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FIG. 1 (color online). Growing DSM2 cluster. (a) Images.
Indicated below is the elapsed time after the emission of laser
pulses. (b) Snapshots of the interfaces taken every 5 s in the
range 2 s =t = 27 s. The gray dashed circle shows the mean
radius of all the droplets at ¢t = 27 s. The coordinate x at this

time is defined along this circle. q _ ( R . }\’ t) / (A2 K ﬂ2)1 /3
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Definition:
The longest increasing (contiguous) subsequence of a given sequence is
the subsequence of increasing terms containing the largest number of
elements. For example, the longest increasing subsequence of the
permutation {6, 3,4, 8, 10,5, 7, 1,9, 2} 1s {3, 4, 8, 10}.

It can be coded in Mathematica as follows.

<<Combintorica

LongestContinguouslncreasingSubsequence [p_ ] =

Last [

Split [Sort[Runs([pl], Length[#1l] == Length[#2] &]

]

I .I.Z
‘;EOE’F’_—__ We broke the 647,028 entries into successive samples each containing N entries.
7 = , ,
N N N
| | |
=" I I o
()4 7,()2(\'

Jinho Baik, Kurt Johansson and Percy Deift showed that as N—oo

Black - Tracy-Widom

Red - N = 100 3 —
®) Prob [MSt}—)F(t)
Nl-o
Blue - N = 400 : : : N
Pink - N = 500 The function F(#) was shown by Craig Tracy and Harold Widom to be the distribution of

the largest eigenvalue of a random matrix in the Gaussian Unitary Ensemble (GUE). It




TYPICAL VS. ATYPICAL

-In(P(t))

80

-1

“ ‘ 1 | 2 ‘ 3
X=N_1/2[t—(2N)1/2]

k endi
PRL 102, 060601 (2009) PHYSICAL REVIEW LETTERS 13 FEBRUARY 2009
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Aging of spherical spin glasses
PERSR—— *-—----J

P(Amax — t) ~

(exp ( BN?_

_AN

(
1;6F/ t—v/2N

+) for t < /2N and |t — V2N| ~ O(N)

agN a

exp (~BNY,

G4 N1/

( \)+) for t > V2N and |t — V2N| ~ O(N)

)
8) for |t—m|zO(N—1/6)

1

(/\max

()‘max

=2V N) = —¢_(2) for z < v/2
2VN) = —1p,(2) for z > /2




A simple example of large deviation tails

e Let M — no. of heads in N tosses of an unbiased coin

e Clearly P(M,N) = (},)2=¥ (M =0,1,..., N) — binomial distribution

with mean= (M) = % and variance=0? = ((M — g)z) =N

o typical fluctuations M — ¥ ~ O(v/N) are well described
. 2
by the Gaussian form: P(M, N) ~ exp [—% (M—75) ]

o Atypical large fluctuations M — 7/ ~ O(N) are not described by
Gaussian form

e Setting M/N = x and using Stirling's formula N! ~ NV+1/2e=N gives
P(M = Nx,N) ~ exp[-N®(x)]  where

®(x) = xlog(x) + (1 — x) log(1 — x) + log 2 | — large deviation function

o ®(x) — symmetric with a minimum at x = 1/2 and
for small arguments |x — 1/2| << 1, ®(x) = 2(x — 1/2)?
— recovers the Gaussian form near the peak




RAPID COMMUNICATIONS
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Measuring maximal eigenvalue distribution of Wishart random matrices with coupled lasers
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Probability distnbution

Probability distribution
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Recently, Majumdar and Vergassola (MV) calculated the prob-
ability of large deviations of the maximal eigenvalue [12-14]
above the mean and Pierpaolo, Majumdar, and Bohigas (PMB)
calculated below the mean. The MV and the PMB distributions
were numerically confirmed, but so far eluded experimental
demonstration.




BEYOND GAUSS...

- 1.1.d, entries

All moments are finite [soshnikov 2004) |: T VW
Power-law decay | ~ |M;;|~1#

- rotationally Invariant

Classical Wishart and Jacobi : TW
Crrtical Ensembles [ creys, its and krasovski 2009) | : gen. TW
Disordered Ensembles [Bonigas et al. 2009)| : transrtions
Levy-Smirnov ensembles |wieczorek (2002) ]




THE CAUCHY ENSEMBLE

—BN/2

P(H) x [det(lN } HQ)}

1
P(A, ..., An) o | ] ESVIEVE IT 12— xl?

I<k

3 Interesting properties..



e If H is distributed according to (1), then I) H™! is
also distributed according to (1), and II) every n X n
submatrix of H obtained by erasing N — n rows and
columns is distributed according to (1) with N re-
placed by n. These properties have been crucial in
establishing the Poisson kernel law in the context of
mesoscopic transport in non-ideal quantum dots [*].

e The orthogonal polynomials with respect to the
Cauchy weight are Jacobi polynomials analytically
continued to complex arguments. In contrast to the
classical cases, only a finite number of orthogonal poly-
nomials do exist for this ensemble.

e The average density of eigenvalues is given by:

11
w1+ 22’

p(z) = z € (—00,00) (3)

exactly for any N (and not just asymptotically for
large N).

Free Random Levy Matrices [Burda et al. (2000)]
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Generalized circular ensemble of scattering matrices
for a chaotic cavity with non-ideal leads

P. W. Brouwer
Instituut-Lorentz, University of Leiden, P.Q. Box 9506, 2300 RA Leiden, The Netherlands

Abstract

We consider the problem of the statistics of the scattering matrix S of
a chaotic cavity (quantum dot), which is coupled to the outside world by
non-ideal leads containing N scattering channels. The Hamiltonian H of
the quantum dot is assumed to be an M x M hermitian matrix with prob-
ability distribution P(H) o det[A\? + (H — ¢)?]~#M+2-0)/2 where A\ and

wﬂ 1 = "1.Z.4 aenenaing o




f * 1
- asymptotic predictions
—— scaling function
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exp[—AN*(w)] w <K N
P(w,N) = N7 'f(w/N) w~Q)

No(w)  w>

How to determine the typical scale with N?

/ p(x)dxr ~ 1/N
Amax

arctan(Amax) ~ 7/2 — /N

Amax ~ O(N)

-



T dh PO, A
P[)\max < ’UJ] — f(—oo w) szgl ( : N)
f(_oo oo) N [[i=1 dXi P(A1,..., AN)
P(A1,...,AN) o< exp(—(8/2)E[{A}])

N / S H

E{A =N) In(1+A) =) In|A — Ay N
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P———
0o@) = I/N) S 0@ M) — 3 FN) = N/d/\gw(




P Amax < W] /D[gw] exp (—

Solow] = / In(1 + 2%) 0w (z)dz — / / 0z 4z’ 0 (2) 0w (') 1n|x—x'|+c( / da:gw(x)—l)
In(l1+2°)+C = 2/ dz' ol (z')In|z — 2’|
Pr/ dTQw(T) _ w-—z : |—a|f—|—ﬁ||bel”t
o T—2z 14+(w-2) transform




1 > 1 —
b (T) = Pr / ds vslw=5) , p
T 0 s—714 (w—s)?
W
I, (7)

| Paveri-Fontana and Zweltel, 1994

(kwtw)'?—(w—1) (kw—w)*/?
@w(T) ~ 1 (("'—'w—k',2 )%::(_’u;—;‘:;iv(w—T)2+1)(kw+w)1/2+'r(w—7—)(kw—w)1/2 ’ Z O
™ 2T w P (T w <0

R 1 5
Sw|0w] = % (%log (w?® +1) — sinh_l(w)) + 310g(2) . Swlbw] = log2 + Q2 +O(w™°/?).




P <] [ Dloulexp (~25-Suleu

PAmax < w] =~ exp (—BN 1 (w))
Y(w) = 5[Suldw] — Swclu]

o (l log (w* + 1) — sinh_l(w)> | log(2) .

4 \ 2 4




Witte and Forrester studied the cumulative distribution F(s) = Prob[Amax < s] of the largest eigenvalue for
the case 3 = 2. They found that

<, o(s)
F(s) = exp l—/s ds l—+—s’2] (50)
where o(s) satisfies
(14 8220”2 +4(1 + $¥)(0")® — 8s0(0")? + 4020’ + 4N?(c')? =0, (51)

og(s) = N1(s/N)

l

f(z) = Lf) exp [— /:o %’g)dy]

b

*(17")? + 42%(7)° — 8xr(7')? + 4% + 4(7)* = 0.




N P(w,N)

l ' |

® N=B0.
¢ N=160

A N=320

— {(x) (theory)

_ [1/(429) expl-1/(82%)
)= {1/[m2]

asz — 0
as r — 00




Consider N eigenvalues and for each of them, define a binary variable o; = 1 if the ith eigenvalue A; falls in the
region w < \; < oo and o; = 0 if A\; < w. Then, the probability that the region [w, oc| is free of eigenvalues, which is
also the cumulative distribution of A, .., namely

/w P(w', N)dw' (A1)
can be written as
[ l; P, N)dw' = (1 o1][1 - 2] -+ [1 — o]} (A2)
where the average (-) is over the joint distribution of the eigenvalues. Expanding the product, one gets
/w Pw',N)dw' =1— N‘/rJC p(z, N)dz + two-point + three-point + . .. (A3)
When w — oo (extreme right tail), all the higher order contributions vanish and one obtains in this limit
/w P(w',N)dw' ~ 1 — N/OC p(z, N)dz (A4)
. w

Taking derivative w.r.t w gives,
P(w,N) =~ Np(w, N) (A5)

as claimed.




exp[—BN?*yY(w)] w <K N
P(w,N) = N~'f(w/N) w~N
Ni( w) w > N

$(w) = 5 [Suldu] — Secldu]

_ 1 (% log (w® + 1) — sinh_l(w)) | 10g4(2) .

* T
—5 ©XPp [_/ ﬂ)d’y] 4 (7")? + 42*(7')3 = 8z7(7')? + 4?7 + 4(17)* = 0.




Conclusions

Cauchy ensemble: density of eigenvalues falling off as a
power law
Few results available for largest eigenvalue of rotationally
invariant ensembles
3 regimes: central (scaling) + 2 large deviation tails
Central regime: scaling analysis of a result by Witte and
Forrester
Left large deviation tail: Coulomb gas approach
Right large deviation tail: simple ‘taill-of-the-density’
argument

Thank you.




OUTLINE

First Part: Old Tricks

) The old days... RMT in nuclear physics
) 4 applications

Riemann hypothesis
Vicious brownian walkers
Covariance matrices of financial data
The longest increasing subsequence problem

Second Part: New Dogs

) Rare events and linear statistics
1) How many eigenvalues of a random matrix are positive!



Why are random matrix
eigenvalues cool?

Message

< Ingredient: Take Any important mathematics
< Then Randomize!
< This will have many applications!

from a talk by Alan Edelman (MIT)
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ON THE DISTRIBUTION OF THE ROOTS OF CERTAIN
SYMMETRIC MATRICES

BY EUGENE P. WIGNER

(Received September 19, 1957) '




Hamiltonian (total energy) of heavy
nucler. hopeless task!

The Hamiltonian in a given basis is just a HUGE matrix....

|dea: take the matrix entries at random...
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Random Matrix [ heory =
Randomness + Symmetry

|
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lypical questions:

Density of eigenvalues
(Gaps between adjacent eigenvalues
Distribution of individual eigenvalues (e.g. largest)

°robabillity of rare events in linear statistics

Random points uniformly distributed E
1] N O 0-4f
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Figure 2: A histogram of the four largest (centered and normalized) eigenvalues for 10°
realizations of 10° x 10° GOE matrices. Solid curves are the limiting distributions from

[11]. Figure a courtesy of Momar Dieng.
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Level Repulsion Confinement

Strongly Correlated Random Variables!



Level Spacings: universality
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Figure 6. A comparison of the
statistics of spacings between
conecutive eigenvalues of ran-
dom matrices (solid curve)
and nearest-neighbor spac
ings of zeroes of the Riemann
seta function (data points)
The fit is not bad for the first
million zeroes (left), but near
ly perfect for the spacings
among 1,041,600 zeroes near
the 2 x 10%th zero. (Figure
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Proceedings of the 3rd Workshop on Quantum Chaos and Localisation Phenomena
Warsaw, Poland, May 25-27, 2007

Parking in the City

. R o rhysica A: Statistical Mechanics and its .
P. SEBA®¢ RRAY y wal ¥ |
by Applications i ,
wm Krélawd Hradon K Volume 345, lssues 3-4, 15 February 2005, Pages 621-630 .. 5
Modelling the gap size distribution of parked cars i
S. Rawal, G.J. Rodgers & * &

Department of Mathematical Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
R —— - -

Modelling gap-size distribution of parked cars using
random-matrix theory
A.Y. Abul-Magd 2

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

We apply the random-matrix theory to the car-parking problem. For this purpose,
we adopt a Coulomb gas model that associates the coordinates of the gas particles with
the eigenvalues of a random matrix. The nature of interaction between the particles is
consistent with the tendency of the drivers to park their cars near to each other and in
the same time keep a distance sufficient for manoeuvring. We show that the recently
measured gap-size distribution of parked cars in a number of roads in central London is
well represented by the spacing distribution of a Gaussian unitary ensemble.

PACS: 05.40; 05.20.Gg; 02.50.r; 68.43.-h

Keywords: Car parking; Coulomb gas: Gaussian unitary ensemble
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It 1s very probable that all roots are real. One would, however, wish for a strict

proof of this; | have, though, after some fleeting futile attempts, provisionally put

aside the search for such, as it appears unnecessary for the next objective of my
investigation.

“Sometimes [ think that we essentially have a complete proof of the Riemann Hypothesis
except for a gap. The problem is, the gap occurs right at the beginning, and so it’s hard
to fill that gap because you don’t see what’s on the other side of it.”




Montgomery's Pair Correlation Conjecture

Montgomery’s pair correlation conjecture, published in 1973, asserts that the two-point correlation function R, (r) for the zeros of the Riemann zeta function  (z) on
the critical line is

R: (’) — l — L(ﬂ:’)
(mr)y

As first noted by Dyson, this is precisely the form expected for the pair correlation of random Hermitian matrices (Derbyshire 2004, pp. 287-291).

In 1972, Hugh Monigomery, a number theorist at the University
of Michigan, was visiting the Institute for Advanced Study.
Montgomery had been studying the distribution of zeroes of the

zeta function, in hopes of gaining insight into the Riemann
Hypothesis. He was able to prove that the Ricmann Hypothesis had 1.0 - %
implications. for the spacing of zeroes along the critical line, but his
key discovery was an additional property that the zeroes seemed to o |
have, one which implied a particularly nice formula ﬁ !
for the average spacing between zeroes. s
During tea one day at the Institute, Montgomery { i
Odlyzko’s computations agree was introduced to Dyson and described his conjec- Y i
amazingly well with ture. Dyson immediately recognized it as the same
Mon(gomery’s conjecture. result as had been obtained for random matrices. R oo =
“It just so happened that he was one of the two or

three physicists in the world who had worked all of
these things out, so | was actually talking to the great-
est expert 1n exactly this!” Montgomery recalls.
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Sumple Proof of Riemann's Hvpothesis of the Zeta function

The Zeta function is defined as

SJor all 0 < s< 1 at the "non—trivial " zeros
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A Take n independent 1-dimensional Brownian motions with time in [0, 1]

conditioned so that:

A All paths start and end at the same point.

A The paths do not intersect at any intermediate time.

06

o4

o o1 oz 03 04 o5 o6 07 oa 09

Five non-intersecting Brownian bridges

Introduction. Since the pioneering work of de
Gennes (1], followed up by Fisher 2], the subject of vi-
cious (non-intersecting) random walkers has attracted a
lot of interest among physicists. It has been studied in
the context of wetting and melting |2}, networks of poly-
mers 3| and fibrous structures |1}, persistence proper-
ties in nonequilibrium systems 4] and stochastic growth
models |5, 6]. There also exist connections between the

A Remarkable fact: At any intermediate time the positions of the paths have
exactly the same distribution as the eigenvalues of an n X n GUE matrix
(up to a scaling factor).

04
0.z
5}

o o1 o2 o3 04 o5 o6 07 o8 05

Positions of five non-intersecting Brownian paths behave
the same as the eigenvalues of a 5 X 5 GUE matrix

A This interpretation is basic for the connection of random matrix theory
with growth models of statistical physics.

PHYSICAL REVIEW E VOLUME 52, NUMBER 6 DECEMBER 1995 ‘

Vicious walkers and directed polymer networks in general dimensions

J. W. Essam
Department of Mathematics, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW200EX, United Kingdom

A.J. Guttmann
Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia

(Peceived 2 22, snnr-
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Random Covariance Matrices

phys ) math

in general
(MxN)
X = X)1 X
3 | Xy X33
in general
( X Xy Xy . |
X = (NxM)
X Xn X
t X2 X2+X2 X1 Xip+ X5 Xt X, . X
W= X X = 1t Ay Agg 1143127 2143227 42314333

2 2 2
XX, it XXt XXy, Xpt Xy + X33

- (NxN) COVARIANCE MATRIX (unnormalized)
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Noise Dressing of Financial Correlation Matrices

'Science & Finance, 109-111 rue Victor Hugo, 92532 Levallois Cedex, France
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time. From this point of view, it is interesting to compare
the properties of an empirical correlation matrix C to a null
hypothesis purely random matrix as one could obtain from
Wik - a finite time series of strictly independent assets. Devia-

R : tions from the random matrix case might then suggest the

(] A
0 l 2 3 . . .
5 presence of true information. The theory of random matri-

Marker ' . : 5 .
i& \ Laurent Laloux,”* Pierre Cizeau,' Jean-Philippe Bouchaud,'* and Marc Potters’
1|

p(r)

Debate: Is the bulk of the stock market correlation matrix
ust pure noise!?
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J. Phys. A: Math. Gen. 36 (2003) 3009-3032 PII: S0305-4470(03)37794-7

A new method to estimate the noise in financial
correlation matrices

Thomas Guhr' and Bernd Kiilber*”




LARGEST EIGENVALUE

Tracy-Widom distribution for )\,

o, N)  TRACY-WIDOM
WIGNER SEMI-CIRCLE
bONY6
h \ X "' : '
SEA /]
2a%h
{ — - ' ; ',\\
-(2N)” 2 0 \ (ZN)IQ

® (Amax> = V2N ;

e typical fluctuations are distributed via Tracy-Widom (1994):

e cumulative distribution:

Prob[Amax < t, N] — Fg (\/§N1/6(t _ \/2N))

e Prob. density (pdf): f3(z) = dFs(z)/dz

e F5(z) — obtained from solution of Painlevé-1l equation

typical fluctuation: |\, — \/2N] ~ N—1/6 (small)




“Are Tracy and Widom in Your Local
Telephone Directory?” ‘

Ryan Witko
Advisor: Percy Deift

SS—

Telephone Number of Individual
Ordered Naturally

Name of
Individual
Ordered
Alphabetically




Definition:
The longest increasing (contiguous) subsequence of a given sequence is
the subsequence of increasing terms containing the largest number of
elements. For example, the longest increasing subsequence of the
permutation {6, 3,4, 8, 10,5, 7, 1,9, 2} 1s {3, 4, 8, 10}.

It can be coded in Mathematica as follows.

<<Combintorica

LongestContinguouslncreasingSubsequence [p_ ] =

Last [

Split [Sort[Runs([pl], Length[#1l] == Length[#2] &]

]

I .I.Z
‘;EOE’F’_—__ We broke the 647,028 entries into successive samples each containing N entries.
7 = , ,
N N N
| | |
=" I I o
()4 7,()2(\'

Jinho Baik, Kurt Johansson and Percy Deift showed that as N—oo

Black - Tracy-Widom

Red - N = 100 3 —
®) Prob [MSt}—)F(t)
Nl-o
Blue - N = 400 : : : N
Pink - N = 500 The function F(#) was shown by Craig Tracy and Harold Widom to be the distribution of

the largest eigenvalue of a random matrix in the Gaussian Unitary Ensemble (GUE). It




SUMMARY

. Figenvalues of random matrices: strongly correlatead
. _evel Repulsion

* [racy-Widom distribution: analogue of Gaussian distribution
for correlated random variables
* /eros of Riemann zeta have the same statistical properties as
the eigenvalues of Gaussian matrices
. Non-intersecting Brownian bridges
e  Wishart matrices: covariance matrices of random data




SECOND PART

Probability of rare events in linear statistics

Lies, damned lies, and stguistics.



A simple example of large deviation tails

e Let M — no. of heads in N tosses of an unbiased coin

e Clearly P(M,N) = (},)2=¥ (M =0,1,..., N) — binomial distribution

with mean= (M) = % and variance=0? = ((M — g)z) =N

o typical fluctuations M — ¥ ~ O(v/N) are well described
. 2
by the Gaussian form: P(M, N) ~ exp [—% (M—75) ]

o Atypical large fluctuations M — 7/ ~ O(N) are not described by
Gaussian form

e Setting M/N = x and using Stirling's formula N! ~ NV+1/2e=N gives
P(M = Nx,N) ~ exp[-N®(x)]  where

®(x) = xlog(x) + (1 — x) log(1 — x) + log 2 | — large deviation function

o ®(x) — symmetric with a minimum at x = 1/2 and
for small arguments |x — 1/2| << 1, ®(x) = 2(x — 1/2)?
— recovers the Gaussian form near the peak




LINEAR STATISTICS

{Z1,...,ZN} Random Variables

A= f(z:)

1=1

Question: what I1s the distribution of A for large N?

......................................................................................................

Central Limit Theorems ?



The first rigorous results concerning large deviations are due to the Swedish
mathematician Harald Cramér, who applied them to model the insurance business.
From the point of view of an insurance company, the earning Is at a constant rate per'
month (the monthly premium) but the claims X_i come randomly. )
For the company to be successful over a certain period of time (preferably many
months), the total earning should exceed the total claim.
Thus to estimate the premium you have to ask the following question : "VWhat should
we choose as the premium g such that over N months the total claim C = \Sum_i X_|i
should be less than Ng 7 °— T
Cramér gave a solution to this question u'ﬁ . d random vamables

What If the random
variables are strongly
correlated!?




A Trivial Problem

DIAGONAL MATRIX

Pr[ X i X]
= on) exp[-x/2]

l

GAUSSIAN

N Eigenvalues: }”i = X, — Independent

e Py = Prob[A; <0, A, <0, ..., Ay < 0]=2"V= exp[—(In2) N]




A Nontrivial Problem

REAL SYMMETRIC MATRIX (NxN)
GAUSSIAN

X= ﬁ Pr[X]
exp[— 5 Tr( X?)]

N eigenvalues : A . A,. - - - -+ Ay

.~ strongly correlated

o Py = Prob[\; <0, A, <0, ..., Ay < 0]= Prob[\ ., <0]=7?

R.M. May, Nature, 238, 413 (1972)——Ecosystems]
Cavagna et. al. 2000, Fyodorov 2004, Glassy systems]

Susskind 2003, Douglas et. al. 2004, Aazami & Easther 2006— String theory]




A particle moving In a
N-dim. landscape | V(y1,---,yN)
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Spin and structural glasses, Gaussian fields [Bray and Dean,
* 2006], String landscapes [Aazami and Easther, 2006], Random
Energy Landscapes and Glass Transition [Fyodorov, 2004]....

Stationary points: maxima,
minima and saddles

] Hessian matrix

Eigenvalues of Hessian matrix determine the nature of the stationary point




RANDOM HESSIAN MODEL

Draw the elements of the

esslan matrix independently

ok elplarelnn

0%V
H;; =
o= lowais *

[t belongs to the GOE
of random matrices

The index distribution (number of positive eigenvalues)
provides information about the typical stability pattern

of a Random

¥

esslan mode

Most of the stationary points are saddles!



10urnal of Cosmology and Astroparticle Physics
An IOP and SISSA journal

Cosmology from random multifield
potentials

Amir Aazami and Richard Easther

Department of Physics, Yale University, New Haven, CT 06520, USA
E-mail: amir.aazami@yale.edu and richard.easther@yvale.edu

» fead 92 Taesan= MNG

Despite the approximation used to obtain equation (8), we have confirmed that the
likelihood that all the eigenvalues of an N x N symmetric matrix have the same
sign scales as e V. The measured constant differs slightly from —0.25, although
given the simplicity of our approximation the agreement is perhaps surprisingly
good.

e Based on numerics, Aazami & Easther (2006) predicted for large N:

Py ~ exp[—ON?] | with Opym ~ 0.27

— very small probability — RARE EVENT

1

e Exact result: |6 = 2 In(3) = 0.274653.. | (Dean and S.M., 2006)

More generally, for 3 =1 (GOE), # =2 (GUE) and 3 = 4 (GSE)

Py ~ exp[—B6N?] | for large N




GAUSSIAN MATRIX NxN

0.2631 —0:4336 1.6888 1.7271 0.7810
5 | | —1.8044 1.6888 U.¥254 0.7133 0.7160
0.3286 1.7271 0.7133 14090 1.5237
| 0.4951 0.7810 0.7160 1.5237 0.1889,

Real Symmetric or Complex Hermrtian or Quaternion self-dual :
eigenvalues are real

X = |€2.4341 —0.8386 —0.5209 2504 4.2610 )

N = number of positive eigenvalues

* The index




Joint probabllity
density of
eigenvalues

50 N
?(N-I—a N) — / d/\l s d/\NPﬂ()\ly e ooy /\N)5 (N_|_ — Z 9()\2))
1=1

Chen '94 - 98
Probability distribution of linear statistics Fomester 96

Beenakker '93

1L 85N 5o L g3
Ps(M,- - An) = Z—e s D M Ty = Ml = ——e 22
N N
i<k /
Lo1d Canonical weight of an
HA) =5 ZX@ —5 Zlog Aj — Ak | €= auxiliary thermodynamical
=1 7k system




WHAT IS KNOWN? 2 SCALES IN THIS PROBLEM

N = number of positive eigenvalues

Prob| NV, | [Cavagna et al. (2000)]

[Dean and Majumdar (2006)]

N,

0 N/2 N




TYPICAL VS. ATYPICAL FLUCTUATIONS: A PUZZLE?

JHYSICAL REVIEW B VOLUME 61, NUMBER 6 | FEBRUARY 2000-11 ’

Index distribution of random matrices with an application to disordered systems

Peak

Andrea Cavagna,* Juan P. Garrahan,” and Irene Giardina®
Theoretical Physics, University of Oxford, | Keble Road, Oxford, OX1! 3NP, United Kingdom

(Received 21 July 1999; revised manuscript received 15 Oclober 16000

JRL 97, 160201 (2006) FHYSlual xEVIEW LETTERS 20 OCTOBER 3006

¢

Large Deviations of Extreme Eigenvalues of Random Matrices

[
I al I s David S. Dean' and Satya N. Majumdar’

'Laboratoire de Physique Théorique (UMR 3152 du CNRS), Uriversité Paul Sabatier,
118, route de Narbonne, 31062 Towlouse Cedex 4, France
“Laboratoire de Physique Théorique et Modéles Statistigues (UMR 8626 du CNRS), Université Paris-Sud,

Bétiment 100, 91405 Orsay Cedex, France
.. . A""'.'.‘" :'\'yu,. e WAL B b AN """"‘_"‘ » o

R e—————
PNy = N,N) ~exp (—BN°0), 6= (In3)/4




«

MAIN RESULT fOR LARGE N }
R —— ;

P(N+ = cN,N) =~ exp (—BN?*®(c))

E

. ——10g(P(N_|_=CN,N)-
N—oo | 5N2

In agreement with
Dean & Majumdar

000 S Z . .
0.0 02 04 = 506 0.8 1.0

B

2In(N)

In agreement with

N, — N/2)?
N+ = N/2) Cavagna et dl.

PNy, N) ~ exp [—




oo

N
P(N4, N) = / d\1 - --d/\]\‘fﬁg(/\l,...,/\N)cS (N+ - Zeug)
— 0 i=1

- N
o~ BFH(N) 3(X) = %;/\?— %j;logw—m

Task: evaluate this integral for large N by mapping it to
a Coulomb gas problem

r SRR —— = ‘

P(N4,N) |1s the canonical partition function of an
auxiliary Coulomb gas with an extra hard constraint

-

.
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ASE TRANSITIONS)IN THE C

“(x)
[Dean and gwx

Majumdar
(2006)]

e r—

A

ONSTRAINED GAS }

PACY [Dean and

Majumdar
(2006) ]

-

(x+ L/a)(x+ (1 —1/a)L)

>

Partition *
Function




N
PN, N) :/ d\1 - dANPs(A1,. .., AN)0 (N+ — > 6

M)

PNy, N) o / Diple#NFelo

1
where | F.[p| = / dx z°p(x) — —/ / drdz' p(z)p(z’) In|z — 2’|+

2

+ A (/_oodwe( )o(z) — )+A2 (/_ooda:p(ac)—1>

Saddle point of the free energy: equilibrium density of the fluid

p*(z)




SOLVING THE SADDLE-POINT EQUATION }
e — ‘

=0 = pr(z) Inverse
Flectrostatic

00
/ p*(y) In |z — y|dy PrOblem

Equazioni integrali singolari del tipo di Carleman. <

*(y)
T = Pr / dyp y . Francesco G, Tricomr (a Torino). &
auro Picon t

T —
y A M Picone nel swo 70me compleanno.

Communications in
Mathematical
e New!
ag 1974 °
. ' ‘ ‘ ‘ ‘ ‘ ‘ [}
: | | Iterated single-
o5 y ‘ e, _— . 4 A
anar Diagrams e e e S u P PO rt SO I Utl O n
E. Brézin, C. Itzykson, G. Parisi*, and J. B. Zuber % ° °
Service de Physique Théorique, Centre d'Etudes Nucléaires de ‘ by Trl C O m I ( I 9 5 7)

[Brezinetal. 1978] Phys. Rev. E 83, G NI OSRZCINE



IN SUMMARY... s
R e —— -

where p*(x) = l\/L_w(x—l—L/a)(x—l—(1— 1/a)L)

s Xz

Felp] = /_ dz z2p(z ——/ / drdz' p(z)p(z") In |z — 2|+
and -I-Al(/_ooda:G()() )-I—Ag(/_ood:cp() 1)

1 09 2 (1-c) Ql-c)(a®-1) , ¢ [¥ (1-¢) [™
4[L —1—log(2L%)] + 5 log(a) — 102 L* + 2/1, Wi (z)dz + > Wy (z)dx

L/a




Some numerics...

(I)(C) y (I)nunl(C)

0.15 -
0.10}

0.05 -

0.00 &




SUMMARY

Any matrix coming up Ir

Randomize! (and come to my office later...)

your research!

Strongly correlated random variables
Ubiqurty - Universality of local statistics

Rare events for strongly co
variables ---> exactly so

rrelated random

vable cases!



REFERENCES i

R re———— ——————

- S.N. Majumdar, C. Nadal, A. Scardicchio, and PV, Phys. Rev. Lett. 103, 220603
gvse iR siRe E 83,041 105 (201 1)

B NG imdar and 2V, [arXivi | 12.53591] (2011
- A. Cavagna, |.P Garrahan, and |. Giardina, Phys. Rev. B 61, 3960 (2000)

+ D. Dean and S.N. Majumdar, Phys. Rev. Lett. 97, 60201 (2006); Phys. Rev. E
77,041108 (2008)

BRI RV aicl Pl Forresten [arXivi (| EOICIRID] (200EH

Thank you.




