TOP EIGENVALUE OF
 CAUCHY RANDOM MATRICES

with Satya N. Majumdar, Gregory Schehr and Dario Villamaina

> Pierpaolo Vivo (LPTMS - CNRS - Paris XI)

Gaussian Ensembles

$$
N=5 \quad\left(\begin{array}{cccccc}
\\
-1.8044 & 1.6888 & 0.7254 & 0.7133 & 0.7160 \\
0.3286 & 1.7271 & 0.7133 & -1.4090 & 1.5237 \\
0.4951 & 0.7810 & 0.7160 & 1.5237 & 0.4889
\end{array}\right)
$$

$$
\vec{\lambda}=\left[\begin{array}{llll}
-2.4341 & -0.8386 & -0.5203 & 2.2594 \\
4.2610
\end{array}\right]
$$

Semicircle Law

$$
\begin{aligned}
& \rho(\lambda)=\frac{1}{2 \sqrt{N}} f\left(\frac{\lambda}{2 \sqrt{N}}\right) \\
& f(x)=\frac{2}{\pi} \sqrt{1-x^{2}}
\end{aligned}
$$

LARGEST EIGENVALUE

Tracy-Widom distribution for $\lambda_{\max }$

- $\left\langle\lambda_{\max }\right\rangle=\sqrt{2 N}$; typical Fluctuation: $\left|\lambda_{\max }-\sqrt{2 N}\right| \sim N^{-1 / 6}$ (small)
- typical fluctuations are distributed via Tracy-Widom (1994):
- cumulative distribution:

$$
\operatorname{Prob}\left[\lambda_{\max } \leq t, N\right] \rightarrow F_{\beta}\left(\sqrt{2} N^{1 / 6}(t-\sqrt{2 N})\right)
$$

- Prob. density (pdf): $f_{\beta}(z)=d F_{\beta}(z) / d z$
- $F_{\beta}(z) \rightarrow$ obtained from solution of Painlevé-II equation

$$
\lambda_{\max } \approx \sqrt{2 N}+a_{\beta} N^{-1 / 6} \chi
$$

$$
\mathcal{P}(\underline{\sim} \leq x)=F_{\beta}(x)
$$

$$
F_{2}(x)=\exp \left[-\int_{x}^{\infty}(z-x) q^{2}(z) d z\right]
$$

$$
q^{\prime \prime}=2 q^{3}+z q \quad \text { Painlevé } \|
$$

Tracy-Widom distribution for $\lambda_{\max }$

- Tracy-Widom density $f_{\beta}(x)$ depends explicitly on β.
- Asymptotics: $f_{\beta}(x) \sim \exp \left[-\frac{\beta}{24}|x|^{3}\right]$ as $x \rightarrow-\infty$

$$
\sim \exp \left[-\frac{2 \beta}{3} x^{3 / 2}\right] \quad \text { as } \quad x \rightarrow \infty
$$

Applications: Growth models, Directed polymer, Sequence Matching (Baik, Deift, Johansson, Prahofer, Spohn, Johnstone,....)
A recent 'simpler' derivation of Tracy-Widom for $\beta=2 \rightarrow$ [Nadal and Majumdar 201I]

[Takeuchi and Sano, PRL 20I0]

"Are Tracy and Widom in Your Local Telephone Directory?"

Ryan Witko
Advisor: Percy Deift

The longest increasing (contiguous) subsequence of a given sequence is the subsequence of increasing terms containing the largest number of elements. For example, the longest increasing subsequence of the permutation $\{6,3,4,8,10,5,7,1,9,2\}$ is $\{3,4,8,10\}$.
It can be coded in Mathematica as follows.
\ll Combintorica
LongestContinguousIncreasingSubsequence [p_] := Last [
Split [Sort[Puns[p]], Length[\#1] $>=$ Length[\#2] \&]]

We broke the 647,028 entries into successive samples each containing N entries.

Jinho Baik, Kurt Johansson and Percy Deift showed that as $\mathrm{N} \rightarrow \infty$
(3)

$$
\operatorname{Prob}\left(\frac{\ell_{\mathrm{N}}-2 \sqrt{\mathrm{~N}}}{\mathrm{~N}^{1 / 6}} \leq t\right) \rightarrow F(t)
$$

The function $F(t)$ was shown by Craig Tracy and Harold Widom to be the distribution of the largest eigenvalue of a random matrix in the Gaussian Unitary Ensemble (GUE). It

TYPICAL VS. ATYPICAL

Large Deviations of the Maximum Eigenvalue for Wishart and Gaussian Random Matrices
Satya N. Majumdar ${ }^{1}$ and Massimo Vergassola ${ }^{2}$
Laboratoire de Physique Théorique et Modèles Statistiques (UMR 8626 du CNRS), Université Paris-Sud, Batiment 100, 91405 Orsay Cedex, France

Probab. Theory Relat. Fields 120, 1-67 (2001)
Digital Object Identifier (DOI) 10.1007/s004400000115
G. Ben Arous • A. Dembo • A. Guionnet

Aging of spherical spin glasses

$$
\mathcal{P}\left(\lambda_{\max }=t\right) \approx \begin{cases}\exp \left(-\beta N^{2} \psi_{-}\left(\frac{t}{\sqrt{N}}\right)+\ldots\right) & \text { for } t<\sqrt{2 N} \text { and }|t-\sqrt{2 N}| \approx \mathcal{O}(N) \\ \frac{1}{a_{\beta} N^{-1 / 6} F_{\beta}^{\prime}\left(\frac{t-\sqrt{2 N}}{a_{\beta} N^{-1 / 6}}\right)} & \text { for }|t-\sqrt{2 N}| \approx \mathcal{O}\left(N^{-1 / 6}\right) \\ \exp \left(-\beta N \psi_{+}\left(\frac{t}{\sqrt{N}}\right)+\ldots\right) & \text { for } t>\sqrt{2 N} \text { and }|t-\sqrt{2 N}| \approx \mathcal{O}(N)\end{cases}
$$

$$
\begin{array}{rlr}
\lim _{N \rightarrow \infty} \frac{1}{\beta N^{2}} \ln \mathcal{P}\left(\lambda_{\max }=z \sqrt{N}\right)=-\psi_{-}(z) & \text { for } z<\sqrt{2} \\
\lim _{N \rightarrow \infty} \frac{1}{\beta N} \ln \mathcal{P}\left(\lambda_{\max }=z \sqrt{N}\right)=-\psi_{+}(z) & \text { for } z>\sqrt{2}
\end{array}
$$

A simple example of large deviation tails

- Let $M \rightarrow$ no. of heads in N tosses of an unbiased coin
- Clearly $P(M, N)=\binom{N}{M} 2^{-N}(M=0,1, \ldots, N) \rightarrow$ binomial distribution with mean $=\langle M\rangle=\frac{N}{2}$ and variance $=\sigma^{2}=\left\langle\left(M-\frac{N}{2}\right)^{2}\right\rangle=\frac{N}{4}$
- typical fluctuations $M-\frac{N}{2} \sim O(\sqrt{N})$ are well described by the Gaussian form: $P(M, N) \sim \exp \left[-\frac{2}{N}\left(M-\frac{N}{2}\right)^{2}\right]$
- Atypical large fluctuations $M-\frac{N}{2} \sim O(N)$ are not described by Gaussian form
- Setting $M / N=x$ and using Stirling's formula $N!\sim N^{N+1 / 2} e^{-N}$ gives

$$
P(M=N x, N) \sim \exp [-N \Phi(x)] \quad \text { where }
$$

$\Phi(x)=x \log (x)+(1-x) \log (1-x)+\log 2 \rightarrow$ large deviation function

- $\Phi(x) \rightarrow$ symmetric with a minimum at $x=1 / 2$ and for small arguments $|x-1 / 2| \ll 1, \Phi(x) \approx 2(x-1 / 2)^{2}$
\rightarrow recovers the Gaussian form near the peak

Measuring maximal eigenvalue distribution of Wishart random matrices with coupled lasers

> Moti Fridman, Rami Pugatch, Micha Nixon, Asher A. Friesem, and Nir Davidson Weizmann Institute of Science, Department of Physics of Complex Systems, Rehovot 76100, Israel

(a)

(b)

Recently, Majumdar and Vergassola (MV) calculated the probability of large deviations of the maximal eigenvalue [12-14] above the mean and Pierpaolo, Majumdar, and Bohigas (PMB) calculated below the mean. The MV and the PMB distributions were numerically confirmed, but so far eluded experimental demonstration.

BEYOND GAUSS...

- i.i.d. entries
- All moments are finite [Soshnikov (2004)]:TW

Power-law decay $\sim\left|M_{i j}\right|^{-1-\mu}$

- rotationally invariant
-

Classical Wishart and Jacobi :TW

- Critical Ensembles [Claeys, Its and Krasovski (2009)] : gen. TW
- Disordered Ensembles [Bohigas et al. (2009)] : transitions
- Lévy-Smirnov ensembles [Wieczorek (2002)]

THE CAUCHY ENSEMBLE

$$
P(\mathbf{H}) \propto\left[\operatorname{det}\left(\mathbf{1}_{N}+\mathbf{H}^{2}\right)\right]^{-\beta N / 2}
$$

$$
P\left(\lambda_{1}, \ldots, \lambda_{N}\right) \propto \prod_{i=1}^{N} \frac{1}{\left(1+\lambda_{i}^{2}\right)^{\beta N / 2}} \prod_{j<k}\left|\lambda_{j}-\lambda_{k}\right|^{\beta}
$$

3 interesting properties...

- If \mathbf{H} is distributed according to (1), then $I) \mathbf{H}^{-1}$ is also distributed according to (1), and $I I$) every $n \times n$ submatrix of \mathbf{H} obtained by erasing $N-n$ rows and columns is distributed according to (1) with N replaced by n. These properties have been crucial in establishing the Poisson kernel law in the context of mesoscopic transport in non-ideal quantum dots [4].
- The orthogonal polynomials with respect to the Cauchy weight are Jacobi polynomials analytically continued to complex arguments. In contrast to the classical cases, only a finite number of orthogonal polynomials do exist for this ensemble.
- The average density of eigenvalues is given by:

$$
\begin{equation*}
\rho(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}, \quad x \in(-\infty, \infty) \tag{3}
\end{equation*}
$$

exactly for any N (and not just asymptotically for large N).

Free Random Lévy Matrices [Burda et al. (2000)]

Generalized circular ensemble of scattering matrices for a chaotic cavity with non-ideal leads

P. W. Brouwer
Instituut-Lorentz, University of Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

Abstract

We consider the problem of the statistics of the scattering matrix S of a chaotic cavity (quantum dot), which is coupled to the outside world by non-ideal leads containing N scattering channels. The Hamiltonian H of the quantum dot is assumed to be an $M \times M$ hermitian matrix with probability distribution $P(H) \propto \operatorname{det}\left[\lambda^{2}+(H-\varepsilon)^{2}\right]^{-(\beta M+2-\beta) / 2}$, where λ and

$$
P(w, N) \approx\left\{\begin{array}{cl}
\exp \left[-\beta N^{2} \psi(w)\right] & w \ll N \\
N^{-1} f(w / N) & w \sim(N) \\
N \phi(w) & w \gg N
\end{array}\right.
$$

How to determine the typical scale with N ?

$$
\int_{\lambda_{\max }}^{\infty} \rho(x) d x \approx 1 / N
$$

$\arctan \left(\lambda_{\max }\right) \approx \pi / 2-\pi / N$
$\lambda_{\max } \sim \mathcal{O}(N)$

$$
\mathcal{P}\left[\lambda_{\max }<w\right]=\frac{\int_{(-\infty, w)^{N}} \prod_{i=1}^{N} d \lambda_{i} P\left(\lambda_{1}, \ldots, \lambda_{N}\right)}{\int_{(-\infty, \infty)^{N}} \prod_{i=1}^{N} d \lambda_{i} P\left(\lambda_{1}, \ldots, \lambda_{N}\right)}
$$

$P\left(\lambda_{1}, \ldots, \lambda_{N}\right) \propto \exp (-(\beta / 2) E[\{\boldsymbol{\lambda}\}])$

$$
E[\{\boldsymbol{\lambda}\}]=N \sum_{i=1}^{N} \ln \left(1+\lambda_{i}^{2}\right)-\sum_{i \neq j} \ln \left|\lambda_{i}-\lambda_{j}\right|
$$

$$
\varrho_{w}(x)=(1 / N) \sum_{i} \delta\left(x-\lambda_{i}\right) \longrightarrow \sum_{i=1}^{N} f\left(\lambda_{i}\right)=N \int d \lambda \varrho_{w}(\lambda) f(\lambda)
$$

$$
\mathcal{P}\left[\lambda_{\max }<w\right] \propto \int \mathcal{D}\left[\varrho_{w}\right] \exp \left(-\frac{\beta\left(\mathbb{V}^{2}\right)}{2} \mathcal{S}_{w}\left[\varrho_{w}\right]\right)
$$

$$
\mathcal{S}_{w}\left[\varrho_{w}\right]=\int_{-\infty}^{w} \ln \left(1+x^{2}\right) \varrho_{w}(x) d x-\int_{-\infty}^{w} \int_{-\infty}^{w} d x d x^{\prime} \varrho_{w}(x) \varrho_{w}\left(x^{\prime}\right) \ln \left|x-x^{\prime}\right|+C\left(\int_{-\infty}^{w} d x \varrho_{w}(x)-1\right)
$$

$$
\ln \left(1+x^{2}\right)+C=2 \int_{-\infty}^{w} d x^{\prime} \varrho_{w}^{\star}\left(x^{\prime}\right) \ln \left|x-x^{\prime}\right|
$$

$$
\operatorname{Pr} \int_{0}^{\infty} d \tau \frac{\hat{\varrho}_{w}(\tau)}{\tau-z}=\frac{w-z}{1+(w-z)^{2}}
$$

Half-Hilbert transform

$$
\hat{\varrho}_{w}(\tau)=-\frac{1}{\pi^{2} \sqrt{\tau}}\{\underbrace{\operatorname{Pr} \int_{0}^{\infty} d s \frac{1}{s-\tau} \frac{\sqrt{s}(w-s)}{1+(w-s)^{2}}}_{I_{w}(\tau)}+B\}
$$

[Paveri-Fontana and Zweifel, 1994]

$$
\hat{\varrho}_{w}(\tau)=\frac{1}{\pi \sqrt{2 \tau}} \begin{cases}\frac{\left(k_{w}+w\right)^{1 / 2}-(w-\tau)\left(k_{w}-w\right)^{1 / 2}}{1+(w-\tau)^{2}} & w \geq 0 \\ \frac{\left(\left(\tau w-k_{w}^{2}\right)(w-\tau)+k_{w}(w-\tau)^{2}+1\right)\left(k_{w}+w\right)^{1 / 2}+\tau(w-\tau)\left(k_{w}-w\right)^{1 / 2}}{k_{w}(w-\tau)^{2}+1} & w \leq 0\end{cases}
$$

$$
S_{w}\left[\varrho_{w}\right]=\frac{1}{2}\left(\frac{1}{2} \log \left(w^{2}+1\right)-\sinh ^{-1}(w)\right)+\frac{3 \log (2)}{2} .
$$

$$
S_{w}\left[\varrho_{w}\right]=\log 2+\frac{1}{8 w^{2}}+\mathcal{O}\left(w^{-5 / 2}\right) .
$$

$$
\mathcal{P}\left[\lambda_{\max }<w\right] \propto \int \mathcal{D}\left[\varrho_{w}\right] \exp \left(-\frac{\beta N^{2}}{2} \mathcal{S}_{w}\left[\varrho_{w}\right]\right)
$$

$\mathcal{P}\left[\lambda_{\text {max }}<w\right] \approx \exp \left(-\beta N^{2} \psi(w)\right)$

$$
\begin{aligned}
\psi(w) & =\frac{1}{2}\left[\mathcal{S}_{w}\left[\hat{\varrho}_{w}\right]-\mathcal{S}_{\infty}\left[\hat{\varrho}_{w}\right]\right] \\
& =\frac{1}{4}\left(\frac{1}{2} \log \left(w^{2}+1\right)-\sinh ^{-1}(w)\right)+\frac{\log (2)}{4} .
\end{aligned}
$$

Witte and Forrester studied the cumulative distribution $F(s)=\operatorname{Prob}\left[\lambda_{\max }<s\right]$ of the largest eigenvalue for the case $\beta=2$. They found that

$$
\begin{equation*}
F(s)=\exp \left[-\int_{s}^{\infty} d s^{\prime} \frac{\sigma\left(s^{\prime}\right)}{1+s^{\prime 2}}\right] \tag{50}
\end{equation*}
$$

where $\sigma(s)$ satisfies

$$
\begin{equation*}
\left(1+s^{2}\right)^{2}\left(\sigma^{\prime \prime}\right)^{2}+4\left(1+s^{2}\right)\left(\sigma^{\prime}\right)^{3}-8 s \sigma\left(\sigma^{\prime}\right)^{2}+4 \sigma^{2} \sigma^{\prime}+4 N^{2}\left(\sigma^{\prime}\right)^{2}=0 \tag{51}
\end{equation*}
$$

$$
\begin{gathered}
\sigma(s)=N \tau(s / N) \\
\downarrow \\
f(x)=\frac{\tau(x)}{x^{2}} \exp \left[-\int_{x}^{\infty} \frac{\tau(y)}{y^{2}} d y\right] \\
x^{4}\left(\tau^{\prime \prime}\right)^{2}+4 x^{2}\left(\tau^{\prime}\right)^{3}-8 x \tau\left(\tau^{\prime}\right)^{2}+4 \tau^{2} \tau^{\prime}+4\left(\tau^{\prime}\right)^{2}=0 .
\end{gathered}
$$

$$
f(x) \approx \begin{cases}1 /\left(4 x^{3}\right) \exp \left[-1 /\left(8 x^{2}\right)\right] & \text { as } x \rightarrow 0 \\ 1 /\left[\pi x^{2}\right] & \text { as } x \rightarrow \infty\end{cases}
$$

Consider N eigenvalues and for each of them, define a binary variable $\sigma_{i}=1$ if the i th eigenvalue λ_{i} falls in the region $w \leq \lambda_{i}<\infty$ and $\sigma_{i}=0$ if $\lambda_{i}<w$. Then, the probability that the region $[w, \infty]$ is free of eigenvalues, which is also the cumulative distribution of $\lambda_{\max }$, namely

$$
\begin{equation*}
\int_{-\infty}^{w} \mathcal{P}\left(w^{\prime}, N\right) d w^{\prime} \tag{A1}
\end{equation*}
$$

can be written as

$$
\begin{equation*}
\int_{-\infty}^{w} \mathcal{P}\left(w^{\prime}, N\right) d w^{\prime}=\left\langle\left[1-\sigma_{1}\right]\left[1-\sigma_{2}\right] \cdots\left[1-\sigma_{N}\right]\right\rangle \tag{A2}
\end{equation*}
$$

where the average $\langle\cdot\rangle$ is over the joint distribution of the eigenvalues. Expanding the product, one gets

$$
\begin{equation*}
\int_{-\infty}^{w} \mathcal{P}\left(w^{\prime}, N\right) d w^{\prime}=1-N \int_{w}^{\infty} \rho(x, N) d x+\text { two-point }+ \text { three-point }+\ldots \tag{A3}
\end{equation*}
$$

When $w \rightarrow \infty$ (extreme right tail), all the higher order contributions vanish and one obtains in this limit

$$
\begin{equation*}
\int_{-\infty}^{w} \mathcal{P}\left(w^{\prime}, N\right) d w^{\prime} \approx 1-N \int_{w}^{\infty} \rho(x, N) d x \tag{A4}
\end{equation*}
$$

Taking derivative w.r.t w gives,

$$
\begin{equation*}
\mathcal{P}(w, N) \approx N \rho(w, N) \tag{A5}
\end{equation*}
$$

as claimed.

$$
P(w, N) \approx\left\{\begin{array}{cc}
\exp \left[-\beta N^{2} \psi(w)\right] & w \ll N \\
N^{-1} f(w / N) & w \sim N \\
N \bar{N}(w) & w \gg N
\end{array}\right.
$$

$$
\begin{aligned}
\psi(w) & =\frac{1}{2}\left[\mathcal{S}_{w}\left[\varrho_{w}\right]-\mathcal{S}_{\infty}\left[\hat{\varrho}_{w}\right]\right] \\
& =\frac{1}{4}\left(\frac{1}{2} \log \left(w^{2}+1\right)-\sinh ^{-1}(w)\right)+\frac{\log (2)}{4} .
\end{aligned}
$$

$$
f(x)=\frac{\tau(x)}{x^{2}} \exp \left[-\int_{x}^{\infty} \frac{\tau(y)}{y^{2}} d y\right]
$$

$$
x^{4}\left(\tau^{\prime \prime}\right)^{2}+4 x^{2}\left(\tau^{\prime}\right)^{3}-8 x \tau\left(\tau^{\prime}\right)^{2}+4 \tau^{2} \tau^{\prime}+4\left(\tau^{\prime}\right)^{2}=0 .
$$

$$
\phi(w)=\frac{1}{\pi w^{2}}
$$

Conclusions

- Cauchy ensemble: density of eigenvalues falling off as a power law
- Few results available for largest eigenvalue of rotationally invariant ensembles
- 3 regimes: central (scaling) +2 large deviation tails
- Central regime: scaling analysis of a result by Witte and Forrester
Left large deviation tail: Coulomb gas approach Right large deviation tail: simple 'tail-of-the-density' argument

OUTLINE

First Part: Old Tricks

The old days... RMT in nuclear physics 4 applications

Riemann hypothesis

- Vicious brownian walkers
- Covariance matrices of financial data
- The longest increasing subsequence problem

Second Part: New Dogs

i)

Rare events and linear statistics
ii) How many eigenvalues of a random matrix are positive?

Why are random matrix eigenvalues cool?

Message

* Ingredient: Take Any important mathematics
* Then Randomize!
* This will have many applications!
from a talk by Alan Edelman (MIT)

John Wishart

Eugene Wigner

Freeman Dyson

ON THE DISTRIBUTION OF THE ROOTS OF CERTAIN SYMMETRIC MATRICES

By Eugene P. Wigner

Hamiltonian (total energy) of heavy nuclei: hopeless task!

BUT.....

The Hamiltonian in a given basis is just a HUGE matrix....

Idea: take the matrix entries at random...

Random Matrix Theory = Randomness + Symmetry

$$
N=5\left(\begin{array}{ccccc}
0.537] & 0.2631 & -1.8044 & 0.3286 & 0.4951 \\
0.2631 & -0.4336 & 1.6888 & 1.7271 & 0.7810 \\
-1.8044 & 1.6888 & 0.7254 & 0.7133 & 0.7160 \\
0.3286 & 1.7271 & 0.7133 & -1.4090 & 1.5237 \\
0.4951 & 0.7810 & 0.7160 & 1.5237 & 0.4889
\end{array}\right)
$$

$$
\vec{\lambda}=\left[\begin{array}{llll}
-2.4341 & -0.8386 & -0.5203 & 2.2594 \\
4.2610
\end{array}\right]
$$

Semicircle Law

$$
\begin{aligned}
& \rho(\lambda)=\frac{1}{2 \sqrt{N}} f\left(\frac{\lambda}{2 \sqrt{N}}\right) \\
& f(x)=\frac{2}{\pi} \sqrt{1-x^{2}}
\end{aligned}
$$

Typical questions:

Density of eigenvalues

(iii) Distribution of individual eigenvalues (e.g. largest)
(iv) Probability of rare events in linear statistics

Figure 2: A histogram of the four largest (centered and normalized) eigenvalues for 10^{4} realizations of $10^{3} \times 10^{3}$ GOE matrices. Solid curves are the limiting distributions from [11]. Figure a courtesy of Momar Dieng.
Level Repulsion Confinement

Strongly Correlated Random Variables!!

Level Spacings: universality

$\mathcal{P}(s) \propto s^{\beta} e^{-s^{2}}$

Parking in the City

P. ŠEBA ${ }^{a, b, c}$

Rnysica A: Statistical Mechanics and its

Applications

Volume 346, Issues 3-4, 15 February 2005, Pages 621-630

Modelling the gap size distribution of parked cars
S. Rawal, G.J. Rodgers + -

Department of Mathematical Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH, UK

Modelling gap-size distribution of parked cars using random-matrix theory

A.Y. Abul-Magd

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
We apply the random-matrix theory to the car-parking problem. For this purpose, we adopt a Coulomb gas model that associates the coordinates of the gas particles with the eigenvalues of a random matrix. The nature of interaction between the particles is consistent with the tendency of the drivers to park their cars near to each other and in the same time keep a distance sufficient for manoeuvring. We show that the recently measured gap-size distribution of parked cars in a number of roads in central London is well represented by the spacing distribution of a Gaussian unitary ensemble.

PACS: 05.40; 05.20.Gg; 02.50.r; 68.43.-h
Keywords: Car parking; Coulomb gas; Gaussian unitary ensemble

...it is very probable that all roots are real. One would, however, wish for a strict proof of this; I have, though, after some fleeting futile attempts, provisionally put aside the search for such, as it appears unnecessary for the next objective of my investigation.
"Sometimes I think that we essentially have a complete proof of the Riemann Hypothesis except for a gap. The problem is, the gap occurs right at the beginning, and so it's hard to fill that gap because you don't see what's on the other side of it."

Montgomery's Pair Correlation Conjecture

Montgomery's pair correlation conjecture, published in 1973, asserts that the two-point correlation function $R_{2}(r)$ for the zeros of the Riemann zeta function $\zeta(z)$ on the critical line is

$$
R_{2}(r)=1-\frac{\sin ^{2}(\pi r)}{(\pi r)^{2}} .
$$

As first noted by Dyson, this is precisely the form expected for the pair correlation of random Hermitian matrices (Derbyshire 2004, pp. 287-291).

In 1972, Hugh Montgomery, a number theorist at the University of Michigan, was visiting the Institute for Advanced Study. Montgomery had been studying the distribution of zeroes of the zeta function, in hopes of gaining insight into the Riemann Hypothesis. He was able to prove that the Riemann Hypothesis had implications.for the spacing of zeroes along the critical line, but his key discovery was an additional property that the zeroes seemed to have, one which implied a particularly nice formula for the average spacing between zeroes.

During tea one day at the Institute, Montgomery

Odlyzko's computations agree amazingly well with Montgomery's conjecture.

Simple Proof of Riemann's Hypothesis of the Zeta function
by $\quad 6 / 20 / 2006$
The Zeta function is defined as:
$\zeta(s)=\sum_{k=1}^{\infty} \frac{1}{k^{s}}=1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\frac{1}{4^{s}}+\frac{1}{5^{v}}+\ldots s=1(k=1 \rightarrow \infty)$
Hardy, 1999 showed that
 $0=\sum_{k=1}^{\infty} \frac{1}{k^{(1-2)}}=\sum_{k=1}^{\infty} \frac{1}{k^{-s}}$ for all $0<s<1$, positive
$0=\sum_{k=1}^{\infty} \frac{1}{k^{-s}}-\sum_{k=1}^{\infty} \frac{1}{k^{(1-s)}}$
$0=\sum_{k=1}^{\infty}\left(\frac{1}{k^{-\lambda}}-\frac{1}{k^{(1-s)}}\right)$
$0=\sum_{k=1}^{\infty}\left(\frac{k^{(1-s)}-k^{-2}}{k^{-s} k^{-(1-s)}}\right)$
$0=\sum_{k=1}^{\infty}\left(\frac{k^{(--s)}-k^{-3}}{k}\right) \Rightarrow 0=\sum_{k=1}^{\infty}\left(\frac{0}{k}\right) \quad$ if \ni
$\Rightarrow k^{(1-z)}=k^{s} \Rightarrow(1-s)=s$ for $k=1 \rightarrow \infty, 0<s<1$
substituting complex $s(1-(\sigma+i x))=(\sigma+i x)$

Mathematics > Number Theory

Download:
A proof of the Riemann hypothesis
Xian-Jin Li
This paper has been withdrawn by the author, due to a mistake on page 29.
$\begin{array}{ll}\text { Comments: } & \begin{array}{l}\text { withdrawn by author, due to mistake on page } 29 \\ \text { Subjects: } \\ \text { Number Theory (math.NT) }\end{array}\end{array}$
Subjects: Number Theory (math.NT)
MSC classes: 11 M26
$\begin{array}{ll}\text { Msc classes: } \\ \text { Cite as: } & \text { arxiv:0807.0090v4 } \text { [math.NT] }\end{array}$
Submission history
from: Xian-Jin Li iview email
(vil) Tue, Jul $2000819: 4: 13$ CMT (20kb) [v2] Wed, 2 Jul 20088 11:05:52 CMT (20kb) (V33) Thu, 3 Jul 20088 03:44:03 CMT (20kb)
[v41 Sun, 6 Jul 2008 12:40:00 $\mathbf{C M T}$ (0 kb)
Which authors of this paper are endorsers?
ink back to: arxiv, form interface, contact.

- Source

Current browse context:
math.NT
<prev| next >
new | recent | 0807
Change to browse by:
math
References \& Citations
References

- NASA ADS
14 blog links matras stas)
14 blog links mates

目
for real $\sigma=1-\sigma \Rightarrow 2 \sigma=1$
$\Rightarrow \sigma=\frac{1}{2} \Rightarrow \sigma+i x=\frac{1}{2}-i x \Rightarrow \mathcal{M}[s]=\frac{1}{2}$ for $k=1 \rightarrow \infty, 0<s<1,{ }^{\prime}$ critical strp'
$Q E D$
Hardy, G. H. Ramanujan Twelve Lectures on Subjects Suggested by His Lafe and Work, 3rd ed New York Chelsea, 1999
Copyright © 2000

Non-intersecting Brownian motion paths

- Take n independent 1-dimensional Brownian motions with time in $[0,1]$ conditioned so that:

A All paths start and end at the same point.

- The paths do not intersect at any intermediate time.

Five non-intersecting Brownian bridges

Introduction. Since the pioneering work of de Gennes [1], followed up by Fisher [2], the subject of vicious (non-intersecting) random walkers has attracted a lot of interest among physicists. It has been studied in the context of wetting and melting [2], networks of polymers [3] and fibrous structures [1], persistence properties in nonequilibrium systems [4] and stochastic growth models [5, 6]. There also exist connections between the

A Remarkable fact: At any intermediate time the positions of the paths have exactly the same distribution as the eigenvalues of an $n \times n$ GUE matrix (up to a scaling factor).

Positions of five non-intersecting Brownian paths behave the same as the eigenvalues of a 5×5 GUE matrix
Δ This interpretation is basic for the connection of random matrix theory with growth models of statistical physics.

Vicious walkers and directed polymer networks in general dimensions

Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia

Random Covariance Matrices

$$
\begin{align*}
& \mathbf{X}=\begin{array}{l}
\\
\\
1 \\
\text { phys. }
\end{array} \text { math } \left.\begin{array}{ll}
\mathbf{X}_{11} & \mathbf{X}_{12} \\
2 \\
3 & \mathbf{X}_{21} \\
\mathbf{X}_{22} \\
\mathbf{X}_{31} & \mathbf{X}_{33}
\end{array} \right\rvert\, \\
& \text { in general } \\
& \text { (MxN) } \\
& \text { in general } \tag{NxM}\\
& W=X^{t} \mathbf{X}=\left|\begin{array}{cc}
X_{11}^{2}+X_{21}^{2}+X_{31}^{2} & X_{11} X_{12}+X_{21} X_{22}+X_{31} X_{33} \\
X_{12} X_{11}+X_{22} X_{21}+X_{33} X_{31} & X_{12}^{2}+X_{22}^{2}+X_{33}^{2}
\end{array}\right|
\end{align*}
$$

Noise Dressing of Financial Correlation Matrices
Laurent Laloux, ${ }^{1, *}$ Pierre Cizeau, ${ }^{1}$ Jean-Philippe Bouchaud, ${ }^{1,2}$ and Marc Potters ${ }^{1}$
Science \& Finance, 109-111 rue Victor Hugo, 92532 Levallois Cedex, France
${ }^{2}$ Service de Physique de l'État Condensé, Centre d'études de Saclay, Orme des Merisiers, 91191 Gif-n-r-Vvette Cedex, France

Debate: is the bulk of the stock market correlation matrix just pure noise?

A new method to estimate the noise in financial correlation matrices

Tracy-Widom distribution for $\lambda_{\max }$

- $\left\langle\lambda_{\max }\right\rangle=\sqrt{2 N} ; \quad$ typical fluctuation: $\left|\lambda_{\max }-\sqrt{2 N}\right| \sim N^{-1 / 6}$ (small)
- typical fluctuations are distributed via Tracy-Widom (1994):
- cumulative distribution:

$$
\operatorname{Prob}\left[\lambda_{\max } \leq t, N\right] \rightarrow F_{\beta}\left(\sqrt{2} N^{1 / 6}(t-\sqrt{2 N})\right)
$$

- Prob. density (pdf): $f_{\beta}(z)=d F_{\beta}(z) / d z$
- $F_{\beta}(z) \rightarrow$ obtained from solution of Painlevé-II equation

"Are Tracy and Widom in Your Local Telephone Directory?"

Ryan Witko
Advisor: Percy Deift

The longest increasing (contiguous) subsequence of a given sequence is the subsequence of increasing terms containing the largest number of elements. For example, the longest increasing subsequence of the permutation $\{6,3,4,8,10,5,7,1,9,2\}$ is $\{3,4,8,10\}$.
It can be coded in Mathematica as follows.
\ll Combintorica
LongestContinguousIncreasingSubsequence [p_] := Last [
Split [Sort[Puns[p]], Length[\#1] $>=$ Length[\#2] \&]]

We broke the 647,028 entries into successive samples each containing N entries.

Jinho Baik, Kurt Johansson and Percy Deift showed that as $\mathrm{N} \rightarrow \infty$
(3)

$$
\operatorname{Prob}\left(\frac{\ell_{\mathrm{N}}-2 \sqrt{\mathrm{~N}}}{\mathrm{~N}^{1 / 6}} \leq t\right) \rightarrow F(t)
$$

The function $F(t)$ was shown by Craig Tracy and Harold Widom to be the distribution of the largest eigenvalue of a random matrix in the Gaussian Unitary Ensemble (GUE). It

SUMMARY

- Eigenvalues of random matrices: strongly correlated Level Repulsion
- Tracy-Widom distribution: analogue of Gaussian distribution for correlated random variables
- Zeros of Riemann zeta have the same statistical properties as the eigenvalues of Gaussian matrices
Non-intersecting Brownian bridges
- Wishart matrices: covariance matrices of random data

SECOND PART

Probability of rare events in linear statistics

"Lies, damned lies, and statistics."

A simple example of large deviation tails

- Let $M \rightarrow$ no. of heads in N tosses of an unbiased coin
- Clearly $P(M, N)=\binom{N}{M} 2^{-N}(M=0,1, \ldots, N) \rightarrow$ binomial distribution with mean $=\langle M\rangle=\frac{N}{2}$ and variance $=\sigma^{2}=\left\langle\left(M-\frac{N}{2}\right)^{2}\right\rangle=\frac{N}{4}$
- typical fluctuations $M-\frac{N}{2} \sim O(\sqrt{N})$ are well described by the Gaussian form: $P(M, N) \sim \exp \left[-\frac{2}{N}\left(M-\frac{N}{2}\right)^{2}\right]$
- Atypical large fluctuations $M-\frac{N}{2} \sim O(N)$ are not described by Gaussian form
- Setting $M / N=x$ and using Stirling's formula $N!\sim N^{N+1 / 2} e^{-N}$ gives

$$
P(M=N x, N) \sim \exp [-N \Phi(x)] \quad \text { where }
$$

$\Phi(x)=x \log (x)+(1-x) \log (1-x)+\log 2 \rightarrow$ large deviation function

- $\Phi(x) \rightarrow$ symmetric with a minimum at $x=1 / 2$ and for small arguments $|x-1 / 2| \ll 1, \Phi(x) \approx 2(x-1 / 2)^{2}$
\rightarrow recovers the Gaussian form near the peak

LINEAR STATISTICS

$$
\left\{x_{1}, \ldots, x_{N}\right\} \quad \text { Random Variables }
$$

$$
\mathcal{A}=\sum_{i=1}^{N} f\left(x_{i}\right)
$$

Question: what is the distribution of A for large N ?

Independent

Central Limit Theorems

Correlated
?

The first rigorous results concerning large deviations are due to the Swedish mathematician Harald Cramér, who applied them to model the insurance business.
From the point of view of an insurance company, the earning is at a constant rate per month (the monthly premium) but the claims X_i come randomly.
For the company to be successful over a certain period of time (preferably many months), the total earning should exceed the total claim.
Thus to estimate the premium you have to ask the following question : "What should we choose as the premium q such that over N months the total claim $C=\backslash$ Sum_i \times _i should be less than Nq Cramér gave a solution to this question fo i.i.d. random variables

What if the random variables are strongly correlated?

A Trivial Problem

DIAGONAL MATRIX

N Eigenvalues: $\lambda_{\mathrm{i}}=\mathrm{X}_{\mathrm{ii}} \rightarrow$ Independent

- $P_{N}=\operatorname{Prob}\left[\lambda_{1} \leq 0, \lambda_{2} \leq 0, \ldots, \lambda_{N} \leq 0\right]=2^{-N}=\exp [-(\ln 2) N]$

A Nontrivial Problem

REAL SYMMETRIC MATRIX (NxN)

$$
\mathbf{X}=\left\lvert\, \begin{array}{ccccc}
\mathbf{x}_{11} & \mathbf{x}_{12} & \cdots & \mathbf{x}_{1 \mathrm{~N}} \\
\mathbf{x}_{21} & \mathbf{x}_{22} & \cdots & \cdots & \mathbf{x}_{2 \mathrm{~N}} \\
\vdots & \vdots & & \vdots & \begin{array}{c}
\text { GAUSSIAN } \\
\vdots \\
\vdots
\end{array} \\
\mathbf{x}_{\mathrm{N} 1} & \cdots & & \cdots & \vdots \\
\operatorname{Pr}[\mathbf{X}] \\
\exp \left[-\frac{1}{2} \operatorname{Tr}\left(X^{2}\right)\right]
\end{array}\right.
$$

N eigenvalues: $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{N}}$ strongly correlated

- $P_{N}=\operatorname{Prob}\left[\lambda_{1} \leq 0, \lambda_{2} \leq 0, \ldots, \lambda_{N} \leq 0\right]=\operatorname{Prob}\left[\lambda_{\max } \leq 0\right]=$?
[R.M. May, Nature, 238, 413 (1972)——Ecosystems]
[Cavagna et. al. 2000, Fyodorov 2004, —_G Glassy systems]
[Susskind 2003, Douglas et. al. 2004, Aazami \& Easther 2006- String theory].....

A particle moving in a
N -dim. landscape $V\left(y_{1}, \ldots, y_{N}\right)$

$$
\frac{d y_{i}}{d t}=-\nabla_{y_{i}} V
$$

Spin and structural glasses, Gaussian fields [Bray and Dean,

- 2006], String landscapes [Aazami and Easther, 2006], Random Energy Landscapes and Glass Transition [Fyodorov, 2004]....

Stationary points: maxima, minima and saddles

$$
H_{i, j}=\left[\frac{\partial^{2} V}{\partial y_{i} \partial y_{j}}\right]
$$

Hessian matrix

Eigenvalues of Hessian matrix determine the nature of the stationary point

RANDOM HESSIAN MODEL

Draw the elements of the Hessian matrix independently at random

$$
H_{i, j}=\left[\frac{\partial^{2} V}{\partial y_{i} \partial y_{j}}\right]
$$

It belongs to the $\mathbf{G O E}$ of random matrices

The index distribution (number of positive eigenvalues) provides information about the typical stability pattern of a Random Hessian model

Most of the stationary points are saddles!

Cosmology from random multifield potentials

Amir Aazami and Richard Easther
Department of Physics, Yale University, New Haven, CT 06520, USA
E-mail: amir.aazami@yale.edu and richard.easther@yale.edu
D.c.aicad 92 Janupev 9006

Despite the approximation used to obtain equation (8), we have confirmed that the likelihood that all the eigenvalues of an $N \times N$ symmetric matrix have the same sign scales as $\mathrm{e}^{-c N^{2}}$. The measured constant differs slightly from -0.25 , although given the simplicity of our approximation the agreement is perhaps surprisingly good.

- Based on numerics, Aazami \& Easther (2006) predicted for large N :

$$
P_{N} \sim \exp \left[-\theta N^{2}\right] \text { with } \theta_{\text {num }} \approx 0.27
$$

\rightarrow very small probability \rightarrow RARE EVENT

- Exact result: $\theta=\frac{1}{4} \ln (3)=0.274653 .$. (Dean and S.M., 2006)

More generally, for $\beta=1$ (GOE), $\beta=2$ (GUE) and $\beta=4$ (GSE)

$$
P_{N} \sim \exp \left[-\beta \theta N^{2}\right] \text { for large } N
$$

GAUSSIAN MATRIX $N_{\times} N$

$$
\left.N=5 \left\lvert\, \begin{array}{cccccc}
0.2631 & -0.4336 & 1.6888 & 1.7271 & 0.7810 \\
-1.8044 & 1.6888 & 0.7254 & 0.7133 & 0.7160 \\
0.3286 & 1.7271 & 0.7133 & 1.4090 & 1.5237 \\
0.4951 & 0.7810 & 0.7160 & 1.5237 & 0.4889
\end{array}\right.\right)
$$

Real Symmetric or Complex Hermitian or Quaternion self-dual : eigenvalues are real

$$
\vec{\lambda}=\left[\begin{array}{llll}
-2.4341 & -0.8386 & -0.5203 & 2594 \\
\hline
\end{array}\right.
$$

$\mathcal{N}_{+}=$number of positive eigenvalues
The index

$P_{\beta}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$

Joint probability density of eigenvalues

$$
\mathcal{P}\left(\mathcal{N}_{+}, N\right)=\int_{-\infty}^{\infty} d \lambda_{1} \cdots d \lambda_{N} P_{\beta}\left(\lambda_{1}, \ldots, \lambda_{N}\right) \delta\left(\mathcal{N}_{+}-\sum_{i=1}^{N} \theta\left(\lambda_{i}\right)\right)
$$

Probability distribution of linear statistics [Correster' 98

$$
P_{\beta}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\frac{1}{Z_{N}} \mathrm{e}^{-\frac{\beta}{2} \sum_{i=1}^{N} \lambda_{i}^{2}} \prod_{j<k}\left|\lambda_{j}-\lambda_{k}\right|^{\beta}=\frac{1}{Z_{N}} \mathrm{e}^{-\beta \mathcal{H}(\vec{\lambda})}
$$

Canonical weight of an

$$
\underline{\mathcal{H}(\vec{\lambda})}=\frac{1}{2} \sum_{i=1}^{N} \lambda_{i}^{2}-\frac{1}{2} \sum_{j \neq k} \log \left|\lambda_{j}-\lambda_{k}\right|
$$ auxiliary thermodynamical system

WHAT IS KNOWN? 2 SCALES IN THIS PROBLEM

TYPICAL VS. ATYPICAL FLUCTUATIONS: A PUZZLE?

Peak

Index distribution of random matrices with an application to disordered systems
Andrea Cavagna,* Juan P. Garrahan, ${ }^{\dagger}$ and Irene Giardina ${ }^{\ddagger}$
Theoretical Physics, University of Oxford, I Keble Road, Oxford, OXI 3NP, United Kingdom
(Received 21 Jaly 1999; revised manuscript received 15 October 1999)

$$
\mathcal{P}\left(\mathcal{N}_{+}=c N, N\right) \simeq \exp \left(-\frac{\pi^{2} N^{2}}{2 \ln N}(c-1 / 2)^{2}\right)
$$

$$
\Delta(N)=\left\langle\left(\mathcal{N}_{+}-\frac{N}{2}\right)^{2}\right\rangle \approx \frac{\ln N}{\pi^{2}}
$$

Large Deviations of Extreme Eigenvalues of Random Matrices

David S. Dean ${ }^{1}$ and Satya N. Majumdar ${ }^{2}$

Laboratoire de Physique Theorique (UMR SIS2 du CNRS), Université Paul Sabatier,
/I8, route de Narbonne, 31062 Toulouse Cedex 4, France
${ }^{2}$ Laboratoire de Physique Théorique ef Modèles Statistiques (UMR 8626 du CNRS), Université Paris-Sud,
Bätiment 100, 91405 Orsay Cedex, France

$$
\mathcal{P}\left(\mathcal{N}_{+}=N, N\right) \simeq \exp \left(-\beta N^{2} \theta\right), \quad \theta=(\ln 3) / 4
$$

MAIN RESULT FOR LARGE N

$$
\mathcal{P}\left(\mathcal{N}_{+}=c N, N\right) \approx \exp \left(-\beta N^{2} \Phi(c)\right)
$$

$$
\lim _{N \rightarrow \infty}\left[\frac{-\log \mathcal{P}\left(\mathcal{N}_{+}=c N, N\right)}{\beta N^{2}}\right]=\Phi(c)
$$

in agreement with
Dean \& Majumdar

$$
\Phi(0)=\Phi(1)=\theta=\log 3 / 4 \approx 0.27 . .
$$

$$
\Phi(c=1 / 2+\delta)=-\frac{\pi^{2}}{2} \frac{\delta^{2}}{\log \delta}
$$

$$
\mathcal{P}\left(\mathcal{N}_{+}, N\right) \approx \exp \left[-\frac{\beta \pi^{2}}{2 \ln (N)}\left(\mathcal{N}_{+}-N / 2\right)^{2}\right]
$$

in agreement with Cavagna et al.

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{N}_{+}, N\right)=\int_{-\infty}^{\infty} d \lambda_{1} \cdots d \lambda_{N} P_{\beta}\left(\lambda_{1}, \ldots, \lambda_{N}\right) \delta\left(\mathcal{N}_{+}-\sum_{i=1}^{N} \theta\left(\lambda_{i}\right)\right)
\end{aligned}
$$

Task: evaluate this integral for large N by mapping it to a Coulomb gas problem

$\mathcal{P}\left(\mathcal{N}_{+}, N\right)$ is the canonical partition function of an auxiliary Coulomb gas with an extra hard constraint

PHASE TRANSITIONS IN THE CONSTRAINED GAS

$$
\rho^{\star}(x)=\frac{1}{\pi} \sqrt{\frac{L-x}{x}(x+L / a)(x+(1-1 / a) L)}
$$

$\rho^{\star}(x) \quad$| Partition |
| :--- |
| Function |$>\mathcal{P}\left(\mathcal{N}_{+}, N\right)$

$$
\mathcal{P}\left(\mathcal{N}_{+}, N\right)=\int_{-\infty}^{\infty} d \lambda_{1} \cdots d \lambda_{N} P_{\beta}\left(\lambda_{1}, \ldots, \lambda_{N}\right) \delta\left(\mathcal{N}_{+}-\sum_{i=1}^{N} \theta\left(\lambda_{i}\right)\right)
$$

$$
\mathcal{P}\left(\mathcal{N}_{+}, N\right) \propto \int \mathcal{D}[\rho] \mathrm{e}^{-\beta N^{2} \mathcal{F}_{c}[\rho]}
$$

where

$$
\begin{aligned}
\mathcal{F}_{c}[\rho] & =\frac{1}{2} \int_{-\infty}^{\infty} d x x^{2} \rho(x)-\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d x d x^{\prime} \rho(x) \rho\left(x^{\prime}\right) \ln \left|x-x^{\prime}\right|+ \\
& +A_{1}\left(\int_{-\infty}^{\infty} d x \theta(x) \rho(x)-c\right)+A_{2}\left(\int_{-\infty}^{\infty} d x \rho(x)-1\right)
\end{aligned}
$$

Saddle point of the free energy: equilibrium density of the fluid

$$
\mathcal{P}\left(\mathcal{N}_{+}=c N, N\right) \simeq \exp [-\beta N^{2}(\underbrace{\mathcal{F}_{c}\left[\rho^{\star}\right]-\mathcal{F}_{1 / 2}\left[\rho^{\star}\right]}_{\Phi(c)})]
$$

SOLVING THE SADDLE-POINT EQUATION

$$
\frac{\delta \mathcal{F}_{c}[\rho]}{\delta \rho}=0 \quad \Rightarrow \quad \rho^{\star}(x)
$$

$$
x^{2}+A_{1} \theta(x)+A_{2}=2 \int_{-\infty}^{\infty} \rho^{\star}(y) \ln |x-y| d y
$$

Electrostatic Problem

$$
x=\operatorname{Pr} \int d y \frac{\rho^{\star}(y)}{x-y} .
$$

Equazioui integrali singolari del tipo di Carleman.
Francesco G. Tricomi (a Torino).

A Mauro Picone nel suo $70^{\text {mo }}$ compleanno.

New!

Iterated singlesupport solution by Tricomi (1957)

Phys. Rev. E 83, 04 | 105 (20| I)

IN SUMMARY...

$$
\mathcal{P}\left(\mathcal{N}_{+}=c N, N\right) \simeq \exp [-\beta N^{2}(\underbrace{\mathcal{F}_{c}\left[\rho^{\star}\right]-\mathcal{F}_{1 / 2}\left[\rho^{\star}\right]}_{\Phi(c)})]
$$

where

$$
\rho^{\star}(x)=\frac{1}{\pi} \sqrt{\frac{L-x}{x}(x+L / a)(x+(1-1 / a) L)}
$$

and

$$
\begin{aligned}
\mathcal{F}_{c}[\rho] & =\frac{1}{2} \int_{-\infty}^{\infty} d x x^{2} \rho(x)-\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d x d x^{\prime} \rho(x) \rho\left(x^{\prime}\right) \ln \left|x-x^{\prime}\right|+ \\
& +A_{1}\left(\int_{-\infty}^{\infty} d x \theta(x) \rho(x)-c\right)+A_{2}\left(\int_{-\infty}^{\infty} d x \rho(x)-1\right)
\end{aligned}
$$

$\Phi(c)=\frac{1}{4}\left[L^{2}-1-\log \left(2 L^{2}\right)\right]+\frac{(1-c)}{2} \log (a)-\frac{(1-c)\left(a^{2}-1\right)}{4 a^{2}} L^{2}+\frac{c}{2} \int_{L}^{\infty} W_{1}(x) d x+\frac{(1-c)}{2} \int_{L / a}^{\infty} W_{2}(x) d x$

$$
W_{1}(x)=F(x)-\frac{1}{x}=x-\frac{1}{x}-\sqrt{\frac{(x-L)}{x}\left(x+\frac{L}{a}\right)\left(x+\left(1-\frac{1}{a}\right) L\right)}
$$

Some numerics...

SUMMARY

Any matrix coming up in your research? Randomize! (and come to my office later...)

Strongly correlated random variables
Ubiquity - Universality of local statistics
Rare events for strongly correlated random variables ---> exactly solvable cases!

REFERENCES

- S.N. Majumdar, C. Nadal, A. Scardicchio, and PV, Phys. Rev. Lett. 103, 220603 (2009); Phys. Rev. E 83, 04II 05 (20 I I)
- S.N. Majumdar and PV, [arXiv: I | 2.539 |] (20| I)
- A. Cavagna, J.P. Garrahan, and I. Giardina, Phys. Rev. B 6I, 3960 (2000)
- D. Dean and S.N. Majumdar, Phys. Rev. Lett. 97, I6020 I (2006); Phys. Rev. E 77, 04II08 (2008)
- N.S.Witte and P.J. Forrester, [arXiv: I I 0.0 | | 9] (20| I)

