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2 questions

. Can we lift Dyson’s quantization!?

* |fyes, is a continuous beta index compatible with rotational
invariance!
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Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid ‘
with Fractionally Charged Excitations

R. B. Laughlin
Lawvrence Livermovre National Labovatovy, Universily of California, Livermove, California 94550

(Received 22 February 1983)

This Letter presents variational ground-state and excited-state wave functions which
describe the condensation of a two-dimensional electron gas into a new state of matter.

nomial in 2, The antisymmetry of § requires that
f be odd. Conservation of angular momentum re-
quires that II,_,f(z, - z,) be a homogeneous poly-
nomial of degree M, where M is the total angular
momentum, We have, therefore, f(z)=2", with
m odd, To determine which m minimizes the en-
ergy, I write
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where g=1/m and ¢ is a classical potential ener-
gy given by

@==3,,2mIn|z;~2,|+35m), |z, |% (8)

¢ describes a system of N identical particles of
charge @ =m, interacting via logarithmic poten-
tials and embedded in a uniform neutralizing
background of charge density o=(27a,’)"". This
is the classical one-component plasma (OCP), a
system which has been studied in great detail.
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Abstract

We introduce and solve exactly a family of invariant 2 X 2 random matrices, depend-
ing on one parameter 77, and we show that rotational invariance and real Dyson index
(3 are not incompatible properties. The probability density for the entries contains
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Standard

Dyson’'s Brownian motion construction for

Gausslan real symmetric matrices (GOE)

_ One introduces a fictitious time

t for the evolution of an N x N real symmetric matrix

M(t). The evolution of the symmetric matrix is governed
by the following stochastic differential equation (SDE):

where dH(¢) is a symmetric Brownian increment (i.e.
a symmetric matrix whose entries above the diago-
nal are 1ndependent Brownian increments with variance
(dHZ () = (1 + 4;;)dt). Standard second order per-

turbation theory allows one to write the evolution equa-
tion for the eigenvalues A; of the matrix M(?):

ndependent
of M

Fixed
“number!

where b;(t) are independ(*rd Brownian motions.

Z<J

P*({Ai})=zH|Af—Aj|-f’exp[ 2022'\] with beta = |
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_ More precisely, our model is defined

as follows: we divide time into small intervals of length

1/n and for each interval [k/n; (k+1)/ n], we choose inde-

pendently Bernoulli random variables €}, k € N such that
New Ple? = 1] {}= 1 — Ple;; = 0]. Then, setting €} = €, .,
DYSOD “— | our diffusive matrix process simply evolves as:

Invariant Beta Ensembles and the Gauss-Wigner Crossover ‘

index dM,(t) = ——Mn(t)dt + ¢

~—+where dH (%) is a symmetric Brownian increment as abdye

: s | and where dY(¢) is a symmetric matrix that is c
Free S‘ ICE diagonalizable with M, () (i.e. the two matrix have the

same eigenvectors) but with a spectrum given by N in-
dependent Brownian increments of variance o*dt. N

‘Commuting’
d,\z-z—l,\z-du@)’;z L sdn; slice




FEATURES

e Rotationally invariant by construction (both the “free”™ and the

‘commuting’ part

respect the invariance)

Based on the alternative addition of the standard Brownian

matrix (‘free’’) or a matrix

that commutes with the original

one (“‘commuting’)

* WWhether to add one or the other depends on the probability

This probabillity p In turn

P

becomes the continuous Dyson
of the ensemble

index in [0,



HOWEVER....

The spectrum for large N is disappointingly trivial

p=~0 (Gaussian

n >0 Semicircle




How to make the spectrum interesting!

p=~+, ¢~0()

The modified spectral density can be computed in two
alternative ways

from Ito’s calculus
from saddle point route
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FIG. 2. Density p.(u) for ¢ = 0,1, 2, 3,4, showing the pro-
gressive deformation of the Gaussian towards Wigner’s semi-
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SUMMARY

Allez-Bouchaud-Guionnet construction: invariant Gaussian
model with continuous beta-index
Based on a variation of Dyson’s Brownian motion
construction
Random alternation of ‘free’ and ‘commuting’ addition
T the continuous Dyson index scales with 1 /N, we get a
family of spectral densities interpolating between a Gaussian
and the semicircle
This result can be established Iin two alternative ways
. from Ito’s calculus
. from saddle point route



Invariant 8-Wishart ensembles, crossover densities and
asymptotic corrections to the Maréenko-Pastur law

Romain Allez!?, Jean-Philippe Bouchaud?, Satya N. Majumdar®, and Pierpaolo i
Vivo® |

Goal: to build a diffusive matrix
model for the Wishart ensemble
(In analogy with Gaussian case)



|_ Choose a large value of n and an initial symmetric matrix Wy. The construction
is iterative. Suppose that the process is constructed until time k/n and let us explain how
to compute the matrix W(k +1)/n 8t the next discrete time of the grid, (k + 1)/n.

1. Step 1. We first need to compute the matrix , /W7 = It suffices to compute the

orthogonal matrix O} k/n such that

n  _ NN n n T
kin = “Yk/n“k/n~k/n

> \/W;cl/nz ;cl/n 2:Z/n ;cl/nT

2. Step 2. We sample the Bernoulli random variable €} with P[e} = 1] =@ 1-Ple; =
0 >

3. Step 3. It depends on the value of €} Continuous bg

e if e} = 1, we sample a N x N matrix G, filled with independent Gaussian vari-
ables with mean 0 and variance 1/n and then we compute the matrix W(k +1)/n
by the formula

" 1N
(k+1)/n=(1_ﬁ)wk/n+ Wi Gn + Gl Wi, + MI

o if ¢} = 0, we sample N independent Gaussian variables (z1,- - ,zx) with mean
0 and variance 1/n. We then compute the matrix Y,,, which is co diagonalizable
with the matrix W3 In> defined as the product

Y, Ok/,nDiag (21,22 ..., 2N) Oﬁ/nf. (B.2)

Finally we obtain the matrix W(ku) In by

(k-*-l)/n (1——) k/n+1/ Y -|-Y]L k/ -+ (51
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Let's scale p with N again....




/) Alternative routes
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It0 calculus

WIKIPEDIA |

The Free Encyclopedia From Wikipedia, the free encyclopedia

Main page - Some or all of the formulas presented in this article have missing or incomplete descriptions of their variables, symbols or constants which
Contents ‘ may create ambiguity or prevent full interpretation. Please assist in recruiting an expert or improve this article yourself. See the talk page for
Featured content details. (November 2010)

i ovefts Ito calculus, named after Kiyoshi Itd, extends the methods of calculus to stochastic processes such as Brownian motion (Wiener process). It has important applications in mathematical
rendom aree finance and stochastic differential equations. The central concept is the Itd stochastic integral. This is a generalization of the ordinary concept of a Riemann—Stieltjes integral. The
e generalization is in two respects. Firstly, we are now dealing with random variables (more precisely, stochastic processes). Secondly, we are integrating with respect to a non-differentiable

+ Interaction function (technically, stochastic process).
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where the energy function E[{);}] is given by

E[{\}] = Z,\—( (M — N+1—5)—(1—5/2) Zln,\ @Zlnp\

17

* Continuum limit

E[p())] = /d)\)\p [ ((— ~1)N+1-6 1— -)] N/d/\p(/\ )In A
- 5NQ//az,\oz,\ p(N)p(\)In A — N[ + §N/d/\p()\ ln%)‘) +C (/ dAp()) — 1)

s

Dyson's self energy term

~ / D[p] e“E["('\” Jacobian




D{pleEleMEN [ dre(3)1n (3 /'D[p]e NF[p(\)] (3.16)

where the free energy F [p A)] is given by

Flp(A)] = ! /dAAp (A) — [ ((——1)N+1—5) (1——” /dAp(A)lnA

- —N//dAdA o(N)p(\)In |A = N| + (1 - g) /d)\p()\) In p()) + Ci (/ drp(\) — 1)

\ (3.17)

Jacobian term has the same form of Dyson's self-energy,

but opposite sign!
[Dean & Majumdar, PRE 2008]

T p scales as [/N, the energy and the entropy
become of the same order !

p=2¢c/M = 2cq/N




Flp(\)] = - f (N — [cq G _ 1) _ (1 _ g ] / dAp(A) In A

- cq//d)\d)\' AN)In|A =N+ (1 — /dz\p()\) Inp(A) + Cy (/ dA\p(A) — 1)

Saddle point equation

g —aln )\ — 2cq/d}\'p*(/\’)ln|)\ — X @02 =0

v
New unusual term, due to the entropic contribution

— 2cq Pr/ /\p(xi,d,\’ : 0

DO | =
> |




A
H(z) = / )'\0 (—)z d)\ Resolvent

DO | =
> |

) o\ ., - Multiply by
2 Pr/x\—/\’d)‘ _O *p(x\)/(/\—z)

and Integrate over
lambda

Eqg. 1s no longer
algebralc,
but differentiall




dH
dz

1
17H2+§(1+%)H+—=0

a=(2-90)—2c(l—q), v=¢.

p(\) = —Tm[H(z - )

Jacopo Francesco Riccati (1676-1754)
14'(2) 1 5

H(z) = vy u(z)

0, Inu(z).

Vai alla pagina 12
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u(z) = Coe™/* 2% W_¢ u(~2/2)
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=

Whittaker function
1 1
H(z) = '71';((5)) =3 0, lnu(z).

p(N) = —Tm[H(z - )
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Normalization Constant A

1 _2/00 d
Ao Weeu(=N12

Weu(z) =212 e 20— ¢+ 1/2,1 4 245 2)

© dt et tb _9 1U(a,b—1;2)
/0 o |U(a,b; —t)] —I‘(a)I‘(a—b+2); Ulabz)

[M.E.H. Ismail & D.H. Kelker, SIAM |. Math. Anal. 10, 384 (I979)]

fora >0,1<b<a+1

1 1 c - 0 Gamma distribution
W+ ¢+ 50 —p+3) [Ween(—=2)2|| ¢— 0o Maréenko-Pastur

pc()‘) —
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Figure 1: Density p.(A) for ¢ = 0,1,2,3,4,5,10 of Eq. (3.49) showing the progressive

deformation of the Gamma distribution (

3.2

) with parameter § = 1 towards the Marcenko-

Pastur distribution with parameter ¢ = 1/2. The value p.(0) at the origin decreases when

¢ Increases.
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FINAL SUMMARY

e Modified Allez-Bouchaud-Guionnet construction: invariant
Wishart model with continuous beta-index

. Based on a variation of Dyson’s Brownian motion
construction
. Random alternation of ‘free’ and ‘commuting’ addition

e [f the continuous Dyson index scales with |/N, we get a family
of spectral densities interpolating between a Gamma
distribution and the Marcenko-Pastur

. This result can be established Iin two alternative ways
* [he free energy of the Coulomb gas I1s no longer dominated
by the energetic component (energy and entropy now scale
in the same way!)



