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A well-known scientist (some say it was Bertrand Russell) once gave
a public lecture on astronomy. He described how the earth orbits
around the sun and how the sun, in turn, orbits around the center of
a vast collection of stars called our galaxy. At the end of the lecture,
a little old lady at the back of the room got up and said: ”What you
have told us is rubbish. The world is really a flat plate supported on
the back of a giant tortoise.” The scientist gave a superior smile
before replying, ”What is the tortoise standing on?” ”You're very
clever, young man, very clever,” said the old lady. ”But it’s turtles

all the way down!”



Abstract

Sixty years after the works of Wigner and Dyson, Random Matrix
Theory still remains a very active and challenging area of research,
with countless applications in mathematical physics, statistical me-
chanics and beyond. In this thesis, we focus on rotationally invariant
models where the requirement of independence of matrix elements
is dropped. Some classical examples are the Jacobi and Wishart-
Laguerre (or chiral) ensembles, which constitute the core of the present
work. The Wishart-Laguerre ensemble contains covariance matrices
of random data, and represents a very important tool in multivariate
data analysis, with recent applications to finance and telecommunica-
tions. We will first consider large deviations of the maximum eigen-
value, providing new analytical results for its large N behavior, and
then a power-law deformation of the classical Wishart-Laguerre en-
semble, with possible applications to covariance matrices of financial
data. For the Jacobi matrices, which arise naturally in the quantum
conductance problem, we provide analytical formulas for quantities of

interest for the experiments.
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Things should be made as simple

as possible, but not any simpler.

ALBERT EINSTEIN

Chapter 1

Overview of Random Matrix

Theory

Ensembles of matrices with random entries have been systematically studied since
the pioneering works of Wigner [1] and Dyson [2; 3] since the 1950s, although
earlier studies by Wishart [4] and Hsu [5] need to be recalled. The purpose was
to develop a statistical theory of energy levels of heavy nuclei, such that the un-
known Hamiltonian (representing the complicated interactions among nucleons)
is replaced by a statistical ensemble of random Hamiltonians satisfying minimal
symmetry requirements.
In the words of Dyson [2]:

In ordinary statistical mechanics a comparable renunciation of ex-
act knowledge is made. By assuming all states of a very large ensemble
to be equally probable, one obtains useful information about the over-
all behaviour of a complex system, when the observation of the state
of the system in all its detail is impossible. This type of statistical
mechanics is clearly inadequate for the discussion of nuclear energy
levels. We wish to make statements about the fine detail of the level
structure, and such statements cannot be made in terms of an en-
semble of states. What is here required is a new kind of statistical
mechanics, in which we renounce exact knowledge not of the state of

a system but of the nature of the system itself. We picture a complex



nucleus as a black box in which a large number of particles are in-
teracting according to unknown laws. The problem is then to define
in a mathematically precise way an ensemble of systems in which all

possible laws of interaction are equally probable.

After the initial successes in Nuclear Physics, the field of random matrices has
developed immensely with countless applications in physics, mathematics and

beyond. Just to mention few of them:
e Number theory, in connection with Riemann’s hypothesis [6];
e Algebraic and enumerative combinatorics [7; 8; 9];
e Effective theories of strong interactions [10];
e Electronic transport in mesoscopic systems [11];
e Random graphs theory [12; 13];
e Numerical analysis [14; 15];
e Disordered materials [16];
e Computational biology and genomics [17];
e Entanglement in quantum systems [18];
e Quantum gravity [19];
e Quantum chaos [20];
e Multivariate data analysis and financial applications [21; 22; 23];
e Wireless communication [24; 25];

Comprehensive reviews, with emphasis on different aspects, also abound (see
e.g. [6; 26; 27]).
As a first, gross classification of random matrix models one can consider

whether some of the following features are present:



1. the entries are sampled independently from each other;
2. there is a group of invariance for the probability density of entries;

3. there are other symmetry requirements (hermiticity, positive definiteness
etc.)

Many classifications of random matrix ensembles have been provided in the liter-
ature: for real eigenvalue models by Dyson, Altland-Zirnbauer and Caselle [3; 28].
Extensions to complex eigenvalue models (non-hermitian) have been given first
in [29] and later refined in [30], where explicit matrix representations for each
class were exhibited. Dyson’s taxonomy, the one relevant for the present work,
will be reviewed in the next Chapter.

Given a N x N matrix X, the relevant object is the joint probability den-
sity function (jpdf) of the entries P[X] := P(X1,..., Xnyn), where X;; may be
real, complex or quaternion numbers. In the case of independent entries, the

distribution factorizes as:

P(X11, ..., Xyn) = Hfj<Xaﬁ) (1.0.1)

On the other hand, the group invariance requirement a la Dyson implies:
P[X] = P[§'XG] (1.0.2)

where G is a member of the orthogonal, unitary or symplectic group (depending
on whether X has real, complex or quaternion entries, see next chapter). The
three cases will be labelled by Dyson’s index = 1, 2, 4 respectively.

In figure 1.1, we provide a schematic grouping of many known random matrix
models according to the three features described above. At the core of the diagram
lies the Gaussian ensemble, the only one endowed with all three features (see next
chapter for details). Dropping one of the features may lead for instance to the

following ensembles:

e Lévy: introduced by Cizeau and Bouchaud [31] in 1994, this ensemble con-
tains symmetric matrices with independent entries, whose individual dis-
tribution decays as a power law. Thus, the group invariance is abandoned,

but the symmetry of matrices ensures that a real spectrum is obtained.



INDEPENDENT ENTRIES

ﬁemal k Ginibre Complex GROUP
etworks Laguerre
INVARIANCE
Levy Gaussian
Wishart/Jacobi
Adjacency matrices
random graphs
OTHER INVARIANCES

Figure 1.1: Examples of random matrix models, grouped according to three pos-

sible features: independent entries, group invariance and other invariances.



e Ginibre: introduced by J. Ginibre [32] in 1965, these ensembles are formed
by matrices with independent entries. The invariance under the orthogonal,
unitary and symplectic group is preserved, but the symmetry of individual
matrices is dropped. As a consequence, the spectrum invades the complex

plane.

e Wishart or Jacobi: these ensembles constitute the core of this thesis and
will be reviewed in detail in the next chapters. They have non-independent

entries, but all other symmetries.

In the outer layer of the diagram, we lodge examples of ensembles where two

out of the three features above are dropped:

e Synaptic matrix for neural networks: in a recent publication [33], a model
for a synaptic matrix of neural networks was introduced, where the entries
are drawn independently from two distributions (with different means and
variances). No other symmetries are present and the spectrum lies in the

complex plane.

e Complex Laguerre: extensions of the chiral-Laguerre ensemble were proposed
in [34] as effective models for QCD with non-vanishing chemical potential.
All the group symmetries can be implemented, but the model has a complex

spectrum and non-independent entries.

e Adjacency matrix of random graphs: given a random undirected graph, the
adjacency matrix A has entries A;; = 1 if there is an edge connecting nodes
i and j, and A;; = 0 otherwise. It is obviously symmetric, but has no
group symmetry and the entries are generally not independent, since their
distribution is determined by the topology and degree distributions of the
underlying graph [13].

In a very broad sense, the aim of Random Matrix Theory (RMT) is to study the
statistics of spectral properties (eigenvalues and eigenvectors), given the jpdf of
entries. However, the available mathematical techniques available to accomplish
this task depend strongly on whether a group invariance is present or not: in the

first case, it is usually possible to perform the change of variables X — G~1DG



explicitly (where D is the diagonal matrix containing the eigenvalues). This way,
the jpdf of eigenvalues P(Aq,...,Ax) (where {)\;} can be real or complex) may
be obtained (see next chapter).

This procedure reduces considerably the number of degrees of freedom in-
volved, and thanks to the works of Mehta and many others, several powerful tools
are available in this case (orthogonal polynomial techniques, Dyson’s Coulomb gas
analogy, supersymmetric methods etc.). On the contrary, more limited insights
are usually within reach if group invariance is lacking: typically, one is confined
to the average spectral density p(\) in the limit of large matrix size N — oo, a
quantity which is computable e.g. with Green function methods and the replica
trick among others. However, in the case of independent entries general theorems
about the convergence in distribution of p(\) (semicircle law, Girko’s circular law
[35] etc.) are available.

In this thesis, we focus on the invariant sector of fig. 1.1, whose matrices are
endowed with group symmetries and a real spectrum but have correlated entries.
Many models in this class have been studied for long time: for instance, we can
mention fixed and restricted trace ensembles [36], models with power law tails
[37; 38], critical ensembles [39]. The classical families of Wishart-Laguerre and
Jacobi, having many applications in multivariate statistical theory and beyond,
belong to this category and constitute the core of the present work. Loosely

speaking, one can draw the following chain:
Gaussian — Wishart-Laguerre — Jacobi

where the — symbol means that combining matrices with Gaussian entries one
obtains Wishart-Laguerre matrices, and combining Wishart-Laguerre matrices
one obtains Jacobi matrices. More details will be given in next chapter.

A survey of the current knowledge about the statistics of eigenvalues of these

classical ensembles is provided in next chapter, focusing mostly on the unitary
case (0 = 2).



1.1 Outline of the thesis

1.1 Outline of the thesis

The purpose of the present work is to present new analytical results regarding

the following three topics:

Large deviations of the Maximum Eigenvalue: There is a recent, growing
interest both in physics and mathematics for the statistics of unlikely events
involving correlated random variables. Due to their logarithmic repulsion,
the eigenvalues of invariant matrix models are an ideal object of study. The
typical question is: what is the rate of decay with N (the size of the matrix)
for the probability that all the eigenvalues are ’smaller than expected’ (in
a sense to be made more precise later)? These events involve anomalous
fluctuations of the largest eigenvalue to the left of its mean: to the leading
order, an accurate estimate for this probability can be obtained using a
transparent and powerful method devised recently by Dean and Majum-
dar in an insightful publication [40]. We extend their approach, originally
confined to the case of Gaussian random matrices, to the slightly more com-
plicated Wishart-Laguerre ensemble: we analyze O(N) fluctuations of the
largest eigenvalue to the left of its mean and provide exact results for the
left rate function. This work completes a related analysis by Johansson [41]
in the context of shape fluctuations and growth models, where the right rate
function was computed by rigorous methods. These results are included in
Chapter 3 and have been published in [42].

Power-law deformations of Wishart-Laguerre: In Chapter 4, we consider
a one-parameter deformation of the Wishart-Laguerre ensemble. The jpdf
of the entries of covariance matrices in the ensemble includes a power-law
weight depending on the single parameter v. When v — oo, the usual
Wishart-Laguerre ensemble is recovered. Earlier studies have focused on
just the macroscopic spectral density, whereas we are able to provide a
complete solution for finite N, and in both the macroscopic and microscopic
large N limits. Hence, we obtain a generalized Marcenko-Pastur distribu-
tion (for both square and rectangular matrices) and a generalized Bessel

law close to the origin. This work is motivated by possible applications to



1.1 Outline of the thesis

financial data, and in fact we have checked that the resulting density is in
reasonable agreement with covariance matrices taken from financial assets.
The main technical tool is an integral identity, through which we are able
to establish an exact mapping between the generalized model and the stan-
dard one, together with the identification of the correct scaling with both
N and ~. The issue of universality is also discussed. These results appear

in a paper recently accepted for publication [43].

Quantum conductance in mesoscopic physics: The Jacobi ensemble appears
in the theoretical treatment of current fluctuations inside chaotic cavities of
sub-micron dimensions. In the scattering theory framework, the scattering
matrix connecting incoming and outgoing electronic waves is assumed to be
random and uniformly distributed within the unitary group. It has a block
structure, where each block encodes transmission and reflection coefficients
for each of the two attached leads. The statistical properties of the conduc-
tance are derived from the knowledge of the transmission eigenvalues, whose
jpdf can be easily mapped onto Jacobi. In the mesoscopic literature, several
quantities are of interest for comparison with experiments: among these,
one can mention the average density of transmission eigenvalues, their mo-
ments and higher order cumulants. While results for those quantities are
well-known in some limiting cases, a general solution for the case of finite
and arbitrary number of open channels in the two attached leads was still
missing. In Chapter 5, we provide the sought formulas for the spectral
density for f = 2,4 and a formula for the moments of the transmission
eigenvalues for 3 = 2, together with some intriguing combinatorial puzzles
yet to be solved. Finally, we show how the Dean-Majumdar technique men-
tioned earlier can be used to gain further insight into the full probability
distributions of the experimental quantities (conductance, shot noise, mo-
ments) in the limit of large number of open channels. As a byproduct, we
also obtain a new exact formula for the variance of integer moments. These
results are partially contained in ref. [44], while section 5.4 has not been

published yet.



1.1 Outline of the thesis

In the following Chapter, we will thoroughly review the main features of clas-
sical invariant ensembles and introduce the main technical tools that we need
(orthogonal polynomials method, Dyson’s Coulomb gas analogy and determinan-
tal structure of correlations). We also provide a detailed introduction to the
families of Gaussian, Wishart-Laguerre and Jacobi matrices, corresponding to
the classical orthogonal polynomials (Hermite, Laguerre and Jacobi). Eventu-
ally, some concluding remarks are offered in chapter 6, together with technical

details in the appendices (from A to E).



The intention of the Holy Ghost is
to teach us how one goes to

heaven, not how heaven goes.

GALILEO GALILEI

Chapter 2

Invariant Random Matrix models

2.1 Joint probability density of eigenvalues

As disclosed in the Introduction, we focus on ensembles of random matrices whose

jpdf of matrix entries P[X] satisfies
P[X] = P[§'X9] (2.1.1)

(where G is any element of a suitable invariance group) and having a real spec-
trum.

It is clear that we need to answer a few questions first:

e Where does the requirement (2.1.1) come from?

e How does (2.1.1) constrain the possible forms of P[X]?
e What are the invariance groups involved?

To answer these questions, we recall that, since the early times of RMT, a
random matrix X stands for the Hamiltonian H of an unknown system, written
in a given orthonormal basis. It is always possible to go from one orthonormal

basis to another thanks to a linear transformation:

H =U 'HU (2.1.2)

10



2.1 Joint probability density of eigenvalues

However, even if no other symmetries are present, in conventional quantum me-
chanics every Hamiltonian (H or H') must be Hermitian to ensure a real energy

spectrum?!. This can be achieved only if the transformation matrix U is unitary:
Uu' =UU=1 (2.1.3)

Even though Hamiltonians in matrix form related by linear transformations
appear different, they of course represent the very same physical system, i.e. phys-
ical observables such as energy levels cannot depend on the choice of a particular
basis.

It is then clear that, for consistency with the physical world the theory aims
to represent, the same ’basis independence’ carries over to random matrices: on
a more general ground, Dyson showed that, in order for a random matrix to
be consistent with physical requirements, its entries should belong to a division
algebra over the reals [2]. Thus, we classify RMT models according to their
entries (real, complex or quaternions) and symmetries (symmetric, hermitian
or quaternion self-dual), which are invariant respectively under the Orthogonal,
Unitary or Symplectic groups.

The requirement of basis invariance for RMT has two crucial consequences:

1. Weyl’s lemma holds [46], so the jpdf of the entries P[X] can be only a
function of the first N traces of X, where N is the size of X:

P[X] = ¢ (TrX, ..., TrXY) (2.1.4)

2. The information encoded in the jpdf of entries is overabundant. One can
always perform a change of variables {X,5} — {Ax}, in such a way that the
O(N?) variables in P[X] get replaced by the N eigenvalues of X.

How do we get from the jpdf of entries to the jpdf of eigenvalues? First, we recall
that any NV x N Hermitian matrix X can be diagonalized uniquely by a unitary

transformation:

X =UDU (2.1.5)

'Less restrictive requirements have been proposed in complex extensions of quantum me-

chanics [45].

11



2.1 Joint probability density of eigenvalues

Instead of parametrizing X using its matrix entries, we can use the N eigenvalues
and a set of parameters {uy, us, ug, . . .} pertaining to the transformation matrix U.
Now, the jpdf (2.1.4) is merely a density: in order to get a distribution function,
it needs to be integrated over. The differential volume element will obviously
change in passing from the variables ’entries’ to the variables ’eigenvalues’. How
do we take this effect into account? We just need to compute the Jacobian J of

this change of variables:

N
[T dxi; = 710y fud] T dne T ] dug (2.1.6)
i<j k=1 J
A nice step-by-step calculation of the above Jacobian can be found e.g. in [26].

The final result reads:

TN {wd) = ) [T 1Y = Al (2.1.7)
j<k

so it factorizes in a part depending only on the eigenvectors components, and
a second part depending only on the eigenvalues. The latter is readily recog-
nized as a Vandermonde determinant, raised to the so-called Dyson index (.
Classically, the allowed 3 values are 1,2 or 4, according to the number of real
variables needed to specify a single entry® of X (1 for real, 2 for complex and
4 for quaternion numbers). This Vandermonde factor is ultimately responsible
for the typical eigenvalue repulsion which is observed in invariant random matrix
models, and constitutes the basis for both the orthogonal polynomial technique
and the Dyson’s Coulomb gas analogy, the two main technical tools we are going

to introduce in the following.
Starting from (2.1.7) and upon integrating out the ’eigenvectors’ degrees of
freedom, one ends up with the most general jpdf of unordered eigenvalues in the

form:

N N
P\, ..., n) =Crg o (Z Ais - . .,ZA?’) LT = Al? (2.1.8)
=1 =1

j<k

'Random matrix models having a continuous range for 3 > 0 have been introduced in [47]

(non-invariant, independent entries) and in [48] (invariant, correlated entries).

12



2.1 Joint probability density of eigenvalues

where P(Aq,...,Ay) is a normalizable, positive definite and symmetric function
of the eigenvalues.
Note that another less general (but usually correct and more manageable)

alternative expression is often given:

N
P, Ay) =Cng [JeO) TTIN = Ml (2.1.9)
j=1

j<k
However, there are cases where such a representation does not hold (see chapter
4 and [37]).

The classical ensembles (Gaussian, Wishart-Laguerre and Jacobi) all admit

the representation (2.1.9) with:

wg(x) = e~ Gaussian
wwr(T) = Ve " Wishart-Laguerre (2.1.10)
wy(r) = (1 —2)*(1+x)? Jacobi

where n is a parameter we introduce to reconcile different conventions in the
literature. In (2.1.10), the support of the spectral density (i.e. the range of
variability for the eigenvalues) is respectively R, R, and [—1, 1].

Before introducing the main technical tools that are needed, we first ask the
question: what quantities can be computed from (2.1.9)? A non-exhaustive list

may include (see also next section for further details):

e Density of eigenvalues py(A) = < > 0(A— /\i)>, where the average is taken
over the jpdf (2.1.9). This may be done for finite matrix size N (using e.g.
the orthogonal polynomial technique) or asymptotically for large N (using
e.g. asymptotics of orthogonal polynomials or the Coulomb gas analogy
described below). For the large N setting, it is customary to distinguish
between a macroscopic limit, where the argument A of the density grows as
N* (k being a typical scale, unique for a given matrix model'). Conversely, a
microscopic limit can also be considered, where the combination N*(\— )
is kept fixed for large N, where )y is the location within the spectrum

where one wishes to zoom in (origin, bulk or edge points): this amounts to

For example, in the Gaussian case x = 1/2, while for Wishart-Laguerre x = 1

13



2.1 Joint probability density of eigenvalues

probing correlations on the scale of the mean level spacing, and gives rise
to universal laws (e.g. the sine kernel in the bulk for Gaussian matrices,
and the Bessel law at the hard edge for Wishart-Laguerre; a more detailed
discussion of the latter follows in Chapter 4). Universality in this context
means stability with respect to polynomial deformations of the confining
potential, which typically does not hold for macroscopic properties (see,
however, the more detailed discussion in section 4.3.1). Ultimately, the two
kinds of large-N behaviors can be blamed on different asymptotic laws for

orthogonal polynomials.
e n-point correlation functions among the eigenvalues (see next section);

e Gap distributions, i.e. probability that a region (e.g. the interval [a, c0))
of the real axis is free of eigenvalues. This amounts to integrating the jpdf

of eigenvalues (2.1.9) over the complementary interval R\ [a, 00).

e Single eigenvalue distributions (of particular interest is the case of extreme
eigenvalues), which follow by differentiation of the gap distribution (see also
section 4.4.2).

e Variance of the number statistics and least square statistics (see chapter 16
in [46]).

In subsection 2, we introduce in full detail the orthogonal polynomial tech-
nique for f = 2 (unitary case), which allows to write all correlation functions as
determinants of a suitable kernel. The cases = 1,4 are more complicated, but
doable in the same framework and the reader is referred to [46] for details.

In subsection 3, we briefly summarize the so-called Coulomb gas analogy (due
to Dyson) which is invaluable for large N density calculations. A variant of this
method will be used in chapter 3 to address large deviations of the maximum
eigenvalue in Wishart-Laguerre matrices.

In the last section, we review in detail the classical ensembles pointing to the

relevant literature on the subject.
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2.2 Orthogonal polynomials and determinantal structure of
correlations

2.2 Orthogonal polynomials and determinantal

structure of correlations

In this section, we follow very closely the pedagogical review by Fyodorov [26]
for the unitary case (8 = 2). Details for the other cases can be found e.g. in [46].

The orthogonal polynomial technique allows to write down a compact expres-
sion for the n-point correlation function of the N eigenvalues, which is defined

as:

N!
R()\l, NN 7)\n) = m /d>\n+l v d)\NP()\l, ceey )\N) (221)
First, one observes that the following holds:
. |
_ A A
[Ty A =0 = det | 7 7 [ =20 ) (22.2)
o AN

Now, the determinant does not change upon linearly combining its rows. In
particular, the entries \¥ in the (k + 1)-th row can be replaced by a polynomial
(i) = apAf+lower order terms, for any choice of the coefficients a, £ = 0, ..., k.

So, we can write:

NV Wo(il) 7To(iN)
T =) = % det m(z ) ) m(: v) (2.2.3)
=t 7TN_1()\1) Ce 7TN—1()\N)

Now, if we multiply every entry in the j-th column of the matrix in (2.2.3) by
Vw(Aj), the jpdf of eigenvalues (2.1.9) can be written as:

P(A\, ..., AN) x [det ( w()\j)ml()\j)) -~ ‘<N] (2.2.4)

Now, the square of the determinant in (2.2.4) can be rewritten using the following
observation: if A is a matrix whose elements are A;; = ¢;_(z;), the square of its

determinant reads

(det A)? = det(ATA) = det (Z AﬁAjk> (2.2.5)
j 1<i k<N

J
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2.2 Orthogonal polynomials and determinantal structure of

correlations
so that (2.2.4) can be written as:
N
P(Ay, ..., Ay) o det (Z ¢j1(Ai)¢j1(Ak)> = det(Kn (A M) )1<ie<n
J=1 1<i k<N
(2.2.6)
where we introduced the kernel:
N-1
Ky(z,a') = ¢;(x)p;(') (2.2.7)
=0
di—1(x) = Vw(x)mi_1(2) (2.2.8)

So far, we have left the polynomials m(z) unspecified. Suppose that we now

make the choice:
/w(a:)m(x)ﬁj(x)dx = 0;j (2.2.9)

i.e. the m(x) constitute an orthonormal set with respect to the weight w(z).

Then, the following 'reproducing’ property for the kernel Ky holds:
/KN(x,y)KN(y,z)dy = Kn(z, 2) (2.2.10)

This property allows to invoke the following lemma by Dyson ! [51], in the sim-
plified form given by Fyodorov [26] for f = 2:

Lemma 2.2.1 (Dyson) Let 3,(x) = (Jij)i<ij<n be an n X n matriz whose
entries depend on a real vector x = (x1,%,...,%,) and have the form J;; =
f(zi,x;), where f is some complex-valued function satisfying for some measure

du(x) the ‘reproducing kernel’ property:

/ £ )y, 2)dply) = f(z, 2) (2.2.11)

Then:
/det Jn(X)du(x,) = [qg— (n—1)]det 1 (2.2.12)

where ¢ = [ f(z,z)dp(z) and the matriz J,—1 has the same functional form as

Jn with x replaced by (x1,xa,...,Tn_1).

!Generalizations of this theorem have been given recently in [49] and [50].

16



2.2 Orthogonal polynomials and determinantal structure of
correlations

We see that the kernel Ky(x,y) satisfies exactly the property (2.2.11) (see eq.
(2.2.10)), with the constant ¢ of the Lemma is readily computed as:

q= /KN(l',QE)dQJ = Z_ /w(:c)[ﬂj(x)]Qdm =N (2.2.13)

Thanks to Dyson’s Lemma, we are able to compute iteratively some multiple
integrals of the determinant of K (\;, ;) over some proper subset of the sequence
of eigenvalues {)\;}, i.e. exactly the definition of correlation functions (2.2.1).
Let us see in detail how this works. First, let us integrate the jpdf of eigenvalues

(2.2.6) over one eigenvalue, using the reproducing lemma:

/P()\l, oL AN)AAN o /det(KN()\i, A)hi<ij<ndAN = det(Kn (A, Aj))1<ij<n—1
(2.2.14)

Proceeding one step further:

//det(KN()\z’a/\j))lgi,jgNd/\N—ld)\N = /det(KN(/\ia)\j))lgi,jSN—ld/\N—l =
[N = (N = 2)] det(Kn(Ai; Aj))1<ij<n—2 (2.2.15)

and by induction:

/. .. / det(KN()\i, )\j))lgi,jgNd/\k-i-l ce d)\N = (N - k)' det(KN()\i, Aj))lgi,jgk
(2.2.16)
Recalling the definition (2.2.1), we can immediately write down a compact ex-

pression for the n-point correlation function as:
R()\l, . 7/\n) = det(KN()\Z, )\j))lgz}jgn (2217)

In particular, the average density of eigenvalues R(\) (one-point function) is given

immediately by:
N-1

R\ = Ky(\A) =w(A) ) [mioa (V) (2.2.18)

i=1
It is then clear that the classical ensembles introduced earlier (2.1.10) require the
use of orthonormal polynomials with respect to the classical weights, i.e. Hermite,
Laguerre and Jacobi respectively. Note also that the normalization of the spectral
density (2.2.18) is [ R(A\)d\ = N, while it is customary to rescale it to have it
normalized to 1. In the following, we will always make clear when we adopt one

convention or another by using R or p for normalization to IV or 1 respectively.
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2.3 Dyson’s Coulomb gas analogy

2.3 Dyson’s Coulomb gas analogy

The macroscopic density, in the limit of large matrix size N — oo, can be com-
puted in principle from the finite N result, exploiting known asymptotics of the
classical orthogonal polynomials. Generally speaking, this is not the most conve-
nient route: a more effective and less cumbersome method goes under the name
of "Coulomb gas analogy’ and was first proposed by Dyson [2]. The eigenvalues
of a given invariant ensemble (lying on the real line) are considered as point par-
ticles of a charged fluid, subject to two competing interactions: the logarithmic
repulsion, originated by the Vandermonde factor, is just a 2D Coulomb interac-
tion among the charged particles (though confined on a line), whereas a confining
potential (e.g. parabolic for the Gaussian ensembles) prevents the particles from
escaping to infinity (see the schematic picture in fig. 2.1). More formally, one

can write the jpdf of an invariant ensemble as a Boltzmann’s weight:

P\, ..., \y) o e PP (2.3.1)

where \ = {A1,...,A\n} and the ’free energy’ incorporates the two competing
contributions. In the continuum limit, where the individual eigenvalues are re-
placed by a smoothed macroscopic density p()\) !, the free energy becomes a sum
of integrals over the sought density. For example, in the Gaussian case (n = 1

for simplicity):

F[X] o~ /d)\ Mp(A) — //d)\d/\'p()\)p(/\’) log|\ = X|+C (/ dAp(X\) — 1>
(2.3.2)
where C' is a Lagrange multiplier, enforcing the normalization of the density to
1, and the range of integration depends on the matrix model ((—oo, c0) for the
Gaussian model).
The equilibrium density p(A) of the fluid particles is such that the free energy
is minimized: after one functional and one ordinary differentiation of (2.3.2), we
obtain a Poisson-like equation for the charge density as:

A= fP/dXAp(_X;/ (2.3.3)

IThis replacement is legitimate for N — oc.
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2.4 The classical ensembles

where P denotes the Cauchy principal part, and on the left hand side one has
more generally the derivative of the confining potential V’/(\). We will encounter
this singular integral equation many times throughout the present thesis. A
general treatment, with different conditions at the boundaries of the support,
was first provided by Tricomi [52]. For the Gaussian case, this leads directly to

the celebrated semicircle law (see [46] and subsection 2.4.1).

2.4 The classical ensembles

2.4.1 Gaussian ensemble

The Gaussian ensemble is composed by square matrices having independent
and normally distributed entries (real, complex or quaternion numbers), supple-
mented by an appropriate group invariance (orthogonal, unitary and symplectic
respectively). The joint probability density of the entries can be written in the
compact form:

Pg[X] o exp (—nBTrXX) (2.4.1)

In fact, the jpdf (2.4.1) was proven by Rosenzweig and Porter (see e.g. [46]) to be
the only one satisfying i) independence of the entries and ii) rotational invariance.
The Dyson’s index (8 reflects the invariance group as usual.

The spectrum lies on the real line, and its properties are determined by the

jpdf of N eigenvalues, where N is the size of the matrix:

Po(Ar,. .. Aw) = By e 22 TT A — Al (2.4.2)
j<k
where By is a normalization constant, whose value can be computed exploiting a
variant of the Selberg’s integral [46] or the norms of orthogonal polynomials (see
section 2.2).
The macroscopic density of eigenvalues in the large N limit can be computed
from Tricomi’s equation (see [46]), and after the scaling z = \/y/nBN has the

celebrated Wigner’s semicircular form:

pa(z) = VT =22 (2.4.3)

19



2.4 The classical ensembles

Particles repel each other

Point particle
with umit charge

Quadratic
potential well

5 —
*—oo L & 09 /‘;

T

Figure 2.1: A schematic picture of eigenvalues (Coulomb fluid particles) repulsion,
in presence of a quadratic potential well.
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2.4 The classical ensembles
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Figure 2.2: Normalized histogram of eigenvalues of Gaussian 10 x 10 random

matrices, averaged over 10000 samples.

plotted in fig. 2.2. The agreement with the theoretical distribution (2.4.3) is
excellent already for N = 10.

Finite N results for the spectral density and higher order correlation functions
are known from the general Gaudin-Mehta theory, using the orthogonal polyno-
mial techniques (see discussion in previous section). For example, for 3 = 2 the

density for finite N can be found (see e.g. [36]) in terms of Hermite polynomials:

1 277, H2 AV/2n)
(N) —2n\2 Z

pe’ V)= —o (2.4.4)

Gap distributions for the Gaussian ensemble are known [46] in terms of infinite
products. For the case of nearest-neighbor spacing, a rather accurate approxima-
tion is provided by the so-called Wigner’s surmise, which is the exact result for
N = 2. The general formula for the probability of having a spacing s (measured

in units of the mean level spacing) between the two eigenvalues reads:

2

PP (5) = CysPe 0 (2.4.5)
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2.4 The classical ensembles

where the constants Csz and o ensure the following:

/00 Tg)(s)ds =1= /00 S?E}B)(S)ds (2.4.6)

0 0

The cumulative distribution of the largest eigenvalue for the GUE case has
been given by Tracy and Widom [53] in terms of a Painlevé IV trascendent. For
the other symmetry classes, a good reference is Dieng [54], which contains more
general results for the distribution of the m-th eigenvalue in the large N regime.

It is worth mentioning that a matrix model with independent (but not iden-
tically distributed) entries, corresponding to the jpdf (2.4.2) for real § > 0, has
been found recently by Dumitriu and Edelman [47]. From the point of view of
numerical sampling of random matrices, their construction is extremely efficient

and will be adopted in section 3.5 for the Wishart-Laguerre case.

2.4.2 Wishart-Laguerre ensemble

Consider a rectangular (M x N) matrix X whose elements X;; represent some
data. The N entries of each of the M rows constitute the components of an
N-dimensional vector X; (with i = 1,2,..., M). The vector X; (the i-th row
of the array) represents the i-th sample of the data and the matrix element
X,; represents the j-th component of the vector )Z'Z For example, suppose we
are considering a population of M students in a class, and for each student we
have the data of their heights, their marks in an examination, their weights
etc. forming a vector of N elements (or traits) for each of the M students.
Then the product W = XTX is a positive definite symmetric (N x N) matrix
that represents the covariance matrix of the data (unnormalized). This matrix
characterizes the correlations between different traits. The spectral properties of
this matrix, i.e., its eigenvectors and eigenvalues, play a very important role in the
so called ‘principal components analysis’ (PCA) of multivariate data, a technique
that is used regularly in detecting hidden patterns in data and also in image
processing [55; 56; 57], amongst other applications [58]. In PCA, one diagonalizes
the covariance matrix W and identifies all the eigenvalues and eigenvectors. The
data are usually maximally scattered in the direction of its principal eigenvector,

corresponding to the largest eigenvalue and are least scattered in the direction of
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2.4 The classical ensembles

the eigenvector corresponding to the minimum eigenvalue. One can then prune
the data by successively getting rid of the components (setting them to zero)
along the eigenvectors corresponding to the smaller eigenvalues, but retaining
the components along the larger eigenvalues, in particular those corresponding
to the maximal eigenvalue. This method thus reduces the effective dimension of
the data. This technique is called ‘dimensional reduction’ and forms the basis of
e.g, image compression in computer vision [57].

When the underlying data are random, e.g. the elements of the matrix X are
independent and identically distributed (i.i.d) random variables, real or complex,
drawn from a Gaussian distribution, the product matrices W = XX constitute
the so called Wishart ensemble, named after Wishart who first introduced them
[4]. In literature one can also find the term ’Laguerre’ ensemble, because the
Laguerre polynomials arise in the analytical treatment of its spectral properties
(e.g. spectral density and higher order correlation functions for finite NV, see also
Appendix C). It is also called ’chiral’ ensemble, because in the applications to
the low-energy sector of gauge theories, random matrices with chiral symmetry
(modelling the Dirac operator) appear (see e.g. [10]).

The Wishart-Laguerre (hereafter WL) ensemble of random matrices has since
appeared in many different contexts, such as multivariate statistical data analysis
[55; 59], analysis of the capacity of channels with multiple antennae and receivers
[24], low-energy QCD and other gauge theories [10], knowledge networks [60] and
also in statistical physics problems, such as a class of (1+ 1)-dimensional directed
polymer problems [41]. Very recent analytical results include the distribution of
the matrix elements for the Anti-Wishart matrices (when M < N) [61; 62] and
distributions related to entangled random pure states [18].

Provided that the joint distribution of the elements of the (M x N) matrix
X (real or complex) is Gaussian, the spectral properties of the Wishart matrix
W = XX have been studied extensively for many decades. For the case when
M > N (the number of samples is larger than the dimension) it is known that
all the eigenvalues are positive, a typical eigenvalue scales as A ~ N for large N

(as remarked earlier), and the joint probability density (jpdf) of the eigenvalues
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2.4 The classical ensembles

is given by:

g
Par(Ar, ... dy) = Kye PrE H AT N - (24)
=1 i<k
where n is a parameter related to the variance of the entries of X (n = 1/2 for
standard normal): in the next chapter, we keep n = 1/2 for simplicity, whereas
in chapter 4 we will keep n completely general (this just corresponds to a trivial
rescaling of the spectrum).
From (2.4.7), the average density of eigenvalues in the large N limit (with
c= N/M < 1 fixed) has a scaling form pwr,(X\;c) = 2nN~1 f(2nN~1)), where:
1
f(@) = s—v (& —z_)(z} —x) (2.4.8)

2w

is the Marcenko-Pastur (MP) function [63] on the compact support x € [z_, x|,
2
with x4 = (\/LE + 1> . (This result was also rederived by a different method by

Dyson [64] and the spectral fluctuations were numerically investigated by Bohigas
et al. [65]). Thus, for ¢ < 1, all the eigenvalues lie within a compact Marcenko-

Pastur sea and the average eigenvalue (see also appendix B),

N

2.4.9
2nc’ ( )

) = / T v = 2

For all ¢ < 1, the distribution goes to zero at the edges x_ and x,. For the case
c=1(r_ =0 and v, = 4), the distribution diverges as /2 at the origin,
flz) = %\/m for 0 < z < 4. For the Anti-Wishart case (M < N, i.e.,
¢ > 1) where one has M positive eigenvalues (the rest of the (N — M) eigenvalues
are identically zero), the corresponding result can be obtained from the M > N
case simply by exchanging M and N.

For finite N, results for the spectral density and higher order correlation
functions are readily obtained using Laguerre polynomials. For § = 2, see (C.0.7)
upon putting & = v = 1. Several interesting results are also available for the
distributions of individual eigenvalues. A comprehensive account of the literature
on this subject, together with our generalizations, is provided in section 4.4.2.

Another interesting ensemble closely related to Wishart is the one considered
e.g. in [66] and studied in [18], with applications to entangled quantum states

and quantum information.
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Figure 2.3: Normalized histogram of eigenvalues of Wishart matrices N =
10, M = 30, compared with Marcenko-Pastur and finite /N result.

2.4.3 Jacobi ensemble

The Jacobi ensemble is the third classical ensemble we consider. It bears its
name from the Jacobi polynomials Pk(a’ﬂ )(m), which are orthogonal on [—1, 1]

with respect to the weight function:
wy = (1 —2)*(1 + z)? (2.4.10)

The Jacobi matrices are obtained as combination of Wishart matrices, and differ-
ent conventions are adopted in the literature, with rather confusing consequences.
A good source of information is the Muirhead’s book [23], although it must be
complemented with more recent accounts.

A very clear definition of the Jacobi ensemble is given in [67; 68]: consider
two normalized Wishart matrices Wy = M X, X! and Wy = M; ' X,X1, the first
obtained from a rectangular (N x M;) matrix X; and the second from a (N x M)
matrix Xy (M, My > N). The elements X;;, of both matrices X are drawn

independently from a real (or complex) standard normal distribution (N (0, 1) or
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2.4 The classical ensembles

N(0,1/v/2 +iN(0,1/v/2)). Then, define the matrix J = (W, + Wy)""W;. The
eigenvalues of J are random variables between 0 and 1, whose jpdf is given by
[69]:

N
Py(Ar,- . An) oc [T A M2 - a ) MmN Ty = A (24010)

j=1 i<k

After the change of variables A — (1—M\)/2, we recover the Jacobi weight function
(2.4.10).

The limiting eigenvalue density can be obtained using a Coulomb gas analogy
and reads [68]:

VO 5, N

A) = 2.4.12
pJ( ) 271'60()\) ( )
on the support [b_, by], where:
CO(/\) = /\3(01 — Cg) + )\2(62 - 261) + )\Cl (2413)
1 — 2
by = — (1—c) (2.4.14)
cf—C+2+c—cacF2V/o+c—ac
a = N/M, (2.4.15)
ca = N/M, (2.4.16)

Depending on the values of ¢; and ¢y, both soft edges or hard edges in 0,1 are
allowed. The finite N density is written in terms of Jacobi polynomials and will be
extensively discussed in chapter 5 in connection with the quantum conductance
problem. In fact, the Jacobi ensemble also arises as the distribution of certain
combinations of sub-blocks of unitary distributed matrices, and this construction
will be reviewed in chapter 5.

Numerous results are available in the literature for gap probabilities [67] and
also distributions of the extreme eigenvalues [21]. The former results reveal inter-
esting connection with the theory of Painlevé equations, whereas the latter have

been nicely extended to the case of arbitrary [ in [69].
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Figure 2.4: Normalized histogram of eigenvalues of a Jacobi ensemble with N =
30, M; = 40 and My = 50 (¢; = 0.75 and ¢ = 0.6, for § = 1 (red points), and
corresponding limiting distribution (2.4.12) (solid black line).
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When people thought the FEarth
was flat, they were wrong. When
people thought the Farth was
spherical, they were wrong. But if
you think that thinking the Earth
18 spherical is just as wrong as
thinking the Earth is flat, then
your view is wronger than both of

them put together.

C hapt er 3 ISAAC ASIMOV

Large deviations of the maximum

eigenvalue

3.1 Tracy-Widom distribution: typical fluctua-

tions of the largest eigenvalue

The average density of states for large matrices in the Gaussian or Wishart-
Laguerre ensemble has been introduced in the last chapter. It is worth remarking
that such quantity is highly non-universal and depends strongly on the confining
potential of the ensemble under consideration. Thanks to Dyson’s Coulomb gas
approach, it is also fairly easy to derive (at least for invariant ensembles) by
solving an appropriate singular integral equation of Tricomi type (see section
2.3).

Conversely, much harder efforts are needed for universal quantities in the large
N limit, the prototype being the distribution of extreme eigenvalues. On a level
of full mathematical rigor, this programme was undertaken by Tracy and Widom
[53; 70] in a series of breakthroughs since 1994. Two fundamental questions have

been answered there:

e What is the typical scale of fluctuations with N of the largest eigenvalue of

a N x N Gaussian matrix?
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3.1 Tracy-Widom distribution: typical fluctuations of the largest
eigenvalue

e What is the full limiting distribution (N independent) of the rescaled largest

eigenvalue for large N7

The outcome of their analysis is the following: from the semi-circle law, we know
that the average of the maximum eigenvalue will lie at the upper edge point
V2N. But for finite but large N, this eigenvalue will fluctuate around its mean.
Tracy and Widom showed that such fluctuations occur over a narrow scale of
O(N~'/6) around the upper edge of Wigner’s sea. More precisely, the scaling
variable £ = v2N'[Anac — V2N] has a limiting N-independent distribution
Prob[¢ < z] = Fj(z). The function Fjs(x) depends on the Dyson’s index 3 of the

ensemble: for example, in the f = 2 case it reads

Fy(z) = exp (— / . x)q(t)2dt> (3.1.1)

where ¢(s) satisfies the following Painlevé II equation:
¢" = sq+2¢° (3.1.2)

with the boundary condition ¢(s) ~ Ai(s) as s — oo (Ai(s) is the Airy function).
Analogous results hold for § =1 and § = 4:

Fi(2)? = Fy(z) exp (— / h q(t)dt) (3.1.3)

F (%)2 — Ry (cosh < / N q(t)dt>>2 (3.1.4)

For an efficient numerical implementation of Fjs(x) and its density fz(x) =
4L Fy(z) , see [T1]. The density is depicted in fig. 3.1.

It is quite remarkable that such distribution, which generalizes in a non-trivial
way the families of Weibull, Gumbel and Fréchet distributions for the maximum
of independent identically distributed random variables [72], has since cropped up
in a number of seemingly unrelated problems [73]. Without being exhaustive, we
can mention the longest increasing subsequence problem [74], directed polymers
in (1 + 1)-dimensions [41; 75], several (1 + 1)-dimensional growth models [76], a
class of sequence alignment problems [77], mesoscopic fluctuations [78] and also

financial applications [79].
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3.1 Tracy-Widom distribution: typical fluctuations of the largest
eigenvalue

-0.1
-8

Figure 3.1: Tracy-Widom density for 7 = 1,2, 4.

As another signature of universality, the same Tracy-Widom law has appeared
in more recent times as the limiting distribution of the largest eigenvalue of
Wishart-Laguerre matrices. More precisely, it was proven by Johannson (5 = 2)
and Johnstone (3 = 1) that! for large N and for ¢ < 1 [41; 59]

1 2 1 4/3
Amax = (% + 1) N + /6 <% + 1) NY3x (3.1.5)

where the random variable y converges in distribution to Fj(z). Note, however,
that the scale of typical fluctuations around the average value x,(c)N (upper
edge of the Maréenko-Pastur distribution) is ~ O(N'/3) in this case: while in
the Gaussian case the shape of the density of the largest eigenvalues becomes
narrower as N increases, in the Wishart-Laguerre case it gets broader. This
prediction can be easily checked numerically.

In contrast with the typical and narrow fluctuations described by the Tracy-
Widom distribution, an interest for the notion of extreme wvalue statistics and
atypical fluctuations arose very recently [40] in the context of Gaussian random
matrices. For the general theory of large deviations in the case of uncorrelated
random variables, the reader is referred to [80]. In the following section, we review

motivations and results, whereas in the subsequent part of this chapter we apply

'No similar results appear to be rigorously known for 3 = 4.
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3.2 Gaussian random matrices: large deviations of the maximum
eigenvalue

the Coulomb gas approach and functional methods introduced in [40] to the case

of Wishart-Laguerre random matrices.

3.2 Gaussian random matrices: large deviations

of the maximum eigenvalue

Suppose that the following question is asked: given a N x N Gaussian random
matrices, what is the probability Py that all its eigenvalues are positive (or neg-
ative)

Py = Prob[A; >0,..., Ay > 0]7 (3.2.1)

Clearly, from the semicircle law one expects that on average half of the eigenvalues
should be positive and half negative: hence, Py is presumably very tiny. How
does Py behave for large N7 This question came up recently in different contexts,
such as string theory [81] and statistics of minima of a random polynomial [82]
(for a more detailed account, see [40]).

A decay of the form Py =< exp(—£6(0)N?) had been anticipated for a number
of years [83] in studies of the index (number of negative eigenvalues) of Gaussian
matrices, where we use the notation < to mean precisely that limy_.[— log Py /BN?] =
6(0).

However, a precise determination of #(0) was provided only recently by Dean
and Majumdar [40]. Their method is based on a combination of the standard
Coulomb gas analogy (introduced in the last chapter) and functional methods.
This technique has been since exploited in many other problems in statistical
physics [42; 84; 85; 86].

In the following section, we are going to provide a detailed treatment of a
similar but slightly more complicated problem, where the very same technique
can be applied, namely the issue of large deviations of the maximum eigenvalue in
Wishart random matrices [42]. In section 5.4, the same technique will be essential
to provide large deviation formulas for distribution of physical quantities in the

quantum transport problem.
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3.3 Coulomb gas approach and functional methods for Wishart
matrices

3.3 Coulomb gas approach and functional meth-

ods for Wishart matrices

In the context of PCA (Principal Component Analysis) already mentioned in sec-
tion 2.4.2, this large deviation issue arises quite naturally because one is there
interested in getting rid of redundant data by the ‘dimension reduction’ technique
and keeping only the principal part of the data in the direction of the eigenvec-
tor representing the maximum eigenvalue, as mentioned before. The ‘dimension
reduction’ technique works efficiently only if the largest eigenvalue is much larger
than the other eigenvalues. However, if the largest eigenvalue is comparable to
the average eigenvalue (), the PCA technique is not very useful. Thus, the
knowledge of large negative fluctuations of Apax from its mean (Apax) = z4(c) N
provides useful information about the efficiency of the PCA technique.

The main purpose of this section is to provide a detailed exposition of exact
analytical results for these large negative fluctuations of A, from its mean value
[42]. Rigorous mathematical results about the asymptotics of the Airy-kernel de-
terminant (i.e. the probability that the largest eigenvalue lies deep inside the
Marcenko-Pastur sea) for the case ¢ = 1 and [§ = 2 have been recently obtained
[87]. Here we follow the Coulomb gas approach already introduced in section 2.3:
the eigenvalues of a random matrix are interpreted as a fluid of charged inter-
acting particles, for which we can use standard functional integration methods
of statistical physics. This approach has been exploited in the context of the
Wishart-Laguerre ensemble for the first time by Chen and Manning [88], who
performed a detailed asymptotic analysis of the level spacing for general 5 and
determined the distribution of the two smallest eigenvalues in a certain double-
scaling limit. Here we adopt this method for the maximum eigenvalue of the
Wishart ensemble.

We show that for ¢ < 1, the probability of large fluctuations to the left of the
mean (Apax) =~ 24 (c) N behaves, for large N, as

Prob [Amax < t, N| < exp {—g]\fg(l) (%, C):| (3.3.1)

where t ~ O(N) < z,(c) N is located deep inside the Marcenko-Pastur sea and

®_(x;c) is a certain left rate (sometimes also called large deviation) function
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3.3 Coulomb gas approach and functional methods for Wishart
matrices

with x being the main argument of the function and ¢ being a parameter. In this
chapter, we compute the rate function ®_(z; ¢) explicitly. Knowing this function,
it then follows that for large N

Prob [Amax < (\) = N/e¢, N] < exp(—6(c)N?), (3.3.2)

where the coefficient

0(c) = §<1>_ (\% et c) | (3.3.3)

For example, for the case c =1 (M = N), we show that

6(1) = 3 (logQ _ 2—5’1) —0.177522... B. (3.3.4)
The corresponding result for the Anti-Wishart matrices (M < N) simply follows
by exchanging M and N. In this chapter, we focus only on the left large deviations
of Amax- The corresponding probability of large fluctuations of A, to the right
of the mean (Apyay) was previously computed explicitly by Johansson [41].

As a byproduct of our analysis, we provide the general expression for the
spectral density of a constrained Wishart ensemble of matrices whose eigenvalues
are restricted to be smaller than a fixed barrier.

Our starting point is the joint distribution of eigenvalues of the Wishart en-
semble in (2.4.7) with n = 1/2. Let Py(t) be the probability that the maximum
eigenvalue A, is less than or equal to t. Clearly, this is also the probability that
all the eigenvalues are less than or equal to ¢ and can be expressed as a ratio of

two multiple integrals:

Zy(t
Pr(t) = Prob[Ape < 1] = IZ<O> _

[ [T dM .. dAy exp(—= 5 F[X])

— 20 o e (3.3.5)
f() fO d)\ld)\NeXp(—gF[)\])
where:
N 9 N
FIN =) M- (1 +M—N - 3) D loghi =Y log|h = Al (3.3.6)
i=1 i=1 j#k

Written in this form, F' mimics the free energy of a 2-d Coulomb gas of interact-

ing particles confined to the positive half-line (A > 0) and subject to an external
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3.3 Coulomb gas approach and functional methods for Wishart
matrices

linear+logarithmic potential. The denominator in (3.3.5), which is simply a nor-
malization constant, represents the partition function of a free or ‘unconstrained’
Coulomb gas over A € [0,00). The numerator, on the other hand, represents the
partition function of the same Coulomb gas, but with the additional constraint
that the gas is confined inside the box A € [0, 1], i.e., there is an additional wall
or infinite barrier at the position A = t. We will refer to the numerator as the
partition function of a ‘constrained’ Coulomb gas.

Note that in the Gaussian case, the external potential is harmonic over the
whole real line (V(\) = A\?/2), while in the Wishart case, V() = oo for A < 0
(infinite barrier at A = 0) and V() = A —(1+ M — N —2/3)log A for A > 0
representing a linear+logarithmic potential. By comparing the external potential
and the logarithmic interaction term, it is easy to see that while for Gaussian
ensembles a typical eigenvalue scales as A ~ /N for large N, for the Wishart
case it scales as A ~ N (as already remarked in section 2.4.2).

After defining the constrained charge density:

1 N

on(N) = ov(Nit) = Z S(A=X)0(t—N) (3.3.7)

and taking into account the following trivial identity for a generic function h(z):

N

> h(\) = N/d)\@N()\)h(/\) (3.3.8)

i=1

we may express, for large IV, the partition function Z;(¢) in (3.3.5) as a functional
integral [40]:

2:(0) [ Dlaw] exp{—§ [N | naan
—N(M—N—I—l—Z/ﬁ)/t@N()\)log)\d)\
0
— N? Y AN on(N)log [N — N|dAdN
/O/OQM Jon(X) log A — X

= Cox () loglan (V] ] } (33.9)
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3.3 Coulomb gas approach and functional methods for Wishart
matrices

where the last entropic term is of order O(N) and arises from the change of
variables in going from an ordinary multiple integral to a functional integral,
{Ai3] = [an(M)] [40].

The constrained charge density on(A) obviously satisfies g (A) = 0 for A > ¢
and [ on(N\)d = 1.

Since we are interested in fluctuations of ~ O(N), it is convenient to work
with the rescaled variables A = x N and ( = ¢/N. It is also reasonable to assume
that for large N, the charge density scales accordingly as on(\) = N1 f (A/N),
so that f(z) = 0 for 2 > ¢ and foc fla)de = 1.

In terms of the rescaled variables, the energy term in (3.3.9) becomes propor-
tional to N? while the entropy term (~ O(XN)) is subdominant in the large N

limit. Eventually we can write:

20 [ Dlfless (—§N25[f<x>; q+ o<N>) (3:3.10)
where:
S[f(x);¢] = / 2 f(z) dx—a/ f(z) log(x)dz+
/ / ') log |z — o' |dwdz’+
e U z)dz — 1] (3.3.11)
where we have introduced the parameter a = %C for later convenience. In

(3.3.11), C is a Lagrange multiplier enforcing the normalization of f .
For large N we can evaluate the leading contribution to the action (3.3.11)

by the method of steepest descent. This gives:
I} N
Z(¢) o exp |~ S N2S[f*(2);¢] + O(N) (3.3.12)

where f* is the solution of the stationarity condition:

08 @)d _ (3.3.13)

0f(x)
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3.3 Coulomb gas approach and functional methods for Wishart

matrices
This gives for 0 < x < (:
<.
r—alogr+ C) = 2/ f()log |z — 2'|dx’ (3.3.14)
0
Differentiating (3.3.14) once with respect to x gives:
L_«a 33/ d’ 0<z<( (3.3.15)
o T 3.
2 2z x —a -

where P denotes the Cauchy principal part.

Finding a solution to the integral equation (3.3.15) is the main technical task.
The next two subsections are devoted to the solution of (3.3.15), first for the
special case ¢ = 1 and then for 0 < ¢ < 1. We remark that the solution of (3.3.15)
gives the average density of eigenvalues in the limit of large N for an ensemble
of Wishart matrices whose rescaled eigenvalues are restricted to be smaller than
the barrier (. We will refer to f (x) as the constrained spectral density.

Before proceeding to the technical points, it may be informative to first
summarize the results for the constrained spectral density f (x) in the general

0 < ¢ <1 case. The most general form is:

flo) = 5= \/—CLTS 3 [A@, 0 x]

where L, is the lower edge of the spectrum and A is related to the mutual po-

(3.3.16)

sition of the barrier with respect to the lower edge. In the following table, we

schematically disclose the values for L; and A in the different regions of the (¢, ()

plane:
c= 0<e<l
0<(<uxy Ly =0 (3.4.4) Ly: see (3.4.22)
(barrier effective) | A= 4%4 (3.4.4) = a,/ > ( (3.4.16)
¢ >y Li=0 L1 =T_
(barrier ineffective) A=(=4 A=(=uz,

Table 3.1: Values of Ly and A in the different regions of the (¢, () plane.
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matrices

. MARCENKO-PASTUR FOR c=1

W)b//

\ TRACY-WIDOM

Figure 3.2: The dashed line shows schematically the Marcenko-Pastur form of the
average density of states for ¢ = 1. The average eigenvalue for ¢ = 1 is (A\) = N.
For ¢ = 1, the largest eigenvalue is centered around its mean (Ap.x) = 4N and
fluctuates over a scale of width N'/3. The probability of fluctuations on this scale

is described by the Tracy-Widom distribution (shown schematically).

The support of f is:
Li(c,¢) < <min|(, A(c, )] (3.3.17)

At the lower edge of the support L;(c, (), the density vanishes unless ¢ = 1,
in which case it diverges as ~ 1/y/x.

At the upper edge of the support, according to the value of the minimum (¢ or
A(c,€)) in (3.3.17) the density can respectively diverge as ~ 1/4/¢ — x or vanish.

Note that the unconstrained Marcenko-Pastur law (2.4.8) is recovered from

(3.3.16) when the barrier is ineffective, i.e. ¢ > z,.
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3.4 Gaussian decay of O(N) fluctuations and ex-

act results for the rate function

3.4.1 The case c=1

In this case, the support of the unconstrained spectral density is (0,4] and the
Marcenko-Pastur law prescribes an inverse square root divergence at x = 0 .
Furthermore, the density vanishes at x = 4 (see Fig. (3.2)).

In the constrained case, the barrier at ( is only effective when 0 < ( < 4.
When the barrier crosses the point ( = 4 from below, the density shifts back
again to the unconstrained case.

The integral equation for f(z) (3.3.15) becomes:

_fP/ S g 0<as<c (3.4.1)
x—x
The general solution of equations of the type:

¢ f@)

0 T—a

dr' = g(z) (3.4.2)

is given by Tricomi’s theorem® [52]:

fla) = /\/ 79w d +B (3.4.3)

S 7

where B is an arbitrary constant. After putting g(w) =1/21in (3.4.3) and deter-

mining B by the normalization condition fo x)dr =1 we finally get:
fo) = e [§ 424 0sesc @aw)
r)=——7—— 1= —x x 4.
2m\/x(¢ — x) -

2
A plot of this charge density for two values of the barrier ( is given in Fig. 3.3.

In summary, the average density of states with a barrier at ( is given by:

— L [$+2-2] 0<(<4

flo)y=4" ri:” (3.4.5)
i\ T ¢=4

'We will make an extensive use of this formula throughout this thesis.
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Thus, for all ¢ > 4, the solution sticks to the ( = 4 case. Note that both cases in
(3.4.5) can be obtained from the general formula (3.3.16).

Now we can substitute (3.4.5) back into (3.3.14) to find the value of the
multiplier C and eventually evaluate the action S[f*(x); (] (3.3.11) explicitly for

0<(<4

X 2
S(C) :== S[f*(x); ] :210g2—10g§+g—§—2 (3.4.6)

From (3.3.12), we get Z;(¢) < exp(—BN?%5(¢)/2). For the denominator, Z, =
Z1(C = 00) = Z1(¢ = 4) < exp(—N?5(4)/2), where we have used the fact that
the solution for any ¢ > 4 (e.g., when ( = o0) is the same as the solution for
¢ = 4. Thus, eventually the probability Py(t) (3.3.5) decays for large N as:

Putt) = 20 < exp {-D71500) - s10)
— exp {—§N2<I>_ (4NN_ L 1) } (3.4.7)

where the rate function is given by

x JJ2
O (2:1) = {210g2—10g(4—93)—z—§ x>0

3.4.8
0 <0 ( )

and is plotted in fig.3.4.

We now turn to the original problem of determining the probability of the
following extremely rare event, i.e. that all the eigenvalues happen to lie below
the mean value (see (2.4.9) for n = 1/2 and ¢ = 1) (\) = 04N Apn(A)dA = N.
Starting from (3.4.7), this is easily computed by putting the barrier at the mean
value t = N, i.e., ( = 1. We then get for large N:

Prob [Amax < (A) = N, N] < exp[—60(1)N?] (3.4.9)
where
(1) = gcp_ (3;1)
= p (10g2 - g—i) : (3.4.10)

Since we are calculating here the probability of negative fluctuations of Ay .x
of O(N) to the left of the mean (Anax) = x4 (c)N, when the argument of the left
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rate function ®_(z;1) is very small (i.e., for fluctuations < O(NN)), (3.4.7) should
smoothly match the left tail of the Tracy-Widom distribution that describes fluc-
tuations of order ~ O(N'/3) to the left of the mean (An.) = 24 (c)N. Indeed,

from (3.4.8) as x — 0:

3:3

192
and substituting (3.4.11) in (3.4.7) we get, for fluctuations < O(N) to the left of

the mean,

O_(2;1) ~ (3.4.11)

Py(t) =< exp —%]\72(4—15/]\7)‘3

= exp [—|x[*/12] (3.4.12)

where y = (t — 4N)/(2*/*N'/3). This coincides with Johansson’s result [41] for
the Tracy-Widom fluctuations in (3.1.5) for ¢ = 1 and indeed we recover the left
tail of the Tracy-Widom distribution.

3.4.2 Thecase0<c<1

Our approach is very similar to the previous case. However, some additional
technical subtleties, which we emphasize, arise in this case.

As in the unconstrained case, we expect a lower bound L; = Ly(c, () to the
support of the constrained f (x). The parameter L; will be determined later
through the normalization condition for f(z).

It is convenient to reformulate (3.3.15) in terms of the new variable y = x— Ly,
measuring the distance with respect to the lower edge of the support, where f ()
is assumed to vanish.

Equation (3.3.15) then reads:

Lo_a 5 [T 1), 0<y<lL (3.4.13)
2 2y+ L) 0o Y-y
where we have denoted L = ( — L; and f(y) = f(y + Ly).

The general solution of (3.4.13) in this case is:

o= |3 VB ) 3414

T Yy(L —y) y+ Ly
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and the constant B’ is determined by the condition f(y = 0) = 0. Thus we get:

~ . \/ﬂ A—Ll—y
fly) = oL [ ST L } (3.4.15)

where:
A= A(c, Q) = an/(/Ly (3.4.16)

Note that everything is expressed in terms of the only still unknown parameter
L.

From (3.4.15) we can infer two kinds of possible behaviors for f(y) due to the
competing effects of the singularity for y — L (where the denominator vanishes)
and the suppression for y — A — L; (where the numerator vanishes).

Thus, depending on which of the following two conditions applies once we

have put the barrier at (:

<« (1)
>« (II) (3.4.17)

f can diverge at y = L or vanish at A — L; respectively. In (3.4.17) we have
restored the functional dependence for clarity.

This is a subtle point because, given the barrier at , we cannot determine
a priori which of the previous conditions holds. In fact, Li(c, () should be de-

termined a posteriori separately for each case from the normalization condition:

/0 fly)dy =1 (3.4.18)

Once this is done, it turns out that the conditions (3.4.17) can be reformulated

in terms of the position of the barrier ¢ in the following much simpler way:

0<¢<azy (I)
¢>xzy (I (3.4.19)

We summarize here the final results in the two cases.
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3.4.2.1 Casel.0<(<ux,

The normalization condition (3.4.18) leads to the following cubic equation for

w=w(c, ) =+/Li(c,():
w® — 22+ a) + Cw +2a/C =0 (3.4.20)

which has always three real solutions, one negative (wg) and two positive:

2p 0 + 2km
wi(c, () = e cos ( 3 > k=0,1,2 (3.4.21)
where: )
p =-[22+a)+(
¢ =20/C
2 3
B =-(i+5)
o =+/-D*/27
@ = arctan <@>
. q

Note that wy < w;. By considering the limiting behavior as ( approaches 4, we

conclude that the right root to be chosen is wsy(c, (). Thus:
Li(e,¢) = w(e,Q) (3.4.22)

Finally, we can write down the full constrained unshifted spectral density as:

f(ac) 1 xr— Li(c, Q) {A(c,C)—x]
2 J(—x x
valid for Li(c,{) < z < ¢ where Li(c, () is given by (3.4.22) and A(c, () by
(3.4.16).
A plot of f(x) for ¢ = 0.1 and ¢ = 14 is given in fig. 3.5. In this case,
Li(c,¢) =~ 4.60084 and A(c, () ~ 15.6996.

(3.4.23)

3.4.2.2 Casell. (> x,

In this case, the barrier is immaterial and we should recover the unconstrained
Maréenko-Pastur distribution. The support of f(y) is [0, A— L;] and this implies
that we can safely put L = A — L; in (3.4.18).
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The integration can be performed and coming back to the unshifted spectral

density f(z) we get:

valid for Ly < z < Ly where:

(3.4.24)

L, =a_
Ll (3.4.25)
LQ = L1 + L= Ty

which is the unconstrained Marcenko-Pastur distribution, as it should.

It is interesting to evaluate the limit ¢ — 17 in (3.4.23) and (3.4.24) in order
to recover the result (3.4.5) in subsection 3.4.1. The case of equation (3.4.24) is

obvious. For the other, it is a matter of simple algebra to show that:

lim Li(c,¢) =0 (3.4.26)
lim A(c.¢) = (¢ +4)/2 (3.4.27)

so that (3.4.23) matches (3.4.5).

Furthermore, Cases I and II should match smoothly as ¢ hits precisely the
limiting value x,. This corresponds to A(c,() = (¢ — A(c,zy) = x,. It is again
straightforward to check that this last condition implies L;(c,z;) = z_ so that
(3.4.23) recovers (3.4.24).

The interesting case for computing large fluctuations is Case I. One can insert
(3.4.23) into (3.3.11) in order to evaluate (3.3.12). It turns out that the integrals
involved can be analytically solved in terms of derivatives of hypergeometric func-
tions, but a more explicit formula is derived in Appendix A. We give here a plot
of the rate function ®_(x;¢) that describes the large fluctuations of O(N) to the
left of the mean (A\yax) = 24 (c)N:

= exp {—gNQ(I)_ (x+ - %; c) } (3.4.28)
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Figure 3.3: Constrained spectral density f (x) for the barrier at ( =1 and { = 2

The plot is given in Fig. 3.6 for several values of ¢ approaching 1. The limiting
case _(z;1) (3.4.8) is also plotted.

We can now compute to leading order the probability that all the eigenvalues
are less than the mean value (\) = N/c. This amounts to putting the barrier
at t = N/c in (3.4.28), which gives ®_ (% + 1; c>. Several numerical values are

given in the following table.

c | d_ <% + 1; c)
0.1 0.475802
0.2 0.449162
0.4 0.414592
0.6 0.390245

0.8 0.37104
0.95 0.358805
1 0.355044

Table 3.2: Some values of the rate function (see text for further explanation).

44



3.5 Numerical checks

®_(x; 1)

Figure 3.4: Rate function ®_(z;1).

3.5 Numerical checks

The results in the previous sections have been numerically checked on samples of
hermitian matrices (§ = 2) up to N = 30, M = 300 and the agreement with the
analytical results is already excellent. We describe in this section the numerical
methods and results.

A direct sampling of Wishart matrices up to those sizes is computationally
very demanding. We applied the following much faster technique, suggested in
[47].

Let Lg = BB} be the tridiagonal matrix corresponding to:

X2a

XB(N-1) X2a—p

Bg ~ (3.5.1)

X8 X2a—pB(N-1)
Bg is asquare N x N matrix with nonzero entries on the diagonal and subdiagonal
and a = (8/2)M. The nonzero entries yj are independent random variables ob-
tained from the square root of a y2?-distributed variable with k degrees of freedom.

It has been proved in [47] that Ls has the same joint probability distribution of

eigenvalues as (2.4.7) for n = 1/2. Thus, as far as we are interested in eigenvalue
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3.5 Numerical checks
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Figure 3.5: Constrained spectral density f(x) for c = 0.1 and ¢ = 14.

properties, we can use the Lz ensemble instead of the original Wishart one. This
makes the diagonalization process much faster due to the tridiagonal structure of
the matrices Lg.

We report the following four plots: the first two (fig. 3.7 and 3.8) are for the
case ¢ = 1 and the last two (fig. 3.9 and 3.10) for the case ¢ = 0.1.

In fig. 3.7, we plot the histogram of normalized eigenvalues A/2N for an initial
sample of 3 x 10° hermitian matrices (8 = 2, N = M = 30), such that matrices
with Apax/2N > ¢ are discarded. The barrier is located at ¢ = 3. On top of it
we plot the theoretical distribution (3.4.5).

In fig. 3.9, we do the same but in the case N = 10, M = 100. The barrier is
located at ¢ = 14. The theoretical distribution is now taken from (3.4.23).

To obtain the plots in fig. 3.8 and 3.10, we generate ~ 5 x 10° L, matrices for
different values of N = 7 — 30 (or 15). The parameters (c, () are kept fixed to
the value (1, 3) for fig. 3.8 (z; =4) and (0.1, 14) for fig. 3.10 (x4 ~ 17.32). The
constraining capability of those barriers can be estimated by the ratio x(c,() =
(x4 — ()/(x4+ — x_), corresponding to the window of forbidden values for the
largest eigenvalue. We get x(1,3) = 0.25 and (0.1, 14) =~ 0.26, to be compared
with the values of k(c, () = (2++/c)/4 for the barrier at the mean value ¢ = 1/c,

which would give respectively x = 0.75 and x ~ 0.58. This relative mildness
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3.6 Summary and outlook

2 4 6 g 10 *
Figure 3.6: Rate function ®_(z;c¢) for the following values (from left to right) of
c=1,0.8,0.6,0.4,0.2. See also Figure 3.4.

of the constraint allows to get a much more reliable and faster statistics in the
simulations.

For each value of N, we determine the empirical frequency r(N) of constrained
matrices as the ratio between the number of matrices whose largest rescaled
eigenvalue is less than ¢ and the total number of samples (5 x 10°). The logarithm
of r(N) vs. the size N is then naturally fitted by a parabola aN? +bN + ¢ to test
the prediction for a in formulas (3.4.7) and (3.4.28).

The best values for the coefficient a of the leading term are estimated as
—0.006153 (¢ = 1) and —0.0357 (¢ = 0.1), to be compared respectively with the
theoretical prediction ®_(1;1) ~ —0.006432 and ¢_(z; — 14;0.1) ~ —0.03666.
Despite the relatively small sizes and the O(N) corrections, the agreement is

already good.

3.6 Summary and outlook

In this chapter, we have studied the probability of atypically large negative fluc-
tuations (with respect to the mean) of the largest eigenvalue Ap.x of a random

Wishart matrix. The standard Coulomb gas analogy for the joint probability
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Figure 3.7: Constrained spectral density on(A) for N = M = 30. The barrier is
at ¢ = 3. In dotted green the histogram of rescaled eigenvalues over an initial

sample of 3 x 10° matrices (3 = 2). In triangled red the theoretical distribution.

distribution of eigenvalues allows to use the tools of statistical physics, such as
the functional integral method evaluated for large N by the method of steep-
est descent. Using these tools, we have analytically computed the probability of
large deviations of A,.. to the left of its mean. In particular, the main moti-
vation was to compute the probability of a rare event: all eigenvalues are less
than the average (A\) = N/c. This implies that the largest eigenvalue itself is
less than (A\) = N/c. This question is relevant in estimating the efficiency of the
‘principal components analysis’ method used in multivariate statistical analysis
of data. Our main result is to show that, to leading order in N, this probability
decays as ~ exp[—gNQCI),(\% + 1;¢)], where ®_(x;¢) is a rate function that we
have explicitly computed. The quadratic, instead of linear, N-dependence of the
exponential reflects the eigenvalue correlations.

Furthermore, our method allows us to determine exactly the functional form
of the constrained spectral density, i.e., the average charge density of a Coulomb
gas constrained to be within a finite box A € [0, ¢].

All the analytical results are in excellent agreement with the numerical simu-

lations on samples of hermitian matrices up to N = 30, and the estimates of the
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3.6 Summary and outlook

Log (r(N))

Figure 3.8: Natural logarithm of the probability that all the rescaled eigenvalues
are less than ¢ = 3 vs. N for the case ¢ =1 (x = 4). The data points are fitted
with a parabola (solid line).

large deviation prefactor are already good even for N ~ 15.
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Figure 3.9: Constrained spectral density on(A) for N = 10, M = 100 (¢ =
0.1). The barrier is at ¢ = 14. In dash-dotted green the histogram of rescaled

eigenvalues over an initial sample of 5 x 105 matrices (3 = 2). In triangled red

the theoretical distribution.

Log(r(N))

Figure 3.10: Natural logarithm of the probability that all the rescaled eigenvalues
are less than ¢ = 14 vs. N for the case ¢ = 0.1 (x4 ~ 17.32). The data points

are fitted with a parabola (solid line).
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There are sadistic scientists who
hurry to hunt down errors instead
of establishing the truth.

MARIE CURIE

Chapter 4

Deformations of

Wishart-Laguerre ensembles

4.1 Motivations

In this Chapter, we introduce and solve exactly a one-parameter deformation
of the standard Wishart-Laguerre (WL) ensemble for all three [ classes. What
is the motivation to further generalize WL ensembles? In the finance and risk
management domain, the empirical covariance of a set of N assets over a tem-
poral window of size M has been under scrutiny for some time [90; 91; 92], and
its eigenvalues were shown to be distributed in reasonably good agreement with
the Marcenko-Pastur (MP) law, as if they were originated by a completely un-
correlated data series. However, the same analysis repeated by several groups
[93; 94; 95] on different data sets have shown that either the part of the spectrum
corresponding to extremely low eigenvalues - the most interesting for portfolio
selections - or the fat tails are not reproduced by this crude approach. This has
led to the appearance of more sophisticated models [95; 96; 97], e.g. the multi-
variate student distribution where the variance of each matrix entry becomes a
random variable. Another deformation of the WL ensemble has been introduced
in [98] where sparse matrices X were considered. This setting has many appli-
cations in communication theory and in complex networks (namely in the study
of spectral properties of adjacency matrices). All these generalizations lead to

a deformation of the MP law, and thus lie outside the WL class. However, the
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4.1 Motivations

lack of invariance in such models generally spoils the complete solvability for all
correlations functions.

Conversely, a generalized model with power-law tails which is exactly solv-
able in principle appeared in [97]. However, the analysis in [97] was restricted to
the macroscopic spectral density, whereas many more interesting results, and ulti-
mately a complete solution of the model can be obtained. This goal is achieved by
exploiting techniques and results introduced in previous works, where the Wigner-
Dyson (WD) class was generalized using non-standard entropy maximization and
super-statistical approaches [37; 89].

We will follow these lines and provide a complete solution for all three 3 of
a generalized WL model with rotational invariance, with an emphasis on the is-
sues of universality and complete integrability for all spectral correlations, both
macroscopic and microscopic [43]. After a proper rescaling and normalization,
our N-independent correlations depend only on a single parameter &, which con-
trols the power-law decay. In the limit of a large parameter & > 1 we recover
all standard WL correlations. For completeness, we also mention another gener-
alization of WL which exploits a different direction. In [99] the unitary WL were
generalized to display critical statistics.

This chapter is organized as follows. In the next section 4.2 we define our
generalized WL ensembles as a one-parameter deformation, including a general
polynomial potential V' for all three § = 1,2 and 4. The general solution for
finite-NV is given applying the method of (skew) orthogonal polynomials to an
integral transform of the standard WL ensembles.

In the next section 4.3 we take the macroscopic large-N limit for the spe-
cial case of the confining potential V' (A) = A. As already mentioned in chapter
2, 'macroscopic’ refers to the smooth part of the spectrum, considering correla-
tions on a distance large compared to the mean level-spacing. We re-derive a
generalization of the semi-circle and MP spectral density, see refs. [37] and [97]
respectively. As a new result we compute the average position of an eigenvalue
and the position of a pseudo edge. The former leads to the correct scaling with N
and an N-independent generalized spectral density displaying a power-law decay.

Section 4.4 is devoted to the microscopic large-N limit, where correlations on

the order of the mean level-spacing are computed. Here we can use the known
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4.2 Definition of the model and finite-N solution for general potential

universal WL results as an input to our model. In the case when the difference
of the matrix dimension M — N is kept finite the spectrum has a hard edge at
the origin. In two subsections we compute its microscopic density there, gener-
alizing the universal Bessel-law as well as the corresponding smallest eigenvalue
distribution for all three (.

In section 4.5 the nearest neighbor spacing distribution in the bulk of the
spectrum is computed using a Wigner’s surmise at N = 2 for our generalized

model. In the appendices B and C technical details are collected.

4.2 Definition of the model and finite- N solution

for general potential

The joint probability density of our generalized WL ensembles is defined as follows
in terms of matrix elements

P,X] dX (1 + %TH/(DCTDC)) de (4.2.1)
where X is a matrix of size M x N with real, complex or quaternion real elements
for the values B = 1,2 or 4, respectively. We define M = N + v for later
convenience, where v > 0 may be either finite or of order O(NNV) in the large-N
limit. The integration measure dX is defined by integrating over all independent
matrix elements of X with a flat measure. Expectation values of an operator O
(denoted by (O),) are defined with respect to P, in the usual sense.

The real positive parameter v is to be specified below, and we keep an addi-
tional variance-like parameter n > 0. The so-called potential V' is taken to be a
polynomial of finite degree d, although some of the universal results we inherit
from the WL ensembles are known to hold for a much larger class of functions.

The measure (4.2.1) is well-defined and integrable only if the following condi-
tion holds

vd > §N(N+u) (4.2.2)

This condition, which is derived in appendix B, can be seen when changing to

radial coordinates for the matrix XTX, see e.g. [36]. In particular, the large-N
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4.2 Definition of the model and finite-N solution for general potential

behavior of any spectral property cannot be taken for fixed v, and a prescrip-
tion about the way both quantities should approach infinity needs to be given,
respecting the inequality eq. (4.2.2).

A similar model was introduced earlier generalizing the (non-chiral) Wigner-
Dyson ensembles for a Gaussian potential [37], and a similar interplay between
the deformation parameter v and the matrix size N was observed.

In the limit of an infinite deformation parameter

lim P,[X] = exp[-nfTrV(X'X)] = P[X] (4.2.3)

y—00

we recover the standard WL ensembles denoted by P[X].
The generalized ensembles can be related to the standard WL through the

following integral representation:

1 [e.o]
1+2)77 = —/ dé et 71 e® 4.2.4
( ) I'(v) Jo ( )
Inserting this into the definition eq. (4.2.1) we obtain
P,[X] = 1 / h dé e & exp {—5 @TrV(xTDC) (4.2.5)
I'(v) Jo v

This relation is crucial to solve our generalized model both for finite- and large-
N. The same trick was used for the generalization of the Gaussian ensembles
introduced previously in [37]. In fact, a similar technique was employed much
earlier in [36] when solving the fixed and restricted trace ensembles by writing
them as integral transforms of the Gaussian ensembles.

An advantage of our model over some other generalizations of WL [95] is its in-
variance under orthogonal, unitary or symplectic transformations. In particular,
for § = 1 Burda et al. [97] considered a very general family of probability dis-
tributions of the form: P;[X] ~ f(Tr XTC'XA™!) where C and A represent
the true correlation and autocorrelation matrices respectively, and f is a non-
negative and normalized weight function. Only in the special case C = A =1
invariance is recovered. This approach has been modified in [95] to allow for a

time-dependent random volatility.
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4.2 Definition of the model and finite-N solution for general potential

From eq. (4.2.5) (or eq. (4.2.1)) we can immediately go to an eigenvalue basis

of the positive definite matrix XTX, to obtain the following jpdf

N -7 N N
n 13(pa1)—
P(Atsee o Ay) = (1+—ﬁ§jv<m> [T T = wl?
v i=1 i=1 j>k
1 oo
= — d€ e ¢ &7V PO, 4.2.6

It is expressed through the jpdf of the standard WL!

N N

PO awi§) = [T e [—ﬂvu»] [Tn-xnP @27
i=1 v j>k

depending on & through its weight exp [—{%V()\)]. In both jpdf’s we have

suppressed the constant from the integration over the angular degrees of freedom.

For completeness, we also define the corresponding partition function

0o N n8 N -7 N L)1 N
2, = / [Ton (1+225 v | [ [T =
0 34 T i=1 >k
I Y
_ F(7)/0 d¢ e € & 1Z(§) (4.2.8)

which is again an integral over the standard, £-dependent WL partition function

0o N N
2(6) = / [Tan 22 exp [—5 @vu»] [T - (429
0 =1 v >k
Because of this linear relation between the generalized and standard ensembles
we can immediately express all k-point eigenvalue density correlation functions,
denoted by R for finite-/V, in terms of each other. They are defined in the usual
way (see [46] and chapter 2):

N! 1

Ry(Ai,... ) = mz—/o Ay dANPy (A, - AN)
Y

[ e 29 .
_ /0 de =€ & IP(V)ZWR()\D...,)\,?,Q (4.2.10)

'For notational simplicity, we suppress hereafter the subscript WL in the jpdf (2.4.7).
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4.2 Definition of the model and finite-N solution for general potential

where the k-point correlation functions of the standard ensembles depend on &

through the exponent in the measure

R(/\l,...,Ak;g) = M 1)/Ood)\k_H"'d)\NP(/\l,...,AN;S) (4211)
0

K 2()

The latter can be solved using the method of (skew) orthogonal polynomials
[46], expressing them through the determinant of the kernel of the orthogonal
polynomials for § = 2, or the Pfaffian of the matrix kernel of skew orthogonal
polynomials for # = 1 and 4. We only recall here the simpler 8 = 2 case (see
section 2.2) and briefly outline § = 1 and 4, referring to [46] for more details.

Let us define monic orthogonal polynomials and their norms for § = 2 as

follows - 9
/ d\ N exp [—g 7"1/@)] PPN = hidw (4.2.12)
0
Introducing their kernel
N-1
Ky p) = (Ap)ze S5 VOVEDN 3P (A P(p) (4.2.13)
k=0

and applying the Christoffel-Darboux identity for A # u

Py(A)Py-1(p) = Pn(p) Py-1())

4.2.14
- (4.2.14)

N—-1
ST PN Pep) = byt
k=0

we can express all eigenvalue correlations of the standard ensemble through this
kernel [46],

1<i,j<k
where in the r.h.s. the dependence on £ is not shown explicitly.
We thus arrive at

Z () N
Iz, Jet | [Kn(Ai, )] (4.2.16)

ROveoh) = [ dgete
0

which is the main result of this section. The simplest example is the spectral
density R,(\) given by the integral over the single kernel Ky (A, A). Notice that
it is normalized to! N = [* dAR,()).

I Again, we will use the symbols R or p to denote densities normalized to N or 1 respectively.
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4.3 Macroscopic large-N limit for the potential V(\) = A

In order to take N large we only need to know the asymptotic of the polynomi-
als Py, take a finite determinant of size k of the asymptotic kernel and integrate
once with respect to . In appendix B the orthogonal polynomials, the corre-
sponding densities and partition functions are worked out in detail for finite-N
and the potential V' (A) = X at 3 = 2, given in terms of Laguerre polynomials and
their norms.

As pointed out already the same result eq. (4.2.16) holds for # = 1 and 4
when replacing the determinant by a Pfaffian, Pf[kx(\;, A;)], where xx is a 2 x 2
matrix kernel. For the weight V(\) = X its skew orthogonal polynomials are
explicitly known as well in terms of Laguerre polynomials [100; 101].

For completeness, we also give the partition function occurring inside the

integrand in eq. (4.2.16) in terms of the norms h; of orthogonal polynomials

N-1 N-1
2(6) = N[ = NURY T[N (4.2.17)
=0 =0

or their ratios r; = h;'jil. An identical result holds for 3 = 1 and 4 in terms of the
skew orthogonal norms [46].

In the Gaussian case the ratio of partition functions Z(€)/I'(7)Z, in eq.
(4.2.16) can be obtained most explicitly at finite-N for all 3 values of 5 by chang-

ing to radial coordinates, see appendix C for a derivation.

4.3 Macroscopic large-N limit for the potential
V(A=A

In this section, we restrict ourselves to the potential V' (A) = A, deriving a general-
ization of the MP spectral density of WL for all three 3. It exhibits a non-compact
support and power-law behavior for large arguments, and we consider two cases.
In the first subsection, we deal with matrices that become asymptotically square
with M — N = v = O(1). In the standard WL ensembles, as already remarked
in section 2.4.2, at large-N the spectral support is a semi-compact support on

the positive semi-axis, where the origin represents a hard edge. In the second
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4.3 Macroscopic large-N limit for the potential V(\) = A

subsection, we take the limit

. N
MIJ{/IEOOM = c (4.3.1)

with ¢ < 1, corresponding to the case M — N = v = O(N). In the WL ensembles,
the resulting MP macroscopic spectral density takes support on a positive interval.
Conversely, in both cases ¢ = 1 and ¢ < 1 our generalized macroscopic density

will have support on the full positive real semi-axis.

4.3.1 Generalized semi-circle for ¢ =1

The finite-N density for the WL ensembles R(\;¢) is well known in terms of
Laguerre polynomials, see eq. (C.0.7) for 8 = 2 in the appendix C. This results
into an explicit integral representation for the spectral density of our generalized
ensembles, see eq. (C.0.10). Despite this result, it is rather difficult to extract
information about the macroscopic large-N limit from those analytical formulae,
both for the standard and generalized WL ensembles.

Hence, we follow here an alternative route, already exploited in [37]: we di-
rectly insert the large-N result into eq. (4.2.10)'. The N > 1 asymptotic of the
WL density is known and given by the Marcenko-Pastur law, which is in fact the

semi-circle law in squared variables at ¢ = 1

_ n [2N .

It is given here for the weight exp[—nBA] for all three 3, and can be derived
easily using the Coulomb gas approach and saddle point method (see also [102]
and chapter 2).

In order to obtain an N-independent macroscopic density we have to rescale
the argument of the density by the mean eigenvalue position, A — (A)z, and
divide by N to normalize the density to unity. The mean position of an eigenvalue

or first moment, (\),, can be computed in the generalized model for both finite- N

'The correctness of this approach will be exhibited at the end of Appendix C.
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4.3 Macroscopic large-N limit for the potential V(\) = A

and -v (see appendix B),

AR 1
A = TR0 (T (XT0),
v(N +v)

2n(y — gN(N +v)—1)

(4.3.3)

We will comment on the existence of this first moment later, and we will also
need this equation again when we consider ¢ < 1. It correctly reproduces the
known result for WL in the limit lim,_..(\), = (A\) = (N 4+ v)/2n (see chapter
2). For the WL case we thus obtain the following known N- and [-independent

macroscopic density from eq. (4.3.2)

p(r) = lim l()x}R(x(/\>) = % %—1, with = € (0,4] (4.3.4)

It is normalized to unity and has mean (z) = 1.

We can now repeat the same steps for our generalized model, where we need
eq. (4.3.2) for the weight exp|—&nfBA /7] (see eq. (4.2.7)). Because of the rescaling
with respect to (\), we now have to specify the N-dependence of 7. We keep the
following combination fixed,

N p
& = lim |[y—=NN+v)-—1 (4.3.5)
N,y—o0 2

with & > 0 finite. This satisfies the constraint (4.2.2). We thus obtain for the

generalized macroscopic density

) 1
palz) = N,I#IEOON@\)VR’Y(:BO\M)
. 1 e Z(&) ng 2N~
= lim —(\ /dgeﬁgﬂ — —1 (436
N, y—o0 N< X g L(7)Zy v || n&z(A), ( )
where the integration is restricted to the interval J = (0, 1] = (0,4d/x].

? na(A)y
In order to compute the integral we still need the following quantity inside the

integrand,
2(¢) gV

T(1)2Z,  T(y- ANV +v))

(4.3.7)
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4.3 Macroscopic large-N limit for the potential V(\) = A

the ratio of partition functions given here for finite-N. This result is derived in
appendix B, see eq. (B.0.5). Inserting all ingredients into eq. (4.3.6) and taking

limits with the definition (4.3.5) we arrive at the following result after changing

variables,
1 46\ 1 44 1
a(r) = — dt ——t] T/ —1
palz) 2arl (G + 1) ( x > /0 P [ x ] t
T(a+ 2) 46\ 3 44
= - Fila+=,a+3—— 4.3.8
e+ ia+3) \z ) @ Tpets—y (438)

Here we have introduced the confluent or Kummer hypergeometric function

Fiabz) = — O / L et a1 — et (4.3.9)

o I'(b—a)l(a) Jo
Eq. (4.3.8) is the main result of this subsection, the macroscopic spectral density
of our generalized WL. It has an unbounded support (0, 00), and the density as

well as its first moment are normalized to unity

/0 T dapa(z) = 1 = /0 S dr 2 pa(a) (4.3.10)

Note that due to this normalization, the parameter n has completely dropped
out. We are left with a one-parameter class of densities depicted in fig. 4.1,
which approach the WL density for & — oo as discussed below.

From the expansion for small arguments 1 Fi(a,b;2) = 1+ 2z + ... we can

immediately read off the power law decay of our new density eq. (4.3.8)

3
lim pg(z) = a @+ f@+y)

e VTG r@ g o) (e

Because of @ > 0 the decay is always faster than quadratic. However, if we
drop the requirement for the existence of the first moment we can allow for &
to take values —1 < & < 0 while satisfying the constraint eq. (4.2.2). Keeping
the same formal rescaling in eq. (4.3.6) we arrive at the same result eq. (4.3.8)
now valid for —1 < & and & # 0 '. Our density can thus describe power laws in
between linear and quadratic decay as well, see fig. 4.1. The same feature could

be incorporated in the generalized Gaussian model [37].

'We use the obvious notation &**! = exp[(& + 1) In|a]].
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4.3 Macroscopic large-N limit for the potential V(\) = A

As a check we can take the limit & — oo on our final result eq. (4.3.8). This
amounts to decoupling the - and N-dependence, and thus we expect to recover
the MP density at v = oco. By taking a saddle point approximation, we find
that this is indeed the case, lims_. pa(z) = p(z). Hence, the density pa(z) is a
well-behaved deformation of the MP density for ¢ = 1.

We can also derive the behavior of the density ps(z) close to the origin.
Using the large argument asymptotic for the confluent hypergeometric function
at negative argument, lim, o, 1Fi(a,b;—=2) = 27°I'(b) /T (b — a)(1 + O(1/z2)), we
find that

[NIES

oo (& + 1)V

Therefore all our generalized densities have a square root singularity at the origin,
just as the MP density.
To illustrate our findings we first plot eq. (4.3.8) in Fig. 4.1 (left) for different

values of &, and compare it to the semi-circle density eq. (4.3.4). In order to

(1+0(x)) (4.3.12)

visualize the square root singularity for all @ we map the density from the positive

to the full real axis by defining

Jaly) = lylpa(y®) (4.3.13)

that is to a normalized density on R, ffooo dyds(y) = 1. In this form it equals
the deformed semi-circle law derived from generalizing the Gaussian ensembles
in [37], where we have eliminated all irrelevant parameters.

The same map eq. (4.3.13) takes the MP density eq. (4.3.4) to the semi-circle,

as mentioned already several times,

Yy) = 4 — 2 (4.3.14)

1
o
Both densities are shown in Fig. 4.1 (right). For & = 14 it already approximates
the semi-circle very well. For negative —1 < & < 0 the height of the maximum
in fig. 4.1 (left) goes down again, for & = —0.5 the curve is even below the
semi-circle.

As a final point of this subsection let us discuss the issue of macroscopic

universality of our generalized density, eq. (4.3.8). This is a direct consequence
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4.3 Macroscopic large-N limit for the potential V(\) = A

Figure 4.1: The macroscopic generalized density eq. (4.3.8) pa(x) shown on the
positive real line R, for & = —0.5, 0.1, 0.5 and 14 in light blue, blue, red and
green, respectively (left), and its map 94(y) = |y|pa(y?) to the full real line R
(right). Note that the MP or semi-circle density given in black for comparison

has compact support on (0,4] and [—2, 2] respectively.

of the (non-)universality of the MP or semi-circular density, due to the linear
relationship eq. (4.2.10).

The semi-circle possesses a certain weak universality, being the same for all
three Gaussian ensembles at § = 1,2, 4, as well as for independently distributed
random variables (this was shown already by Wigner). Consequently our gener-
alized density is universal in this weak sense, too.

On the other hand, the polynomial deformation of the confining potential in
the definition of our model is clearly non-universal, as the semi-circle becomes a
polynomial times one or several square root cuts, and we refer to [103] for details
at 0 = 2. Remarkably, it was found in [103] for 8 = 2 that all macroscopic
two- or higher k-point connected density correlation functions are universal under
such perturbations V', depending only on a finite number of parameters for any
degree d. Does this universality persist in our model? The answer is no, simply

by looking at the definition of the connected two-point density:
RN ) = Ry(A p) — By (A Ry (1) (4.3.15)

We use the same definition for the standard WL density. It no longer relates lin-

early to the corresponding connected WL two-point density as we would subtract
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4.3 Macroscopic large-N limit for the potential V(\) = A

an integral of the product of two 1-point densities, instead of the product of two

integrated 1-point densities:

conn _ - —& ¢y— Z(f) .
I A Tl OV

_ > e € g1 Z({) . > o€ el Z’(f) .
A e e ) A e
[ Tage f% R, 1 €) (4:3.16)

The universal macroscopic connected two-point function obtained in the large- N

limit p°"™(x, y; €) in [103] will thus mix with the non-universal density p(x; ), and
the same feature persists for higher k-point connected correlators. This should
not come as a surprise as the same situation was encountered in the fixed or
restricted trace ensembles [36], being an integral transformation of the classical
Wigner-Dyson ensembles. As observed there, our microscopic correlations will
remain universal, see section 4.4.

In the next section we will study the limit % — ¢ < 1. The corresponding
standard WL ensemble can be mapped to the so-called generalized Penner model
[104] with positive definite matrices. The extra determinant from the Jacobian
of this change of variables can be written as an extra logarithm in the potential
V — V 4+ Nln|A|. For the same reason as given above the universal findings
made in [104] for the unitary ensemble 5 = 2 do not translate to the macroscopic

limit in the next section either.

4.3.2 Generalized Marcéenko-Pastur law for ¢ < 1

In this subsection we deal with the limit in which the matrix X remains rectangu-
lar, that is both M and N = ¢M become large such that limy ps 0o N/M = ¢ < 1.
This limit is particularly relevant for applications to real data series.

We will follow the same steps as in the previous subsection. We recall that in
the standard WL ensembles with weight exp[—n(A], the corresponding density is
given by the MP law (see 2.4.2),

lim R(\) = n ()\ - ﬁx) <%x+ - )\) , with A€ [ﬁx, ﬁm]

N>1 T 2n 2n

(4.3.17)
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4.3 Macroscopic large-N limit for the potential V(\) = A

We recall here the definition of the bounds for the MP support (see again section
2.4.2)
zi = (c2+£1)?%, with 0<c<1 (4.3.18)

In the limit ¢ — 1 we recover from eq. (4.3.17) the semi-circle eq. (4.3.2) from
the last section.
The N-independent density is again obtained after rescaling by the mean
eigenvalue position
yN

My = oIV (4.3.19)

where we have used M = N + v = N/c. For large v we obtain the quantity
(A) = 2=, which is the average position for the standard WL in our limit ¢ < 1.

We thus obtain for the rescaled MP density

p(x) = lim i(A)R(x()\)) _ Vi —cx )(cxy —x), with 2 € [cx_, cxy]

© 2mex
(4.3.20)

It is normalized to unity with mean (x) = 1.

For the generalized model we have to insert eq. (4.3.17), now with weight
exp[—f"y—ﬁ)\], into eq. (4.2.10) and rescale with respect to eq. (4.3.19). As previ-
ously we keep fixed

a = mlb—ﬁw%ﬂ},mm@>o (4.3.21)

Nyy—o0 2c

as in eq. (4.3.5). The rescaled generalized density is thus given by

pa(r) = NI%IEOONO\%RW@@\)W)
= lim l e~ €gr—1 Z(S) né T — ﬂx ﬂx —x
= im0, fde e mm\/ (o0~ gig-) (e 001

where J = [%m_, %:EJF] . Filling in all definitions and changing variables we finally

arrive at the following main result of this subsection:

palt) = (—O‘) [ e || e =m0

2rcal’ (6 +1) \ z
(4.3.23)
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4.3 Macroscopic large-N limit for the potential V(\) = A

Our density in normalized to unity and has first moment (z) = 1. This result was
derived previously (modulo different notations) for 5 = 1 in [97], using different
methods. The integral in eq. (4.3.23) can be computed in principle in terms of
a confluent hypergeometric series in two variables (see [105], formulae 3.385 and
9.261(1)), but the integral form is more convenient for numerical evaluations and
an asymptotic analysis. As a first check we recover eq. (4.3.8) in the limit ¢ — 1.
Furthermore, one can show that the following limit holds, lims_. pa(x) = p(z),
recovering the MP density eq. (4.3.20). Thus the large-N limit and the large-
v limit are again well behaved. We have also checked in appendix C that the
convergence with N towards the density eq. (4.3.8) is very fast, see fig. C.1,
in fact faster than for WL. Our remark from the previous subsection allowing

—1 < & < 0 applies here too.

1=

091
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03F
0.2~

01

0 -
0 0.5 1 15 2 25 3 35 4 4.5 5

Figure 4.2: The macroscopic generalized density ps(z) eq. (4.3.23) for & = 3
and ¢ = 0.3 (blue), compared to the MP distribution p(z) (4.3.20) (black). In the
inset, the behaviour close to the origin is shown. The red dashed line corresponds

to the pseudo edge X_ of our generalized MP density (see main text for details).
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4.4 Universal microscopic large-N limit for a general potential V/

It is easy to see how the density decays for large z > 1
i) (ca)d+!

2rT(a + 1) C(1+0(1/x)) (4.3.24)

palx) ~ @
with the same power law as for ¢ = 1. The constant € is given by

C =
2’ x_

co| —

. 3 —x_
(x4 — )22 o Fy (— —@&; 3; —u) (4.3.25)
The asymptotic for small values of = is less obvious to obtain, and we find
pa(x) ~ 7% Y2exp [—%x] D (4.3.26)
x

where the constant D = 2% (v, — x_)"2(ca)*1/2/16T (& + 1).

While the MP density of the standard WL ensemble eq. (4.3.20) has compact
support between [cx_, cx ], our generalized density is non-vanishing on the entire
real positive axis, even for ¢ < 1. To the left of the edge in MP, z < cx_,
our density decreases but remains non-zero. Below a certain point that we will
call pseudo edge, X_, our density becomes exponentially suppressed. From the
asymptotic (4.3.26) it is possible to give an estimate for X_, below which the
density becomes negligible. The reasoning goes as follows: writing the asymptotic
(4.3.26) as

pa(x) = exp {— <(d +1/2)logx + gx)} (4.3.27)
x
the exponential damping conventionally begins at the point X_ where
. ci
(@ +1/2)logX_ + -~ 1 (4.3.28)
For the case depicted in fig. 4.2 (¢ = 0.3 and & = 3), the above estimate reads

X_ = 0.055..., in reasonable agreement with the inset.

4.4 Universal microscopic large-/N limit for a gen-

eral potential V

In this section we consider a different large- N limit, the microscopic limit, which

takes us to the scale of the mean level spacing and thus to the distribution of
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4.4 Universal microscopic large-N limit for a general potential V/

individual eigenvalues. Our findings will be universal for a general polynomial
potential V() for all three § = 1,2,4, inheriting the corresponding universality
from the standard ensembles.

We will only consider the case ¢ = 1 and the so-called hard edge here, deriving
a generalized Bessel-law for the microscopic densities and their first eigenvalue
distributions. For ¢ < 1 the local distribution at the inner (and outer) soft edge of
the standard WL ensembles follows the Tracy-Widom law. Although it would be
very interesting to derive the corresponding generalization we have not managed
so far, and leave this task for future investigation.

In the first subsection the microscopic densities are derived while the second
subsection is devoted to the first eigenvalue distributions. The matching of the
two is illustrated in many pictures throughout this section, being an important

consistency check.

4.4.1 Generalized universal Bessel-law

Let us first recall the definition of the microscopic limit in the standard WL
ensembles, resulting into the universal Bessel-law. We will discuss in detail the
case # = 2 and then only quote the results for 3 =1, 4.

For simplicity consider the simplest case V(\) = A first. Starting from the
weight exp[—nf\] we first scale out the mean eigenvalue A — x(\), just as in
eq. (4.3.4) for the macroscopic limit. On top of that we make a further rescaling
by the mean level spacing 4N?x = y, keeping y fixed. We therefore define the
microscopic limit as

) = Jim R () (141)

where R(\) is the spectral density for finite-/V in one of the three WL ensembles.
The result now depends on # and v as indicated through the indices, in contrast

to the semi-circle law. We can then apply the following asymptotic

lim kLY (g) - (%)7”@(,2) (4.4.2)

k—o00
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4.4 Universal microscopic large-N limit for a general potential V/

to the orthogonal Laguerre polynomials in the finite-N density, see eq. (C.0.7)
for § = 2. We obtain

. 2n y(A)2n\"  _2ny «— K 2ny k 2
(2) — 1 A v N LY A
) = ol >( ) A T v

_ ! / atJ, (Vi) AW (VR (443)

2

I
o |
=
9
=
|
o

after replacing the sum by an integral' with variable t = k/N. The Bessel density
is plotted for different values of v in fig. 4.4 together with the first eigenvalue
from the next subsection, after changing to the conventional squared variables
y — 1y (see eq. (4.3.13)),

919w) = W w2 - L) b)) (44.4)

This result is universal [106] being valid for any potential V' with spectral support
including the origin. We only have to rescale in eq. (4.4.1) by the macroscopic
density in terms of the squared variables 79(0) for a general potential V', instead
of the Gaussian macroscopic density eq. (4.3.14) where 79(0) = 1. In other
words all orthogonal polynomials eq. (4.2.12) tend to Bessel-J functions in the
microscopic limit.

We can now repeat the above analysis for our generalized microscopic density.
The scaling of v with N (& fixed) is kept throughout this entire section. In
the previous section we found that the density diverges exactly like the standard
density as an inverse square root, see eq. (4.3.12). For that reason the microscopic
rescaling is the same, without changing powers of N. However, the constant in
front of the macroscopic density at the origin is not the standard Gaussian result,
1/m = 9(0), but given by eq. (4.3.12), ¥4(0) = b/7 with

b = F(a——l—%) (4.4.5)
I'(a+1)Va

We therefore define the microscopic limit as

BN — 1 1 Y
Pa(y) = im S At (—4N2b2 <A>,y) (4.4.6)

nstead of eq. (C.0.7) we could have applied the Christoffel-Darboux identity eq. (C.0.9),
leading to the same result.
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4.4 Universal microscopic large-N limit for a general potential V/

Because of the universality we just stated, we can restrict ourselves to the
computation for the orthogonal polynomials with weight exp[—2né\/~] in eq.
(4.2.12). Taking the microscopic limit eq. (4.4.6) and inserting eq. (4.4.3) we

obtain
Jivas e o (2 (1/ETa)” = da(1ETR) s (1VETR) )
99, (y) =

T(G+1) i

This is the first main result of this subsection given here in terms of squared values.
The integral could be expressed in terms of generalized hypergeometric functions,
but for plots this representation is preferable. Note that in our calculation we
have inserted the ratio of partition functions eq. (4.3.7) for the Gaussian models.
This quantity is again universal as in the large-N limit not only the polynomials
themselves, but also their norms become universal. Starting from eq. (4.2.17)

the standard WL partition functions is given as follows

N-1 .
i (2@ —1ogN1Y)) = Jim NS (1- ) osln] =

:A}mfnb@ﬁn (4.4.8)

The &-dependent ratios of the norms determined by the so-called string or re-
cursion equation at finite-N have a universal limit r(¢) [106]. Re-exponentiating
and inserting this universal result eq. (4.4.8) into eq. (4.2.8), the generalized
partition function Z, also becomes universal in the large-N limit, and thus the
ratio eq. (4.3.7) as well. The constant factor that we have subtracted on the left
hand side of eq. (4.4.8) cancels out when taking the ratio.

The new microscopic density eq. (4.4.7) generalizing the Bessel-law eq. (4.4.4)
is shown in figs. 4.3 and 4.4 for various values of & and v. The plots include the
corresponding first eigenvalues to be derived later. As a check we can take the
limit & — oo to analytically reobtain eq. (4.4.4) from eq. (4.4.7). This is illus-
trated in fig. 4.3 where we observe that the convergence is rather slow. We have
checked that for & ~ O(150) the first three maxima become indistinguishable.

The procedure for 3 = 1 and 4 is the same as above and so we can be more

concise. The corresponding microscopic densities of the WL ensembles are again
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4.4 Universal microscopic large-N limit for a general potential

2 4 6 8 10 2 4 6 8 10

Figure 4.3: Varying & at = 2: the generalized microscopic density 19&21@) eq.
(4.4.7) (blue) and its first eigenvalue (green) at & = 0.1 (left), & = 2 (middle),
and & = 20 (right), vs the corresponding WL Bessel density 191(,2)(3/) eq. (4.4.4)
(black) and its first eigenvalue (red).
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Figure 4.4: Varying v at = 2: the generalized microscopic density 19&23/((7;) eq.
(4.4.7) (blue) and its first eigenvalue (green) at & = 0.1 vs the corresponding WL
Bessel density 9% (y) eq. (4.4.4) (black) and its first eigenvalue (red): v = 0
(left), » = 1 (middle) and v = 2 (right). It is clearly visible that even the first

eigenvalue of the generalized model has fat tails.

universal [107]. Computed initially in [100; 101] the obtained expressions can be
simplified. They can be expressed through the 8 = 2 density eq. (4.4.4) plus
extra terms as shown for 5 =1 [108] and 5 =4 [109],

1 lyl
) = 9P) + 5y (1— /O dtJy(t)) (4.4.9)

)
S
—~
<
~—
|

1 2|y|
05)(2) = 5 Rl [ deatt) (44.10)

The generalized densities immediately follow. Because of the linear relationship
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4.4 Universal microscopic large-N limit for a general potential V/

they are also expressed through the generalized 5 = 2 density eq. (4.4.7):

Jidg ¢ €[5 1J2,,(Ty\/_d) SRV g 1)
B P +1)

For a given v the inner integral over the single Bessel-J function can be performed

00 () = 97, (2y)

analytically. It is given in terms of Bessel-J functions for odd values of v, e.g.
Jy dtJi(t) = Jo(v), and additional Struve functions for even v.

The generalized microscopic densities 19&5 )V(y) are compared to the standard
ones below in fig. 4.5 for § =1, and in fig. 4.6 for 3 = 4.

Higher order correlation functions can be computed along the same lines by
inserting the asymptotic Bessel kernels into eq. (4.2.16), and we only quote the
simplest final result for § = 2:

z yZ _ &
79&2,3/(?/1,...,%) 12| |/ dé o ¢6 \/‘|?/J

REAC m—a) s (BT — 6

1<i,j<k Yi — Yj

(4.4.11)

The corresponding results for g = 1,4 are given in terms of a Pfaffian of a matrix
kernel [101], and for a discussion of a relation between the three universal kernels
we refer to [107].

A feature we observe for all three g is that for & < O(1) the oscillations of
the Bessel density are completely smoothed out, apart from the first peak. A
similar feature was observed in a generalization of the unitary WL ensemble for
critical statistics [99]. However, no power law tails seem to be present in such a
model where only the generalized microscopic density and number variance were
computed.

It is known that for standard WL the maxima of the Bessel density correspond
to the location of individual eigenvalues [110], as we will see in the next subsection.
On the other hand the microscopic density of the WL ensembles in the bulk is

completely flat, equalling % in our normalization. We may thus suspect that in
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4.4 Universal microscopic large-N limit for a general potential V/

the generalized model the bulk is approached much faster than in the standard
WL, where localized maxima persist to y > 10. We therefore focus mainly on
the first eigenvalue distribution in the generalized model which is the subject of

the next subsection.

4.4.2 Generalized universal first eigenvalue distribution
at the hard edge

The probability that the interval (0, s| is empty of eigenvalues is defined as follows

(see also chapter 2),

1 oo
E. (s) = Z_/ dAi - dANPy (A1, ... AN) (4.4.12)
Y Js
T e o1 28)
= dé e 71 20 _B(si ¢ 4.4.13
/ Moz, 7 R
where the gap probability of the WL ensembles is defined as
1 o

Both quantities are normalized to unity at s = 0 and vanish at s = oo. The

distribution of the first eigenvalue p(s) simply follows by differentiation.

0

Py(s) = =5 Eq(s) (4.4.15)

and likewise for WL. In WL the gap probability F(s) and the first eigenvalue
distribution p(s) are explicitly known and universal in the microscopic large-IN
limit for all v at 8 = 2, for odd values of v and 0 at 3 = 1, and for v = 0 at 3 = 4.
This has been shown by various authors independently [110; 111; 112; 113]. In
some cases only finite-/V results are know in terms of a hypergeometric function
of a matrix argument (see [114; 115] and appendix D), from which limits are
difficult to extract.

Although p(s) follows from FE(s), the most compact universal formulas are
known directly for p(s) for all three § [110]. There, also the second and higher

eigenvalue distributions are given, which we will not consider here.
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4.4 Universal microscopic large-N limit for a general potential V/

We start once more with an explicit calculation for § = 2 and the Gaussian
ensemble. At v = 0 the pre-exponential factor is absent and we have for WL with

weight exp|[—2n\|

N N
1 o0
E(s) = o / dX; - - d\y exp [—Qn Z )\i] H A — M|? = exp[—2nNs]
i=1 >k
(4.4.16)
shifting all integration variables by s and using the invariance of the Vandermonde
determinant. This result is exact for any NV and identical to the properly rescaled
large-N result when keeping Ns fixed.

The generalized ensemble follows easily, by inserting this result into eq. (4.4.13)

[ L6 e Z(§) [_271{]\78} B ( 2nNs)_(7_N2)
E.(s) _/0 dé e=5 &7 I—F(V)ZWGXP > = [1+ > .

which is also exact for finite and infinite N. This very fact implies that we have

full control of the large-N limit.
Now, the microscopic limit can be taken following eq. (4.4.1) for WL:
3 — 1 Yy
eP(y) = lim B (mw) (4.4.18)
where we explicitly indicate the dependence on 3 and v, as in the previous sub-

section. As a result we obtain for § =2 and v =0

1
EXo(y) = exp {—Zy} (4.4.19)
and for the corresponding generalized gap probability
(2 s Y B y (@t
eal) = Jim B (i) = (14 17) (4:4.20)

The first eigenvalue distribution can be compared to the microscopic densities

U4(y) in squared variables:

0 1 1
o) = 5 ) = Ghlew |- (4.421)
for WL, and for the generalized ensemble
. —(a+2)
2) _ 9@ (@+1) Y
- = ——¢&; = 1 4.4.22
pa,u:()(y) ayga,O(y ) |y‘ 24:b2 + 44b? ( )
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4.4 Universal microscopic large-N limit for a general potential V/

These distributions are all normalized to unity,

| v e =1 (1.4.23)
0

The restriction to a confining potential V' (\) = X in the discussion above can
be lifted, as the first eigenvalue distributions for all v are universal, including
the ratio of partition functions that we have inserted again. Eqs. (4.4.21) and
(4.4.22) are compared to the corresponding densities eqs. (4.4.4) and (4.4.7) in
fig. 4.3 for various values of a&.

Next we give the first eigenvalue distribution for general v. Here we directly
use the most compact universal expression [110] for pl(,Q)(y) in WL, without making
the detour over &) (y) [113],

1 1
(2) = - e -
v (y) - 2]y|exp |: 4y :| lg(%,ejtgu [szg+2(\y|)} (4424)

In addition to the exponential in eq. (4.4.21) it contains a determinant of finite
size v X v over the modified Bessel-I function, which is absent at ¥ = 0. Knowing

that the properly rescaled microscopic gap probability is a function of the form
89@;5) = 81(,2)(\/§y/db2), see eq. (4.4.7), we obtain for the generalized first

eigenvalues distribution in terms of squared eigenvalues

o2 () = ﬁ / e et s@<—>38<2> NGLD

a+1

_ 1 e ga &yl £y2 yl 7=
_r(@+1)/0 A et e 2602 { W] 1S, [[’ J“( §/a >]

(4.4.25)

For v = 1, the integral contains only one Bessel-I and can be evaluated in

terms of a hypergeometric function
@ (o _ Y] * e e st &y’ ( >
o0 = gy [ de et e |~ £ (Y Ve

T'(6&+3) y2\ @ ) 46\ 1
_ 2Ty F 3,3: (1 —) 4.4.26
|y|r<a+1>< 14 a3 s (1t (4.4.26)

It is shown in fig. 4.4 (middle), together with v = 2 (right). For increasing v

however, the integral representation eq. (4.4.25) is more convenient.
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4.4 Universal microscopic large-N limit for a general potential V/

Figure 4.5: Varying v for § = 1: the generalized microscopic density ﬁgll(y)
(blue) with its first eigenvalue (green) at & = 0.1 vs the corresponding WL Bessel
density 19,(,1)(y) eq. (4.4.9) (black) and its first eigenvalue (red) at v = 0 (left),
v =1 (middle), and v = 3 (right).

We now turn to 3 = 1. Here the first eigenvalue distribution of the WL
ensembles is only known explicitly for odd values of v in the large-N limit [110],

given by a Pfaffian with indices running over half integers:

. 1 .
() = const [y exp |~ | PEgorcaseg = ) Egsalll)]
(4.4.27)
The constant in front is determined by the normalization to unity and can be com-

puted case by case. An exception is ¥ = 0 where the distribution was calculated
in [111]

1 yl v
(1) yl
= ;2 iy 4.4.2
o) = e+ e |- 2] (4.4.28)
For v =1 and 3 we have from eq. (4.4.27)
1 1

o) = 11yl exp {—gyf} (4.4.29)

(1) 1 L,

o5 (y) = gexp | =2yl Llyl) (4.4.30)

The corresponding generalized formula for general odd v thus reads

(3-1)/2
(1) _ 1 * o e ] € (Y \/? L
A — R d V= | > —
©a,0() cons T(a+1) /0 ferd a2 \ bV a eXP 8db2£y

Plyicijcra [(2 - J)fi+j+3<% f/aﬂ (4.4.31)
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4.4 Universal microscopic large-N limit for a general potential V/

up to the normalization constant. For the simplest examples v = 0,1 and 3

displayed in fig. 4.5 we have

Wy _ 1 » a+2 |?A\/~ |y| G2
Paoly) = 4\/§F(&+1)b/0 K et a  8an?
@+1), )‘@“)

pui(y) = \y!< +
) 1 _ §1 §
o0 = oy | et ey Sapew |- o] n(Wver)

y?
4ab? 8ab?
I'a+

While the density is modified only rather mildly compared to WL, the first
eigenvalue changes considerably. We have checked that the curves converges to
WL for large &, where the convergence to the density is much faster than for
3 = 2. The case v = 0 in fig. 4.5 (left) is the only example where the microscopic
densities do not vanish at = 0. The fact that they both have the same limit
% can also be seen analytically, exploiting that .J,(0) = 0,0 (see egs. (4.4.9) and
following). As mentioned above for v = 2k with & € N the first eigenvalue is
not available to date.

Finally we turn to § = 4. In principle the result is known in the WL ensemble,

3 1
p(()4)(y) = const. |y|'Tzexp [_ﬁyz] Zs2({1yl}2v+1) (4.4.32)

Here Z3/5({y}2v41) is the large-N matrix model partition function at topological
charge 3/2 with 2v + 1 degenerate masses at value y, and we refer to [110] for
a more detailed discussion of these objects. This partition function is generally

known explicitly only for an even number of masses, except at v = 0. There we

have
(4) 1 3 Lo L. 1,
o(0) = VR Iyl exp |50 B = Il (coshty) = sinbio) exp | 527
(4.4.33)
Thus the generalized distribution depicted in fig. 4.6 is given by
pé4) (y) _ m/o dé e € ééﬂrl.

2

(!y| cosh< \/f/_a> - b\/;smh (| ’\/f/_a)> exp {—2551)2] (4.4.34)
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4.5 The generalized Wigner’s surmise in the bulk
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Figure 4.6: Varying v for f = 4: the generalized microscopic density ﬁg%)y(y)
(blue) at & = 0.1 vs the corresponding WL Bessel density 95 (y) eq. (4.4.10)
(black) at v = 0 (left), » = 1 (middle), and v = 2 (right). For v = 0 we also
display the respective first eigenvalue for the generalized (green) and WL ensemble
(red).

We note that the oscillations get smoothed out as already observed at § = 2.

The convergence in & to the WL quantity is again slow, as for g = 2.

4.5 The generalized Wigner’s surmise in the bulk

In this section we study the spacing distribution between eigenvalues in the bulk
in our generalized model. In contrast to the previous sections we do not take N
to be large, but use the N = 2 results, following the original idea of Wigner.

In the Wigner-Dyson ensembles with a Gaussian potential, the spacing dis-

tribution has the simple form (see (2.4.5))
P (s) = Asle P (4.5.1)

known as Wigner’s surmise. The known constants A, B follow from normalization.
For the WL case the corresponding expression can be computed from the jpdf
(2.4.7), where we have introduced the notation v = g(z/ +1)—1:

PO (s) = PRy o (nfs) (4.5.2)

where K,(z) is a modified Bessel function and the constant C' is given by:

-1
C= (2—1/2+ﬂ+"(n5)—3/2—5—vr <—1 J; b ) r (1 + U+ g)) (4.5.3)

Only for 7 = 0, one recovers the Wigner’s surmise, using K_; jo(x) = \/7/2ze™"

(apart from squared variables in the exponent there). For general  one easily gets
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4.5 The generalized Wigner’s surmise in the bulk

an exponential decay for large spacing ~ s%t7e~"% from the asymptotic expres-
sion of the Bessel function. However, we expect that only the ¥ = 0 expression
will lead to a good approximation of the infinite-N case.

Conversely, for the generalized model the spacing distribution has a different

expression:
v+1—vy
i 1 gl
PO (o) — oot (45 P
7 (8) =G 55 12 e e A A Ry
(4.5.4)
where 2 F(a, b; ¢; 2) is a hypergeometric function. The constant C,, can be com-
puted as
o - 2B+ L2014+ 7)I()I(1+5/2) <nﬁ>2””ﬁ7
T T+ DA+ B+ 1+ 6/2)T(y—2—3-20) \ v
(4.5.5)
where B(a, 3) is a Beta function. The large-s decay is now a pure power law
~ 5@+ where we have defined
w=y—0p—-20—-2 >0 (4.5.6)

required to be positive for convergence!.

For v = 0, the spacing distribution takes a much simpler form:
ST(y - 1) snd\ "
pO)(s) — UnO) s (1 + —) 45.7
) = TENG -5 ; 42D

It agrees with the corresponding quantity in the generalized WD ensembles found

in [37]. In this particular case, we can compute the mean level spacing explicitly:

(s)), = /0 s PO (s)ds = (%) % (4.5.8)

which converges to the WL Wigner surmise value for v — oo:

((s)) = /000 s PP (s)ds = 1:56 (4.5.9)

After defining the rescaled quantities having mean spacing 1,
PO @) = (0,2 (((s))2) (4.5.10)
PO (@) = ((NPD (((s))e) (45.11)

!This condition coincides with eq. (4.2.2) derived for the partition function at N = 2.
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4.6 Summary and outlook

we can compare the curves for all three § at v =0 (and n = 1), in fig. 4.7. The
power-law tail modification compared to the standard WL spacing distribution is
evident in the plots. Because in the large-N limit v scales with N, we keep the
combination w in eq. (4.5.6) fixed to be able to compare to spacing distributions
at large-N.

Both in this and the previous section the power-law tail of the macroscopic
density is seen to persist on the microscopic level of the mean level-spacing. It

would be very interesting to confirm this on real data sets.

1.

=

© © o o
N A O DN
o o o o
LN B O ® N

Figure 4.7:  Comparison between P (z) (blue, green) and PP (z) (red), for
B =1,2,4 (from left to right). The « value for the blue curves is chosen is chosen
in such a way that the combination w is kept constant to the value 2. The green
curves have value v = 12,12,25 from left to right, and correctly approach the

limiting WL curve.

4.6 Summary and outlook

In this chapter, we have considered a generalization of the standard WL or chiral
ensembles of random matrices, replacing the exponential of a polynomial poten-
tial by a fat-tailed distribution with parameter . In the limit v — oo we can
recover the exponential and thus the standard ensembles. This modification led to
the appearance of power law distributions governed by a single parameter. Such
a behavior is found in many systems in nature, e.g. in the wide area of complex
networks. WL ensembles are often used as a 'null’ model, whose spectral prop-
erties can be compared with covariance matrices of real data sets. To illustrate

the potential of our results we show a comparison to financial data in fig. 4.8.
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4.6 Summary and outlook

The eigenvalues of the covariance matrix from time series of stock data clearly
show power law behavior. These are well described by our generalized Marcenko-
Pastur density, refining previous comparisons to the standard Marcenko-Pastur
law.

The solution of our generalized model relied heavily on the possibility of writ-
ing it as an integral transform of the standard WL ensembles. This generalization
is thus in the spirit of superstatistics, where other models have been constructed
already. The virtue of our model is its invariance for all three symmetry classes,
allowing to go to an eigenvalues basis and to study universality. We could show
that while the macroscopic density was only weakly universal, all microscopic
densities were universal under any invariant deformations by polynomial poten-
tials. This macroscopic/microscopic dichotomy should not come as a surprise,
being observed previously for restricted trace ensembles.

We exploited the linear relation to standard WL by solving our model ex-
actly at finite- NV for any polynomial potential, using the formalism of orthogonal
polynomials therein. In the subsequent large-N double scaling limit, where ~ is
scaled with N, we derived all density correlations in the macroscopic limit, and
the microscopic limit at the hard edge for all three 3. We have mainly focused
on the spectral density itself and the first eigenvalue distribution. The general
formalism for higher density or individual eigenvalue correlation functions was
provided and is straightforward to use if such quantities will be needed.

While the hard edge was solved exhaustively, persisting in our model for
asymptotically quadratic matrices, we only provided the Wigner’s surmise in the
bulk. Here, more detailed correlation functions could be investigated, including
a possible generalization of the Tracy-Widom distribution at the soft edge. This

is left for future investigations.
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4.6 Summary and outlook

p(A;c)

Figure 4.8: Comparison between the rescaled eigenvalue distribution from finan-
cial data [116] and the macroscopic density for the generalized model (4.3.8), in
red dots and solid blue respectively. The best fit gives a value of & ~ 0.95, which
corresponds to a power-law decay as pg () ~ &=2%.
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Research is to see what everybody
else has seen, and to think what

nobody else has thought.

ALBERT SZENT-GYORGI

Chapter 5

Quantum conductance: the

Jacobi ensemble

5.1 The scattering theory framework

Conductance in mesoscopic systems is currently a very active area of research,
both from the theoretical and the experimental point of view. A common exper-
imental setting is the so-called quantum dot, ’a cavity of sub-micron dimensions,
etched in a semiconductor’ [11]. This cavity is coupled to two electronic reservoirs,
and then brought out of equilibrium by passing a current through the system. A
statistical theory of electronic transport within the cavity has been formulated
independently by Landauer, Imry and Biittiker and a comprehensive account is
provided in [11].

If we imagine that N; and Nj electronic channels are lodged in each of the

two attached leads, the main object to consider is the scattering matrix S:

S = (Z ff,) (5.1.1)

This is a unitary matrix with a block structure, which encodes the linear trans-
formation law between the incoming and the outgoing electronic wave function
coefficients in a given basis. The submatrices r,r’ represent the reflection (left-
left and right-right) respectively, while ¢, are transmission matrices (from left

to right and from right to left, respectively).
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5.1 The scattering theory framework

Unitarity S~! = St is implied by current conservation: as a consequence,
the Hermitian matrices ttf, #'t't, 1 — rrt and 1 — #/s'T all share the same set of
eigenvalues 71, ..., Tx (where N = min(Ny, Ny)), which are real number between
0 and 1.

Many quantities of interest for the experiments can be extracted from the
knowledge of the transmission eigenvalues {7;}: in the following we will mainly
focus on moments of the form T,,, = Tr(tt)™. In particular, the first two moments
are related to the average dimensionless conductance (G/Gy = T7) thanks to the
Landauer-Biittiker formula [117], and to the average shot noise (P/Py = T1 — T3)
[118]. These quantities will be introduced in more detail in next section.

As long as one is interested in universal properties of quantum transport in
chaotic cavities, i.e. those which do not depend much on the sample size or the
amount of disorder, it comes as no surprise that RMT sets in quite naturally.

The starting point is the assumption that the relevant statistical properties of
transmission eigenvalues depend only on few general symmetry requirements, and
are essentially insensitive to the fine details of the scattering matrix S. This leads
immediately to the postulate that S is just a random unitary matrix distributed
uniformly in the unitary group: no other constraint needs to be imposed if time-
reversal symmetry is broken (8 = 2), whereas S must be also symmetric ( =
1) or self-dual (8 = 4) if time-reversal symmetry is present, and spin-rotation
symmetry is present or absent respectively.

The postulate of uniform distribution of S within the unitary group is con-
sistent with a maximum entropy approach d la Balian [119], where one seeks
for a distribution P(.S) within the unitary group that maximizes the information

entropy:
§=— / du(S)P(S)In P(S) (5.1.2)

given some constraints' (u(S) being the Haar measure of the group). The only
requirements of symmetry (8 = 1) or self-duality (8 = 4) lead to the condition

P(S) = const which characterizes Dyson’s circular ensembles [2; 120].

LA similar approach (using Tsallis’ entropy) can be used to derive the probability density
in (4.2.1).
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5.2 Density of transmission eigenvalues for fixed and finite number of
open channels

Additional constraints, leading to more intricate distributions on the unitary
group, have been considered in the literature: in particular, the so-called Poisson

kernel
P(S) o |det(I — ST8)|-ANi+Na=1+2/5) (5.1.3)

generalizes the circular ensemble to the case of non-zero average scattering matrix
S and has proven useful for dealing with chaotic cavities coupled to the leads with
tunnel barriers [11].

In this chapter, we confine ourselves to the simplest case (equiprobability in
matrix space), and derive exact expressions for i) the density of transmission
eigenvalues at arbitrary number of open channels; ii) moments of transmission
eigenvalues at arbitrary number of open channels, encoding the full counting
statistics of the cavity; iii) large deviations for the probability distribution of

conductance and shot noise in the limit of large number of channels [44].

5.2 Density of transmission eigenvalues for fixed

and finite number of open channels

Suppose that one is interested in computing the average shot noise (P), where:
N
P="P>» T,1-T,), N =min(N,Ny) (5.2.1)

P, being a constant related to the physical properties of the conductor [121; 122;
123]. Within the random scattering matrix approach, this quantity is a random
variable between 0 and N/4.

Until 2005, results for (P) were known only in the limiting cases N9 > 1
[11; 124; 125], Ny = Ny = 1 [126] or few open channels [127]. Very recently, a
compact form has been found for (P) /P, using two different methods, based on a
semiclassical expansion [128] and on recurrence relations for the Selberg integral
[129] (see also [130] for an alternative derivation). The latter nicely exploits the

remarkably simple expression for the jpdf of transmission eigenvalues:

ﬁ
Py(Th,..., Tw) =N T 1T — TkyﬂH:m (NemMED= g <1 <1 (5.2.2)

i<k
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5.2 Density of transmission eigenvalues for fixed and finite number of
open channels

where the normalization constant is given by [46; 129]:

Nﬁ=ﬁrr<1+ s I LGN =M+ D7) DO +T5) )

(4 T (3N N[+ 1) + 1+ (N + - 1))

A few comments about (5.2.2) are in order. The jpdf in (5.2.2) is stated in [11]
without proof and attributed to Brouwer. A formal proof has been given (using
three different methods) by Forrester [131] in 2006, where the author also high-
lighted the connection with the jpdf of the Jacobi ensemble of random matrices
[46; 132]. In fact, one observes that the change of variables y; = 1 — 27} brings
(5.2.2) to the form (see (2.4.11)):

(|Nae _
Ps(y1, - yn) = Hly]—yk\BH 1—y,)2 (Nt 1 <y <1

i<k

(5.2.4)
allowing to use the machinery and results already known from Random Matrix
Theory.

In particular, the average density of transmission eigenvalues:

N
Rs(T; N1, No) = (> 6(T = T)) = N ATy ... dTNPs(T, Ty, ... Ty)

i1 [071]N—1
(5.2.5)

is of interest for computing linear statistics, i.e. observables of the form (tr a(tt!)):

(tr a(tth)) = /1 dTRs(T; N1, Ny)a(T) (5.2.6)

0

where a(x) is a given smooth function. The average of moments T,, for a real
number m can be computed in principle from the knowledge of the average density

as:
1
(Tn) = / dT T™Rs(T; Ny, Na) (5.2.7)
0

where the range for m is constrained by the convergence of the integral. As
already mentioned, the first two moments are directly related to the normalized
conductance (a random variable between 0 and N) thanks to the Landauer-
Biittiker formula, and to the shot noise. More generally, the moments are related

to quantities more accessible to measurements, the charge cumulants ((Q,)),
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5.2 Density of transmission eigenvalues for fixed and finite number of
open channels

which quantify the fluctuations in the amount of charge transmitted over an

interval of time [133]:

> %<<Q”>> ==Y (—7711)“1 (T)(e® —1)™ (5.2.8)

Surprisingly, the connection with the Jacobi ensemble mentioned above has
not been fully appreciated so far, with the consequence that the average spectral
density Rg(T'; N1, Ny) for finite and arbitrary number of open channels (N, Ns)
is still deemed unknown (see e.g. [129; 134]). On the other hand, the density is
known in the above mentioned limiting cases [11; 127; 135; 136; 137].

In the mesoscopic literature the Jacobi ensemble is mentioned in the paper
by Araijo and Macédo [127], where the authors derived the average density of
transmission eigenvalues for a small number of open channels and 3 = 2 using

an auxiliary non-linear sigma model. Their result reads:

N-—1
Ry(T; Ny, Ny < 11) =T (20 + p+ D{PPO(1 - 27} (5.2.9)
n=0
where

and P (y) is a Jacobi polynomial.
The authors state in [127]:

...we believe (although we have no formal proof) that Eq. (5.2.9)
is valid for arbitrary Ny and N,. This result is consistent with the
random-matrix approach of Ref. [135; 136], which predicts for the
same system a joint distribution of transmission eigenvalues given by
the Jacobi ensemble, from which Eq. (5.2.9) can be derived. We have
thus found independent evidence for the application of the Jacobi

ensemble in this problem.

However, the invoked references [135; 136] do not mention the Jacobi ensemble,

and work out the only case Ny = N,. More precisely:
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5.2 Density of transmission eigenvalues for fixed and finite number of
open channels

1. Ref. [135] reports the jpdf (5.2.2) restricted to the case Ny = Ny and [ =
1,2. For the case 8 = 2, the term Tlg(‘NTNllH)_l in the jpdf (5.2.2) then
disappears, making the use of Legendre polynomials appropriate. For this
subcase, the authors derive the average density and the 2-point function,

and finally take the large N; = Nj limit to get the smoothed macroscopic
density Ry(T; Ny = Ny > 1) = N/m/T(1 =1T);

2. Ref. [136] deals with all symmetry classes 8 = 1,2,4 and considers the two
cases N = Ny > 1 or N; = Ny = 1. In the first subcase, the authors derive
some quantities of interest with the use of a Coulomb gas approach after

the change of variable T; = 1/(1 + ), ¥ € [0, 00).

We wish to clarify that the average density of transmission eigenvalues for any
N7 and Ns is exactly given by the density of the Jacobi ensemble, where the argu-
ment of the Jacobi polynomials is 1 —27" (i.e. nothing but (5.2.9), for 5 = 2), and
this result descends from the application of the standard Orthogonal Polynomial
Technique (see [46; 138] and Chapter 2) to the (modified) jpdf (5.2.4). In fact,

) appearing in (5.2.9) are precisely the orthogonal

the Jacobi polynomials P’
polynomials over [—1, 1] with respect to the weight (1 —y)* in (5.2.4). The cases
G =1and § = 4 are more complicated, but can be tackled in the same framework
(see [139] and references therein). Also, n-th order correlation functions can be
derived for all three symmetry classes [46; 139]. For example, for § = 2 one
defines the kernel (see [46] - Sections 5.7 and 19.1, and chapter 2):
N-1
Ky(xz,y) = 2"y > " (@2n+ p+ 1)PFO(1 - 22) PP (1 - 2y)  (5.2.12)

n=0
and the n-th order correlation function is written in terms of the (n x n) deter-

minant:

N!
Ro(Ty, ... T)) = —— ATy, ... dTyPy(Ty, ..., T
2( 1 3 ) (N_n)'/[o’l]Nn +1 N ﬁ( 1 N)

= det[KN(T’jaTk)]lgj,kgn (5213)

In particular, the average spectral density (1-point function) is exactly given by:

N-1
Ry(T; Ny, Np) = T ) (20 + pu+ D{PYO (1 — 27} (5.2.14)

n=0
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5.2 Density of transmission eigenvalues for fixed and finite number of
open channels

extending the result (5.2.9) to an arbitrary number of open channels. In Appendix
E, we will show that for p — 0 eq. (5.2.14) recovers the result by Baranger and
Mello [135].

35

T T T

* N1 =6; N2 = 8 (Jacobi)
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% N, =10; N, = 14 (Jacobi)
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Figure 5.1: Density of transmission eigenvalues for § = 2 and different values for
the pair (N1, N3). The plot symbols are used for RMT formula (5.2.14), whereas

solid lines represent the alternative formula (5.2.21)

We can also derive an alternative expression for the average density of trans-
mission eigenvalues and higher order correlation functions for finite N; and N,
and 3 = 2,4, starting from the jpdf (5.2.2). Exploiting a variant of the Selberg
integral evaluated by Kaneko [140], all correlation functions can be expressed in
terms of a hypergeometric function of a matrix argument, instead of a determi-
nant of a kernel as in (5.2.13) (for § = 2).

Consider again the joint probability density of transmission eigenvalues (5.2.2):

)

Py(Ty, ..., Tn) =Nz T[T - TP T [ 0<T; <1 (5.2.15)

N B
T§(|N2—N1|+1)—1
i
i<k i=1

where N = min(Ny, Ny), f = 1,2,4 and the normalization constant is given by
(5.2.3).
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5.2 Density of transmission eigenvalues for fixed and finite number of
open channels

The density of eigenvalues is given by the following multiple integral:
1 1
Rﬂ(Tl,Nl,NQ) :N/ / dTQdTN Pﬁ(Tl,,TN) (5216)

such that the normalization fol Rs(T; Ny, No)dT = N holds (where again N =
min(Ny, N)).

It turns out that the integral above can be evaluated without the use of the
Orthogonal Polynomial technique, which would lead to the formula (5.2.14), if
one resorts to the following extension of Selberg integral given by Kaneko [140]:

n

1<i<n j<k
1<k<m

2 2
Cy L FP? (—n, B(ﬁl +l+m+1)+n—1; Ewl +m); {1, ... ,tm}> :
(5.2.17)

where C is a known constant and ,F’ 1(0‘)

is a hypergeometric function of a matrix
argument. Details about these objects are provided in the appendix D.

From (5.2.16), one has:

8(IN2—N1[+1)-1

NT,
Rj(Ty; Ny, Ny) = —2 N / dTy...dTy [ 1T — Tl
B [0,1]N-1 i<k
N
Iz 2 (Ne=Nil+D-1 (5.2.18)
=2
Now, the Vandermonde coupling can be decomposed as:
N
[z -11°= ] 1-nr[[I5 -1 (5.2.19)
j<k j<k,j=2 j=2
and, for § = 2,4 the absolute value in all products is immaterial. Hence:
NT§(|N27N1|+1)71
Ro(T: Ny, Ny) = / ary...aty [ |7 -1/
B [0,1]V =1 <k j=2
al B(|Ng—Ny|+1)—1 al
Lz [ - 1 (5.2.20)

i=2 =2



5.2 Density of transmission eigenvalues for fixed and finite number of
open channels

Comparing (5.2.20) and (5.2.17), after the following identification:
n =N-1

62 == 0
tk :ZYE k?zzl,...,ﬂQ
m =/
one eventually obtains:
B(|Ny=N;|+1)-1
N C, T
Rg(Ty; Ny, Ny) = et N
B

PP (1= N[Ny — Ni| + N + 1[Ny — Ni| +3—2/8; Ti1p) (5.2.21)

where we have introduced a customary matrix notation in the last argument of
the hypergeometric function. Note that the result (5.2.21) is still formally valid
for any even integer .

We also observe that higher order correlation functions can be easily written
down, exploiting the very same eq. (5.2.17). For example, the two-point function

R,(B’Z)(Th T; N1, N3) can be written (ignoring prefactors) as:
B(|Ny— _
R(ﬁ2)<T17 T27 N17 N2> X <T1T2>2(|N2 N1|+1) 1|T2 o T1|/8

B(|Ng=Ny|+1)—1
lAHw2dfy“dTNIIqu2 SARIR | P
) =3

j<k,j=3
N N
Jlm -1 1] -1l (5.2.22)
=3 j=3

and the (/N —2)-fold integral is again of the same form as (5.2.17) for the following

values of parameters:

(n =N-2
6 =2(INy = N[ +1) - 1
62 :0
Vt, =7, k=1.....3
te =T k=p4+1,...,20
(. m =20

Hence, this time the matrix argument of the hypergeometric function is X® :=

diag | 11, ... ’TE’ TQ, ..., Ty |. Note that the 2-point correlation function

-~ -~

g times g times
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5.2 Density of transmission eigenvalues for fixed and finite number of
open channels

R(ﬁz) (T4, Ty; N7, N») is manifestly symmetric in the two arguments as it should, due
to the symmetry of Jack polynomials (see appendix D). It is worth mentioning
that higher order correlation functions can be written down easily along the same
lines.

Thanks to a very efficient MATLAB® implementation of this kind of hyperge-
ometric functions by Koev and Edelman [141], the density itself, linear statistics
(one-dimensional integrals over the density) and n-th order correlation functions
can be numerically tackled very easily. In particular, these results entirely avoid
the use of (quaternion) determinants and (skew-)orthogonal polynomials which
would arise from the canonical RMT treatment and can get computationally de-
manding for high N; s and n. Conversely, the computational complexity of the
algorithm in [141] is only linear in the size of the matrix argument (8n).

In the following, we shall provide some plots of the spectral density for different
numbers of incoming and outgoing leads, and § = 2 (Fig. 5.1). The agreement
between the two alternative formulas (5.2.14) and (5.2.21) is excellent.

As a final check, we also numerically compute the prototype of linear statistics,

i.e. the (normalized) average shot noise power (P)/Fy (see (5.2.1)), defined as:
1
(P)/Py = / dTRs(T; N1, No)T(1 —T) (5.2.23)
0

where Rg(T; N1, N3) is taken from (5.2.21). The result has to agree with the
analytical expression [128; 129]:

(P)  Ni(Ni—1+2/8)No(Ny —1+2/B)
Po (N =2+2/B)(N - 1+2/8)(N —1+4/8)

(5.2.24)

where N = N; 4+ N,. We compare in Table 5.1 the theoretical result (5.2.24) with
the numerical integration of (5.2.23), obtained in MATLAB® with a standard
integration routine. The agreement we found is excellent, thus confirming the

correctness of (5.2.21).
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5.3 Full counting statistics: exact results for moments of the
transmission eigenvalues

Ny | Ny | 8| Theory | Numerical
4 | 7 |2 0.5939393 | 0.5939393
8 | 11 | 2 | 1.1321637 | 1.1321639
3 19 | 20.4248251 | 0.4248251
4 | 7 |4 0.5805422 | 0.5805424
3 | 5 | 40.4326923 | 0.4326923

Table 5.1: Comparison between the theoretical expression for the average shot-

noise power (5.2.24) and the numerical integration of (5.2.23), for different values

of Ny, Ny and f3.

5.3 Full counting statistics: exact results for

moments of the transmission eigenvalues

For simplicity, we consider again the § = 2 case as in [127]. The moments (7,,)

can be computed as a simple linear statistic on the transmission eigenvalues:
1
(T = [T TP RA(T N o) (5:3.1)
0

Known results about (7,) include:

1. Approzimate evaluation for all positive integer m (but valid in the regime
Ny, Ny > 1) [142; 143]; also, the generating function for all moments in this

limit was first computed in [137].

2. Fzact evaluation (valid for all Ny, Ny, 3) but only up to m = 4 (see [134]

and references therein).

Assuming N; < N, without loss of generality, we can use (5.2.14) and (5.3.1)
with Ny = N and Ny = u+ N:
N-1 1

(Tm) =Y _(2n+p+1) / dr T pwO (1 — 2Ty PRO(1 —2T)  (5.3.2)

n=0 0

After the change of variables T' = (1 — t)/2 and the definition of Jacobi polyno-

mials as:

PWO) () = % ; (—n)i(p +n+ Zk(u +k+ 1), (1 ; t) (5.3.3)
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5.3 Full counting statistics: exact results for moments of the
transmission eigenvalues

(where (a)r =I'(a + k)/I'(a) is a Pochhammer symbol), we obtain:

2n+p+1 n 4+ +k+1
. %mHZ 41§ (U Dulr D

2k k!
k=0

 / dt (1 — tyrtmtk pln0) ) (5.3.4)

The integral above can be computed for m > —p — 1 ([105], formula 7.391.2) in
terms of a hypergeometric function s Fo(—n, u+n+1, u+m+k+1;u+1, u+m+
k+2;1). Since the first argument is a negative integer, the series gets truncated
to give eventually:

N-1 n

(Tm)=> @n+p+1) )

n=0 k.0=0

Mm)Z(—lf(Z)(ani:K> (5.3.6)

Despite lacking the aesthetic appeal of subcases already considered in the
literature [134; 142], formula (5.3.5) is nevertheless valid for any (N, N2) and
m > —p — 1, and is fully non-perturbative. After implementing (5.3.5) in MATH-

g9(k)g(¢)
p+m+k+0+1

(5.3.5)

where:

EMATICA®, one can check by direct inspection that:

1. the formula (5.3.5) agrees with the approximate result in [142] (valid for
Nl; N2 > 1)

@) =20 S (77 e (REEENT

where ¢, = - (*”) (see Table 5.2).

p

2. The shot noise power (P)/Fy, defined as (T7) — (T3), can be extracted from
(5.3.5). Thanks to multiple cancellations, the result can be cast in the very

simple form:

<P>_ N2(u+ N)?
Py (u+2N—1D(u+2N)(u+2N+1) (5.3.8)

which agrees with the known exact result [128; 129] (see also eq. (5.2.24)
below).
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5.3 Full counting statistics: exact results for moments of the
transmission eigenvalues

3. The average conductance (G)/Gy = (T1) from (5.3.5) can be brought to the

simple form:

(G) _ N(u+N)
Go  pu+2N (5.3.9)

which agrees with the known result [135].

p | N | m | Exact (5.3.5) | Approximate (5.3.7)
4 1571 3 18.4240 18.4248
4 |87 | 7 18.637 18.638
12 | 47 | 19 6.7672 6.77002
151 57| 29 6.67909 6.68199
25| 75159 6.34394 6.34704

Table 5.2: Comparison between the moments (7T,,,) computed by Novaes [142] and
our exact derivation (5.3.5). Note that the normalization fol dT Rg(T; N1, N3) =

Np implies that the moments are not constrained between 0 and 1.

Another alternative formula for the moments has been found very recently by M.
Novaes [144]. In contrast with (5.3.5), where the number of terms in the sum
grows with IV; o (whereas the value of m does not matter much), Novaes’ formula

(valid only for integer m) is given by:

where: (1) IV (V. )
o\ P m — 1~ DP)m 2 = P)m
Gop =1 ( ) ) S (5.3.11)

where the notation (z), is standard for the Pochhammer symbol.

The agreement between (5.3.10) and (5.3.5) (for integer m) can be checked
numerically to arbitrary precision. Nevertheless, a direct proof of their equiva-
lence is still elusive. It is indeed possible to recast (5.3.5) in a form similar to
(5.3.10), by exploiting the Christoffel-Darboux formula for Jacobi polynomials in
(5.3.2) and using the binomial theorem. This leads to:

Ty =S Ty, (5.3.12)
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5.4 Large deviations and linear statistics

where:

W, = it N (—1>p<mp_ 1)¢p(u,zv1> (5.3.13)

(/JJ + 2N1)2/H—m

o N) = [

1
(1= ! [P](V“’O)’(t)P]S;‘;OI) (t) — PE (1) P (t)] (5.3.14)

It would be thus tempting to conclude that G,,, = V¥,,, and try to prove this
equality: unfortunately, this is not the case (and can be easily shown numerically).
So, although the full p-sums eventually coincide, the individual summands do
not. The question of how to prove the equivalence of (5.3.10) and (5.3.5) is still
open. On top of that, from none of the three formulas presented above it appears
straightforward to deduce the asymptotic behavior (5.3.7): this is yet another

puzzle that we leave for further investigation.

5.4 Large deviations and linear statistics

So far, we have considered the quantum conductance problem for a fixed and finite
number of open channels. In the case of symmetric cavities (N7 = Ny — pu = 0)
with many open channels N;o > 1, there are many results available for the
average and the variance of the above quantities (conductance, shot noise...)
[11; 137; 142]. In particular, a general formula for the variance of any linear
statistics A = 32 a(\;) (where \; = (1+7;)7") is known from Beenakker [145].
However, at least for the case A = T, (integer moments), this formula is of little
practical use. Is it possible to obtain it following another route? It turns out that
this problem is intimately related to the following: what is the full probability
distribution of the quantities of interest (conductance, shot noise, moments) and
any linear statistics in general?

In contrast with the simple mean and variance, for which a wealth of results
is available, much less is known for their distributions: for the conductance, an
explicit expression was obtained for N; = Ny = 1,2 [135; 136; 146]. For the shot
noise, the distribution was known only for Ny = Ny = 1 [126]. Only very recently,
Sommers et al. [147] announced two rather intricate formulas for the distribution
of the conductance and the shot noise, valid at arbitrary number of open chan-

nels. An integrable theory of quantum transport has been also brought forward
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5.4 Large deviations and linear statistics

in very recent times, where interesting connections with Painlevé trascendents
and integrable hierarchies have been presented [148]. Hardly anything is known
about the distribution of moments or other linear statistics, even though an exact
treatment involving Painlevé functions may be within reach with the techniques
presented in [148; 149].

Given some recent experimental progresses [150], which made eventually pos-
sible to explore the full distribution for the conductance (and not just its mean
and variance), it is of great interest to deepen our knowledge about distributions
of other quantities, whose experimental test may be soon within reach.

It is the purpose of the present section to establish exact large deviation for-
mulas for the distribution of any linear statistics on the transmission eigenvalues
of a symmetric cavity with Ny = Ny = N > 1 open channels. More precisely, for
any linear statistics A whose probability distribution is denoted as P4(A, N), we

have!:
y 2log Ps(Nzx,N)
im |—

N—oo ﬁN2

= W 4(2) (5.4.1)

where the rate function W4 (z) is computed exactly for the conductance (A = G)
and shot noise (A = P). For the case of integer moments, a complete solution is
not yet available, although we can use our partial results to provide an explicit
formula for the variance of T, (see below). The method can be extended to the
case of asymmetric cavities Ny = kN5, and is based on a combination of the
very same Dean-Majumdar method [40] (already used in Chapter 3), this time in
Laplace space.

In fact, given a linear statistics of interest A = sz\il a(T;), the main idea is
to work with the Laplace transform of the probability density P4(A, N), defined

as:

'Hereafter we will use the abbreviated notation P4(A, N) < exp (—%NQ\IIA(A/N)) to

mean exactly (5.4.1), in complete agreement with Chapter 3.
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5.4 Large deviations and linear statistics

We can write the Laplace transform of (5.4.2) as:

00 1 1
/ ‘J’A(A,N)egN”AdA:Nﬁl/ / dTy---dTexp (ngogﬂ’j — T |+
0 0 0 T

+ (g — 1) ;logTi — gpN; a(n)> (5.4.3)

Now, introducing the counting function (density) o(T) = N~'>,6(T — T;), we
can treat the transmission eigenvalues as a continuous fluid of charged particles
living on the real interval [0,1]. To the leading order in N, this amounts to
replacing the multiple integral on the rhs of (5.4.3) with a functional integral

over the density o, in complete analogy with the treatment in section 3.3:
* 8 _ _Bp2
/O Pa(A, N)e 2"PAdA = N5 / D[g]e 2V %l (5.4.4)

It is then clear that the density of fluid particles will be such that the free energy
of the gas S,[o] is minimized. Thus, p,(7") will generically obey a Poisson equation

of the form:

pd (T) = T/Ol %dT' (5.4.5)

where P denotes the Cauchy principal part.

A very interesting feature of (5.4.5) is that, depending on the value of the
Laplace parameter p, several different profiles of the density g,(T") appear, and
the fluid of charged particles undergoes a series of real phase transitions in the
Laplace space. As a consequence, the large deviation functions introduced earlier,
which can be determined from the density ,(7"), display some critical points,
characterized by a discontinuous third derivative. Similar phase transitions have
been reported recently in the context of the quantum entanglement problem [151].

As an example, we consider the case of the conductance (a(T) = T) (see
subsection 5.4.2 for details). In fig. 5.2, we plot schematically the density of
transmission eigenvalues p,(7") (solution of (5.4.5) with A = G), for three different

intervals on the real p line:

e when p > 4, the external potential p7'/2 is strong enough (compared to the

logarithmic repulsion) to keep the fluid particles confined between the hard
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5.4 Large deviations and linear statistics

wall at T = 0 and a point T*) = 4/p. The gas particles accumulate towards
T — 07, where the density develops an inverse square root divergence, while
0p(T;) = 0. This situation is depicted in the left panel of fig. 5.2;

when p hits the critical value p*) = 4 from above, the density profile
changes abruptly. The external potential p7’/2 is no longer overcoming
the logarithmic repulsion, which takes over, so the fluid particles spread
over the whole support (0,1), feeling the hard edges at T = 0,1: thus,
the density generically exhibits an inverse square root divergence at both
endpoints (T' — 07 and T — 17). This phase keeps holding for all the
values of p down to the second critical point p{™) = —4 (see the second
panel in fig. 5.2), when the negative slope of the potential is so steep that
the particles can no longer sustain a delocalized phase over (0, 1), but prefer
to be located near the right hard edge at 7' = 1.

In the third phase (p < —4), the fluid particles are pushed away from
the origin and accumulate towards the right hard wall at 7" — 1 (see the
rightmost panel in fig. 5.2). The density thus vanishes below the point
T =1-4/p|.

Figure 5.2: Phases of the density of transmission eigenvalues for the conductance

case.

In the following, we present first a summary of results, and in two separate

subsection the detailed calculations in both the conductance and shot noise cases.
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5.4 Large deviations and linear statistics

5.4.1 Statement of results

The exact expressions for the rate functions in the case of conductance (G) and

shot noise (P) are given as follows:

(%—log(élx) for nggi

Uo(x) = 8(:10—%)2 for 1<z<3 (5.4.6)
\% —log[4(1 — x)] for % <zr<l1
(}l—QlogZ—%logx for 0§:p§1—16

Up(z) =464 (L —a) for L<z< (5.4.7)
(1 —2log2—3log (3 —x) for & <z<i

All the rate functions above are continuous everywhere. Only the third deriva-
tive is discontinuous at the critical points (x = 1/4, 3/4 for the conductance etc.).
From the expressions (5.4.6) and (5.4.7), together with (5.4.1), one observes that
the distributions (to the leading order in N) have a Gaussian behavior close to
the maximum, flanked on both sides by power-law tails.

Combining the explicit formulas above with the general large deviation expres-
sion (5.4.1), we can write e.g. for the conductance the following large deviation
law close to the maximum:

Pa(G, N) < exp (-%NQ\DG (%)) —

exp [—§N2 -8 (% - %)2] = exp [—m (G - gf] (5.4.8)

from which one reads off very easily the well-known values for mean and variance
(G) = N/2 and var(G) = 1/83. The large-N behavior (5.4.1) is generic for
any linear statistics on the transmission eigenvalue, and the functional formalism
developed here may also help to derive new interesting formulae for mean and
variances. Consider for example the case of integer moments T,, = Zf\il T7. The
rate function close to the maximum is given by [152]: Uq (z) = (44,) ' (z —
B,)? for 257 < x < x,(f), where :c%i) are n-dependent edge points and the
constants A,, and B, are given by A,, = (2n—1)T'(n+1/2)['(n—1/2)/167nl%(n)
and B, =4™" (2;:)
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5.4 Large deviations and linear statistics

This implies from (5.4.1): P (T, N) < exp [—m (T, — BnN)2 . From

this Gaussian shape, the mean (in agreement with [142]) and variance of T,, can

be read off very easily:

(T.) = BuN = % <2:) (5.4.9)
var(T,) = 4A, _ 1 (2n—1)I'(n+1/2)['(n — 1/2) (5.4.10)

3 40w nl2(n)

whose asymptotic value is easily computed as:

* . _ 1
vt = nh—{go v(n) = 3 (5.4.11)
Ye/p (X)
3
2.5
2
1.5
1
0.5 ° o
0.2 0.4 0.6 0.8 Tt

Figure 5.3: Rate functions W (x) (green) and Vp(x) (blue) (see eq. (5.4.6)). The
black dots highlight the two critical points on each curve.

5.4.2 Distribution of the conductance

We start with the simplest case of linear statistics, namely the conductance G =
Zf\;l T; (where we have absorbed the constant Gy). Starting from the jpdf of

transmission eigenvalues for the case of symmetric cavities (N; = Ny = N)
(5.2.2):
N
P(Ty,....Tx) =N;' T 11y - TP T] 777 (5.4.12)
j<k i=1
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the object we are interested in is the distribution P¢(G, N):

L E b\ v
?G(G,N):Nﬁlfo ./0 HdTieXp <§Zlog\Tj—Tkl+(§—1)Zlog]}>.
i=1 i=1

ik
=) (ZT — G) (5.4.13)

Taking the Laplace transform of (5.4.13):

0o 1 1
/ P (G, N)e 2Nr9qG = Nﬁl/ / dTy - - - dTy exp (g > log|T; — Til+
0 0 0 £k

8 - EINES
+ (5 — 1) ;bgn — gpN;Tl) (5.4.14)

Introducing the counting function o(T) = N~* 3. 8(T — T;), we can go from the
multiple integral on the r.h.s. of (5.4.14) to a functional integral over o(7) [40]
as:

/ Pe(G, N)e PN94G = N1 / Dlole= 2N Sple (5.4.15)
0

where in the exponential we have kept only the leading O(N?) terms. Note that
the term [], Tf/z_l in (5.4.12) does not contribute to the leading action S,[o] for
the symmetric case Ny = Ny > 1, while it would for Ny = KNy > 1 for k # 1.
This case will be tackled in a forthcoming publication.

The action S,[o(T)] in (5.4.15) is given by:

Splo] :p/1 g(T)TdT—/1 /1 dTdT o(T)o(T ) log |T—T'|+B [/1 o(T)dT — 1]
’ v ’ (5.4.16)

where the Lagrange multiplier B enforces the normalization of o(T') to 1.
The leading contribution to the r.h.s. of (5.4.15) comes from the density
function which makes the action (5.4.16) stationary %Q[Q] = 0. This implies that

the density must satisfy:

1
oI+ B =2 / o(T') log |T — T'|dT" (5.4.17)
0
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5.4 Large deviations and linear statistics

Eq. (5.4.17) will be essential for determining the constant B in different cases.
Now, differentiating (5.4.17) once more with respect to 71"

P Lo

Loy /0 %dT/ (5.4.18)
where P denotes the Cauchy principal part.

The task is then to find a solution ¢5(7") for the integral equation of Tricomi

type (5.4.18). Physically, we can foresee three possible phases for the density
05(T') according to the strength and sign of the external potential (see also the

discussion above):

1. For large and positive p, the fluid particles (transmission eigenvalues) will
feel a strong confining potential which will keep them close to the left hard
edge T'— 0+. Thus, ¢5(7T") will have a semi-compact support (0, L], with
0< Ly <1,

2. For intermediate values of p, the particles will spread over the full range
(0,1).

3. For large and negative p, the fluid particles will be pushed towards the right
edge and the support of o5(T") will be [Ly, 1), with 0 < Ly < 1.

These three cases will correspond to different solutions for the Tricomi equa-
tion (5.4.18) above, and the positivity constraint for the obtained densities will
fix the range of variability for p in each case. Once a solution g;(T) for each
case (different ranges for p) is obtained, this will be substituted into the action
(5.4.16) and from (5.4.15) we can read off the asymptotic decay of the Laplace

transform of the conductance:

= _8 s . . s
/0 Pa(G,N)e 2 MPC G < exp (_§N2{SP[Qp] — SO[QO]}> = exp (—§N2Jg(p))
(5.4.19)
where in (5.4.19) we have used the fact that, for p = 0:

/ Pa(G,N)dG =1 =< Ng'exp (—§N2SO[QS]) (5.4.20)
0

which determines the normalization NBI as Ngl = exp (§N 2Sol0g))-

We are now ready to consider the three cases separately.
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5.4.2.1 Large p: support on (0, L]

The general solution of the Tricomi equation (5.4.18) reads:

1
7'l'2 T(L1 - T)

T(L, =T

z vo 2 - T+ B 5.4.21
2"/, T—T' o ( )

op(T) = —

where B; is an arbitrary constant.

Evaluating the principal value integral in (5.4.21), we obtain:

o3(T) = 27:/? VI - T (5.4.22)

The normalization of o5(T') determines L; as 4/p and the condition L; < 1

implies p > 4. As expected, this solution hold for large values of p (i.e. for a
strong confining potential).
Coming back to (5.4.17):

1
pT + B = 2/ o(T) log |T — T'|dT’ (5.4.23)
0

we can determine the Lagrange multiplier B in the action by putting 7" = 0
there!:

1
B = 2/ o (T") log T'dT" (5.4.24)
0

Eq. (5.4.23) can be also used to simplify the action (5.4.16) at the saddle
point. First, we multiply (5.4.23) by o(T") and we integrate both sides between 0
and 1 in 7. Then, using (5.4.24), we can write:

/0 /0 deT’g(T)g(T’)log|T—T’|zg /0 To(T)dT + /0 o(T) log(T)dT

(5.4.25)
The action (5.4.16) at the saddle point thus reads:
p [ !
Splel =75 / oy (T)TdT — / 05(T) log(T)dT (5.4.26)
0 0
Substituting the solution ¢%(7") (5.4.22) into (5.4.26) gives:
Sw>a)[0{p>0)] = 3/2 +logp (5.4.27)
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0,

Figure 5.4: Density of transmission eigenvalues (conductance case) for N = 4

and p = 6 (theory vs. numerics).

In fig. 5.4 we perform a Montecarlo simulation to test the prediction (5.4.22) for
the average density of eigenvalues in Laplace space under the effect of a strong
confining potential (p large). The numerical density for N eigenvalues (here and

for all the subsequent cases) is obtained as:

_ N
) <e NN |xj—xk|2>N
Qp(xl) ~ <

-1
(5.4.28)

€_pNZzN:1 Zi Hj<k: |ij - l‘k|2>
N

where the average < . > is taken over N — 1 random numbers z,, ..., xy (numer-
ator) with a flat measure over [0, 1], with z; spanning the interval (0,1). In the
denominator, the normalization constant is obtained with the same procedure,
this time averaging over N random variables uniformly drawn from (0,1). In
all cases, the agreement with the theoretical results is fairly good already for
N =4.5.

5.4.2.2 Intermediate p: support on (0,1)

In this case, the solution of (5.4.18) from (5.4.21) reads:

o (T) = — =2 [K —T] (5.4.29)

NG

IMore care is needed for the evaluation of B in the case 5.4.2.3 below.
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5.4 Large deviations and linear statistics

The normalization of g5(T) determines the arbitrary constant K as (4 + p)/2p.

Now, there are 2 positivity constraints (¢5(7) > 0 everywhere) to take into ac-
count depending on whether p is greater or smaller than 0:

1. if p > 0, the positivity constraint K —1 > 0 at the edge point 7' = 1 implies
p < 4.
2. if p < 0, the positivity constraint K < 0 at the edge point T" = 0 implies
p > —4.
Substituting this solution into the simplified action (5.4.26) (which holds in this
case as well) gives:

2
p p
S(—a<p<a) [Q?_4<p<4)] = BED) + 3 + 2log2

(5.4.30)

Figure 5.5: Density of transmission eigenvalues (conductance case) for N = 5
and p = —1 (theory vs. numerics).

5.4.2.3 Large negative p: support on [L,,1)

In this case, the general solution of (5.4.18) reads:

op(T) = !

/(T L)(1-T1)

1 r Gl
2y [ s/ T IO
Lo

T +C

(5.4.31)
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where C' is an arbitrary constant. Evaluating the principal value integral in

(5.4.31) and imposing the normalization le2 0,(T)dT =1, we get:

(1) = 5P T = (L= 4717 (5:432)

The condition Ly = 1 —4/|p| > 0 implies p < —4. Substituting this result into
the action (5.4.16) gives:

S(p<—1) [Q?p<74)] =3/2+p+ log(—p) (5.4.33)

p,(M

L L I L L
0 01 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1
T

Figure 5.6: Density of transmission eigenvalues (conductance case) for N = 5
and p = —6 (theory vs. numerics).

5.4.2.4 Summary for the conductance case

To summarize, the density of eigenvalues (solution of the saddle point equation
(5.4.18)) has the following form:

e 5= 7] 0<T<1 —4<p<4
21y/T(1-T) | 2P

M) =1 z25\/3 - T 0<T<4/p p>4
zﬂﬁ'ﬁ\/T—(l—‘l/lpl) 1—4/|p|<T<1 p<—4

(5.4.34)
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One may easily check that ¢5(7") is continuous at p = 44, but develops two phase
transitions characterized by different supports.
The action (5.4.16) at the saddle point is given by:

2
—5+L4+2log2 —4<p<4

Sploy] = 1 3/2+logp p>4 (5.4.35)
3/2+p+log(—p) p<—4

which is again continuous at p = +4.

From (5.4.19), the expression of Jg(p) is:

_g_; +L —4<p<4
Ja(p) = Splop] — Solag] = § 3/2 4+ log(p/4) p>4 (5.4.36)
3/2+p+log(—p/4) p<—4

The form of (5.4.19) suggests that, for large N:

3.0

P

Figure 5.7: Jg(p): theory vs. Montecarlo.

G

Pa(G, N) =< exp (—§N2\11G (N)) (5.4.37)

Inserting this ansatz into (5.4.19), we get:

[ {23 S ()] s {2 it 9]
(5.4.38)
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Comparing (5.4.38) and (5.4.19), we have:
Je(p) = min [px + V¢ ()] (5.4.39)

Thus:
Uo(x) = max [—zp + Ji(p)] (5.4.40)

and from (5.4.36) the rate function ¥¢(z) is readily computed:

8(x—3)" PSes]
Uo(r) = 5 — log(4z) 0<z<i (5.4.41)
T —logl4(l—2)] 3<z<1

From this formula, one can derive the leading behavior of the tails of Pg(G, N)

as:
Pa(G, N) 2% exp {—§N2 [—log (4G/N)]} = @GN/ (5.4.42)

Pa(G, N) =" exp {—gz\ﬂ [ log (4(1 — G/N))]} = (N —G)PN'72  (54.43)

(5.4.44)

in agreement with [147].

The most interesting feature of (5.4.41) is the appearance of discontinuities in

higher-order derivatives at the critical points: more precisely, the third derivative

of W (x) is discontinuous at # = 1/4 and « = 3/4. This was already highlighted

by Sommers et al. [147], who found many more non-analyticities for finite Ny, Ns.

Only two of them survive to the leading order for N — oo and, in our picture,
those correspond to a physical phase transition in Laplace space.

In summary, the following exact limit holds:

. 2logPe(Nzx, N)

T B

= Ug() (5.4.45)

where the rate function Ug(z) is given in (5.4.41).

The rate function in Laplace space (5.4.36) as been compared with numerical

1

simulations' over the range p = (—40,40) and already for N = 5 the agreement

'From a numerical point of view, this approach is far more convenient than dealing with

the rate function Wq(x) itself.
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is excellent. For a given p between —40 and 40, the numerical Jg(p) is computed

as:
N .
1 (e ERA T ey - wl?)

Ja(p) = —= log
< [T |2 — l’k|2>

N2
where the average is taken over N random variables {z;} drawn from a uniform
distribution over (0, 1).

We are now ready to tackle the shot noise case.

(5.4.46)

5.4.3 Distribution of the shot noise

The dimensionless shot noise is defined as P = S~ | T;(1 — T;), where we have
absorbed the constant Py (see discussion above). It is convenient to rewrite it in
the form P = N/4 — S°N (1/2 — T;)* = N/4 — Q. The probability distribution
of P and @ are related by:

Pp(P,N) = Pg (g — P, N) (5.4.47)

It is also necessary to make the change of variable in the jpdf (5.2.2) pu; = 1/2—1T;,
so that —1/2 < p; < 1/2. The jpdf (5.2.2) expressed in terms of the new variables

; reads:

SIS

P, pn) = N H i — Mk\BH (% - Mi) (5.4.48)

N -1
j<k i=1

and we are interested in the large N decay of the logarithm of Pg(Q, N), where
Q =Y, n2. We have:

1/2 1/2
TPQ(Q,N)ZTN?/ / dpy -+ - dpy exp (ngOng_NkH'
—-1/2 —1/2 ik

(g — 1) Zﬁ;log <% —Mz’>) 0 (ﬁ;/ﬁ - Q)
(5.4.49)

Again, taking the Laplace transform and transforming multiple integrals to func-

tional integrals we obtain:

| Pa@ e #0ag =3 [Dlge 9 s
0
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5.4 Large deviations and linear statistics

where for notational simplicity we keep the same symbols ¢ and S, as before. Of

course, the new action .5, reads:

1/2 1/2 p1/2 1/2
S,lel = p / @mwdu—/ / dudy o(u) o4 log i~ u\+C[/ du—1]

~1/2 —1/2J-1/2 1/2
(5.4.51)

The stationary point of the action S is given by the solution of the following

Tricomi equation:

1/2 /
pu =7 / . 53“;/@' (5.4.52)

In terms of the solution gr(u) of (5.4.52), the action (5.4.51) can be simplified

I LAY

i
2

N\

Figure 5.8: Density of the shot noise (schematic).

as:

1/2 8.
* p R
Splop] = 5 / s oy () pPde — 3 (5.4.53)

where the Lagrange multiplier C' will be determined in complete analogy with

the conductance case. Now, we can write the asymptotic decay of () as:

| vet@u e = exp (- 587515 - Slail ) = exv (- 5ol

’ (5.4.54)
Again, in order to solve (5.4.52) we need first to foresee the allowed supports for
05(1t). This time, the symmetry constraint ¢%(u) = ¢*(—u) reduces the possible
behaviors of gy(u) to the following three cases: I) o(1) has compact support
[~L,L] with L < 1/2, or II) g5(u) has non-compact support (—1/2,1/2), or
III) the support of g5(u) is the union of two disjoint semi-compact intervals
(—=1/2,—L] U [L,1/2) with L > 0. Again, these cases correspond to different
ranges of variability for the Laplace parameter p, as detailed below.

We analyze now the three cases separately.
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5.4 Large deviations and linear statistics

Figure 5.9: Jg(p): theory vs. Montecarlo.

5.4.3.1 Large p: support on [—L, L] with L < 1/2

A compact support between [—L, L] is expected when the external potential o
pu? /2 is stronger than the logarithmic repulsion. The fluid particles cannot escape
towards u = £1/2 and gather close to the origin. The general solution of (5.4.52)
in this case is given by:
* p 2
o) = —==—=—=la -
p(1) = — \/m[ Wl
The constant a is clearly determined as a = L? by the condition that ¢}(4L) = 0.
Thus, the solution within the bounds [—L, L] with L < 1/2 is the semicircle:

(5.4.55)

* p
op(p) = — VL =2 (5.4.56)

where the edge point L is determined by the normalization f_LL oy(p)dp = 1. This
gives L = /2/p. In turn, the constraint L < 1/2 implies p > 8. So, eventually:

x p |2

Opss(p) = — b I (5.4.57)
Evaluating the action (5.4.53):

R |

Sp>8l0pss] = 1 + 3 log 2 + 5 log p (5.4.58)
From (5.4.54), the value of Jg(p) = Splos] — Soleg) for p > 8 is given by:
3 1 P
JQ(}?) =1 + 5 log (g) (5459)
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5.4 Large deviations and linear statistics

Again, the rate function Wg(z) is given by the inverse Legendre transform of

(5.4.59), ie.
1 1
Vg (r) = max [—zp + Jo(p)] = 1 2log2 — 5 log = (5.4.60)
P

valid for 0 < z < 1/16. From the relation (5.4.47), we have the following relation

among the rate functions for () and P:

Up(z) = Ug G - x> (5.4.61)

implying for ¥p(x) the following expression:

(5.4.62)

NN

1 1 1
\I/p(x)zz—2log2—§log <z_1_x) for

Figure 5.10: Density of shifted transmission eigenvalues p for N =5 and p = 12
(theory vs. numerics) for the shot noise case. The strong fluctuations around the

theoretical results are due to small N effects.

5.4.3.2 Intermediate p: support on (—1/2,1/2)

This case is expected when p is lowered below some critical value (p = 8, from the
discussion in previous section), so that the external potential o pu*/2 no longer

overcomes the logarithmic repulsion, which takes over. The fluid particles spread
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5.4 Large deviations and linear statistics

over the entire support (—1/2,1/2), feeling the hard edges at p = £1/2. Thus, a
divergence in the density is expected at the edge points.

The general solution of (5.4.52) in this case is given by:

* p 2
=———|b— 5.4.63
op(1) = — 1/4—u2[ wl (5:4.63)
The constant b is clearly determined by the normalization fj{% oy(p)dp = 1.
This gives b = 1/p+1/8. In turn, the positivity constraint for the density implies

—8 < p < 8, in agreement with the qualitative discussion above. So, eventually:

. P 1 1 2}
o - |4 <-- 5.4.64
Cacpealt) = b [ f (5.4.64)
Evaluating the action (5.4.53):
p P
578<p<8[Qt8<p<8] = g - % + 2 10g2 (5465)

From (5.4.54), the value of Jg(p) = Splop] — Solgg) for —8 < p < 8 is given by:

2
p p
JQ(p) = —% + g (5466)

Again, the rate function Wg(z) is given by the inverse Legendre transform of
(5.4.66), i.e.:

1\ 2
Ugo(x) = max [—zp + Jg(p)] = 64 (x — §) (5.4.67)
P
valid for 1/16 < = < 3/16. From the relation (5.4.61), we have for Up(z) the

following expression:

1 3
—<r< =

2
Up(zr) =64 (— — :v) for TG 16 (5.4.68)

5.4.3.3 Large negative p: support on (—1/2,—L|U[L,1/2)

In this case (large negative p), the fluid charges tend to cluster towards 7' =
+1/2 and the density is nonzero over two disconnected (and symmetric) domains

(—=1/2,—L] U [L,1/2). In this case, the general solution of Tricomi equation
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5.4 Large deviations and linear statistics

Figure 5.11: Density of shifted transmission eigenvalues p for N = 6 and p = 2

(theory vs. numerics) for the shot noise case.

(5.4.52), which assumes a single-support solution, no longer applies. In order to

obtain the sought solution of the integral equation (5.4.52), we first rewrite it as:

1/2 / /
pp = / —l— fP/ for >0 (5.4.69)
1/2 -
d dy
pp="7P M +/ M for 4 <0 (5.4.70)
—1/2 H—H L w—=p
Let us focus on the case > 0: the left half will follow by symmetry. Rewriting
(5.4.69):
1/2 / /
p,u:/ +iP/ (5.4.71)
1/2 M~ W
31
In J;, we make a change of variables u' = —y/':
1/2 —Ndv'
- [ e(y)dy (5.4.72)
L pty
Using o0,(—p) = o0p(p), we get:
1/2 N
9, = / M (5.4.73)
L KTy
Substituting (5.4.73) into (5.4.71), we get:
v [ e [ (5.47)
P = Op( 4 + } 0.4.74
R VTR TR T
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5.4 Large deviations and linear statistics

implying:

1/2 Ndu!
g — P / —Q”Z)(“) £ (5.4.75)
A

Making another change of variables in (5.4.75), y/* = ' and denoting u? = y:
Y o,(VY) dy
o VY Y-y
Calling g(v') = 0,(¥')/Vy, we get an equation of Tricomi type in the unknown

g(x):

p=">P

(5.4.76)

1/4 N
p= ?/ 9y) J (5.4.77)
2 Y-y
whose general solution reads:
1 VA — L2)(1/4 — o) dy'
o) = -t w [ TP
w2/ (y — L) (1/4 —y) 12 y—y
(5.4.78)
where C' is an arbitrary constant, leading to:
p
9ly) = [A—y] (5.4.79)

/(4= y)(y — L?)
where A is an arbitrary constant.

From the definition of g(y) above, we have:

(1) = 2y _ pr A— 2 5.4.80
op(h) = ng(1*) W\/(l/AI_MZ)(Mg_LQ)[ 1] (5.4.80)

and imposing the condition g,(L) = 0, we determine A = L?.
Thus:

—ppn/ p? — L?
= 5.4.81
op(1) /1A= 2 ( )
Since p is negative, we have —p = |p|. The constant L is determined by the

condition le/2 op(p)dp = 1/2, giving L = 1/1/4 —2/|p|. In turn, the existence of
the square root is ensured if p < —8.

Hence, eventually, the density reads:

_ lpuly/p? — 1/4+2/lp|

Qp<—8(:u) Wm

(5.4.82)
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5.4 Large deviations and linear statistics

and the corresponding Jg(p) is given by:

3 1 P P

The rate function is again given by the inverse Legendre transform of (5.4.83):

1 1 1
Uo(x) = i 2log2 — 3 log (Z_l — x) (5.4.84)

)

Figure 5.12: Density of shifted transmission eigenvalues p for N = 4 and p = —10
(theory vs. numerics) for the shot noise case.

5.4.3.4 Summary for the shot noise case

To summarize, the density of the shifted eigenvalues {u;} (solution of the saddle

point equation (5.4.52)) has the following form:

p [2_ 0 _ /2 2
=\ p M \[SMS\/; p>38

_p |8 _ 2 . B
op(n) = m/1/4—p2 | 8p ] 1/2<pu<1/2 8§<p<8y
2_1/442
Ry 12 << A= 2l v /T2l < n < 1/2

(5.4.85)
One may easily check that p,(p) is continuous at p = £8, but develops two phase
transitions characterized by different supports.
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5.5 Summary and outlook

The saddle-point action (5.4.53) is given by:

3., 1 1
Z+§210g2+§logp p>8

Sploy] = 5 — 256 + 2102 —8<p<8 (5.4.86)
3., 1
Z+§10g<%)—%+210g2 p < —8

which is again continuous at p = +£8.

From (5.4.19), the expression of Jg(p) is:

11218 (§) p=8
Jo(p) = Splop] — Soles) = $ 5% + § —8<p<8 (5.4.87)
d+ilog(B) -4 ps-s

from which one can derive (in complete analogy with the conductance case) the

rate function for the auxiliary quantity Q:

}1—210g2—%logx 0<z<1/16
Ug(z) = ¢ 64 (z — 1) 1/16 < z < 3/16 (5.4.88)
T—2log2—3log(;—x) 3/16<xz<1/4

and from the relation Wp(x) = VUg(1/4 — x) one readily obtains the rate function
for the shot noise. Since the shot noise has range between 0 and N/4, the support
of Wp(x) is clearly [0,1/4]. Once again, the central region of the distribution is a

Gaussian, and the decay on both sides is given by a power-law distribution.

5.5 Summary and outlook

In this chapter, we have investigated several aspects of the quantum conductance
problem in chaotic cavities, and its relation with the Jacobi ensemble of random
matrices. Exploiting this very simple mapping, and another less known result by
Kaneko, we provided two different (but equivalent) expressions for the density of
transmission eigenvalues (and higher order correlation functions), valid at arbi-
trary number of open channels in the two attached leads. Using these results, we
obtained a new analytical formula for the moments of transmission eigenvalues,
again valid at arbitrary number of open channels. Together with very recent ana-

lytical results by Novaes [142; 144], our findings lead to interesting combinatorial
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5.5 Summary and outlook

puzzles, that we highlighted and left for future investigations. In the last section,
we tackled the more general problem of the full distribution of statistical quan-
tities (conductance and shot noise, mainly) in the limit of large number of open
channels. Using the very same functional methods exploited in connection with
the large deviation properties of Wishart matrices (this time in Laplace space),
we provided exact large deviation expressions for the probability distributions
of conductance and shot noise. Using the same approach, a new result for the
variance of integer moments has been obtained. All the results have been checked

by numerical simulations with good agreement.
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Computers are useless. They can

only give you answers.

PABLO P1cAsso

Chapter 6

Conclusions and open problems

In this thesis, we have considered classical random matrix models where the ro-
tational invariance is retained but the independence of matrix entries is dropped.
More specifically, we considered the Wishart-Laguerre (WL) ensemble in its 'canon-
ical’ form, a one-parameter deformation of WL with a power-law distribution of
entries, and a classical Jacobi ensemble.

The WL ensemble, probably one of the first appearances of random matrix in
multivariate statistical analysis, is composed by covariance (positive definite) ma-
trices of random data: its applications range from data analysis (e.g. in finance)
to low-energy sectors of gauge theories, and several results are available in both
the physics and mathematics literature. The Jacobi ensemble arises naturally
as a particular combination of WL matrices, and has significant importance in
multivariate statistics and more recent applications in the quantum conductance
problem.

In this work, we presented new analytical results concerning these two ’clas-
sical” ensembles: we made extensive use of a variant of the well-known Dyson’s
Coulomb gas analogy, devised by Dean and Majumdar in a recent publication.
This technique is invaluable in extreme value statistics, as it provides very quickly
the leading large-N decay (or rate function) in many cases of interest.

For the ensembles considered in this work, the eigenvalue jpdf has been known
since a long time, and constitutes the starting point of all our analytical results.
We believe we have proved that, despite the very ’classical’ nature of the RMT

ensembles considered, after dozens of years still many fruitful and fertile lines
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of research (ranging from purely mathematical questions to more applicative is-
sues) can stem from the very well-known and dated eigenvalue representations,
combined with insightful techniques (e.g. the Dean-Majumdar one [40]) and ex-
perimental developments (e.g. quantum dots) that became available in more
recent times.

If it is true what I. Calvino said about classics: A classic is a book that has
never finished saying what it has to say.’, we can safely say that the ensembles
considered in this work certainly deserve to be regarded as classics in RMT.

In this thesis, we first considered the issue of large deviations of the max-
imum eigenvalue (to the left of its mean) for the Wishart-Laguerre ensemble,
obtaining exact results for the rate function. This is one of the few cases (up
to date) where the rate functions for correlated random variables are known ex-
plicitly, completing the rigorous analysis by Johansson [41]. Next, we studied
a one-parameter deformation of the Wishart-Laguerre ensemble with power-law
tails. The motivation comes from covariance matrices of empirical data (espe-
cially from finance), and we noticed that an integral representation already used
in some superstatistical approaches to RMT could be used to obtain a complete
solution of the model for finite matrix size N, and in both the macroscopic and
microscopic large N limit, improving earlier results [97]. Finally, we turned to
the quantum conductance problem in chaotic cavities: after recalling an obvious
but fairly neglected connection with the Jacobi ensemble, we provided exact re-
sults for densities and moments of transmission eigenvalues, valid at a fixed and
finite number of open channels in the two attached leads. These results may be
useful for comparison with more realistic experimental settings, where typically
the number of open channels is very far from infinite. Eventually, we exploited
the very same Dean-Majumdar formalism [40] (this time in Laplace space) to
obtain large deviation formulas for the full probability distribution of quantities
of interest for the experiments: conductance, shot noise, integer moments.

Before concluding, it is appropriate to give a list of open problems and direc-

tions for future research that may stem from the present thesis:

e Although very powerful, the Dean-Majumdar method is obviously limited to

leading order results (complexity of random energy landscapes, rate func-
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tions etc.). It is natural and very appealing to ask whether sub-leading
results (such as O(N) corrections) may be obtained, and with what meth-
ods. A very promising, though quite intricate framework has been proposed

recently by Kanzieper [149], and it certainly deserves further investigations.

Besides the Gaussian and WL ensembles, the large deviation issue for the
largest eigenvalue may arise in many other invariant matrix models, such
as Jacobi or the free Lévy models [153]. Even though we are not aware of
specific applications, it is an interesting question in its own right to provide
exact result for the large deviation function (or constant) for these models.
It is expected that the Dean-Majumdar technique may be applied straight-
forwardly and help providing the answer. Also, with little effort, analogous
results about the large deviation properties of the smallest eigenvalue could

be probably obtained in all the cases mentioned above.

Further generalizations of the WL ensemble can be considered within the
same superstatistical approach. The jpdf of entries can be written as an
integral transform analogous to (4.2.4), where the 'superstatistical’ weight
(&) = e7%¢771 is replaced by a more general distribution (see the list of
possible weights in [154]). It is likely that analytical results for spectral
density, higher-correlation functions and gap distributions may be obtained
also for different weights f(§), in analogy with Abul-Magd’s findings for the
Gaussian models [38]. Eventually, a comparison with empirical data (e.g.
from finance) may be attempted for different choices of the weight function
f(&) in order to determine the ’best fitting’ function for spectral properties

of empirical covariance matrices.

In the context of deformed invariant models with power-law tails, it would
be of great interest to derive the corresponding generalization of Tracy-
Widom distribution for the largest (smallest) eigenvalues at the soft edges.
It would be interesting to check whether Painlevé functions may arise in

this context as well.

For the quantum conductance problem, apart from the interesting puzzles

highlighted in section 5.3, it is not yet clear whether the results for moments
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of transmission eigenvalues could be straightforwardly extended to the case
B =1 or 4. For the full probability distributions of experimental quantities,
some technical difficulties related to the applicability of Tricomi’s theorem
have prevented us from obtaining complete results for integer moments so
far, and it would be very interesting to complete the picture sketched in

section 5.4.

Since RMT is such a beautiful, deep and long-lasting construction stemming from
the intuition of few pioneers, it seems appropriate to end this final chapter re-
calling the inspiring and still very actual words of one of them, Eugene Wigner,
in his celebrated The Unreasonable Effectiveness of Mathematics in the Natural

Sciences:

The miracle of the appropriateness of the language of mathematics
for the formulation of the laws of physics is a wonderful gift which we
neither understand nor deserve. We should be grateful for it and hope
that it will remain valid in future research and that it will extend, for
better or for worse, to our pleasure, even though perhaps also to our

bafflement, to wide branches of learning.

122



Appendix A

Rate function for ¢ < 1

We evaluate in closed form the action S(¢) := S[f*(x);¢] (see (3.3.11)) for the
case ¢ < 1, where f*(z) is given by (3.4.23).
The rate function ®_(x;c) for ¢ < 1, given by:

O _(z;5¢) =S (vy —x) — S (24) (A.0.1)

can be evaluated immediately.
The action (3.3.11) in this case reads:

R ¢ ¢ |
S[f(x);(]:/L zf(x)dr — « g f(x)log(x)dx+

1

¢ r¢ . .
- / f(x)f(2")log |z — 2|deds’+
L/

+Cy { C f(z)dz — 1] (A.0.2)

L

where we have replaced 0 with Ly (3.4.22) as the lower bound of the integrals.
From (3.3.14) (where again 0 is replaced with L, ), we can determine the value

of the constant C by putting x = L; there:

~

¢
Cy = alog Ly — Ly +2 / da’ f(a) log (s — L) (A.0.3)

Ly
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Then, multiplying (3.3.14) by f(m) and integrating over x from L; to (, we

I . ¢ C
/ f ') log |x — 2'|dxdx’ = / dx a:f(a:)—g/ dx f(:l:)logzv—i-—1
LI, 2 L 2 )L, 2
(A.0.4)
Substituting this expression for the double integral into (A.0.2), we get:
n 1 [ . Cy
Slferd =3 [ ef@ar-5 [ f( Jlog(a)de + !
Ly
where C} is now taken from (A.0.3). Eventually:
¢
SO =5 [ fla)zdr - 5 f( ) log(z)dr+
L1
¢ a L1 (0]
f(z)log(x — Ly)dx + 5 5 log(L4) (A.0.5)

After the substitution x = ({ — L1)t + Ly in the integrals in (A.0.5) and some
simple algebra, S(¢) can be expressed as:
C—Li_ Ly

Bt - log(Ll) (A.0.6)

where O and = are the following functions of ¢ and (:

— A
O = ¢ 27TL1 {log(C — L) L_ Lljo (qu[q) — g} +
A Ly
S (C—L1>}

S(¢) =561 -6+

A 3 Ll « Ll 1
= _ -4 = — —log(2 A.0.
LS by Jg(g L1)+2 og(2) (A.0.7)
The functions Ji(x) are given by the following integrals:
d

X

d
9y (x) = /O 1 dtloi(izm)r (A.0.9)
To(z) = /Oldt;(fir (A.0.10)
Ia(z) = /Oldtlog( )\/7 (A.0.11)
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which, following very closely ref. [88] paper I, appendix B, can be computed
explicitly in closed form.

The integral J3(x) (and thus also Jy(x)) can be computed by Mathematica®:

1
Jg(m):g 1420 = 2/a(1+2) + 2log |1+ /14 | +
x
+log <Z> ] (A.0.12)

while J; (z) and Jo(z) are given in terms of derivatives of hypergeometric functions.
More explicit expressions can be given as follows, starting with J;(z). Exploiting

the identity h*logh = dyh*, we can rewrite the integral as:

Ji(x) = [aA /01 dt(t + x)* %_t] ’A}l (A.0.13)

and the integral in (A.0.13) can be evaluated in terms of Kummer’s hypergeo-

9y (2) = g {aA [a:)‘ JF (—)\, g; 2. —i)] } ‘A}l (A.0.14)

Now, applying the transformation formulas [155] [15.3.7 pag. 559] and evaluating

metric function:

the derivatives of Gamma functions that arise, we finally get:

. 4
91(z) = g [—210g4+2 i (z) — 2«/1f_$10g (6—;”) +

— 2/ iy(z) ] (A.0.15)

where:
1(x) = [0, o F1(1 =, —p; =+ 1/2; =) o (A.0.16)
in(z) = [0 (L4 2) V2 5 Fy(p, o+ 1; 0+ 3/2; —) . (A.0.17)

To evaluate i1(x) and i5(z), we use the series expansion for hypergeometric func-

tions [155] [15.1.1 pag. 556] and upon differentiation we get:

(@) = — nf:l B (% n) (=) (A.0.18)
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I'(v)[(w)
I'(v4w)

resentation of the Beta function:
1
Bla,y) = / dt £ (1 — ) (A.0.19)
0

into (A.0.18) and upon exchanging summation and integral, we arrive with the
help of >~ ((—zt)” = (14 xt)~! to:

. ! dt x .
i1(z) = x/o i S =24/ H—gjarcsmh(\/}) (A.0.20)

Following the same procedure, we get for i5(x):

where B(v,w) = is Euler’s Beta function. Introducing the integral rep-

» 1 :
ia(x) = Nivw [log(1 + ) — iy (z)] (A.0.21)

where i;(z) is defined in ref. [88] as:

1+
x

i(z)=—-2+2 arctanh ( ’ ) (A.0.22)

I+x
From (A.0.15) we get the final result for J;(x):

Ji(z) =7 {— log 4 + \/Hzx [2arcsinh(v/z)+
+ 2\/Earctanh (\/Hzg) — log[4z(1 + z)] ]} (A.0.23)

Following the very same procedure as in the previous case, we find for Jy(x):

Jo(z) = 7 {— log 4 + ¢ /ILH (2arcsinh(v/7) — log(x)) (A.0.24)

Now we compute the limit ¢ — 1~ in (A.0.6) to recover (3.4.6). Given that, for
c—17,L -0, — 0and A — (¢ +4)/2, we have to evaluate the integrals
Jk(z) for x — 0. This gives:

Jo(0) ~ (A.0.25)
J1(0) ~ —mlog4 (A.0.26)
J3(0) ~ —mlog4 (A.0.27)
75(0) ~ —g(log4 —1) (A.0.28)
Then, S[f*(a:); (] L [—@2 + %E} = 2log2 —log ¢ + g — % as it should

(see (3.4.6)).
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Appendix B

Partition function and first

moment of the Gaussian models

The purpose of this appendix is threefold. First, we derive the condition under
which our generalized model defined in eq. (4.2.1) is convergent. Second, we
compute both the generalized and standard Gaussian partition functions in order
to determine their {&-dependent ratio needed in the computation of all eigenvalue
correlation functions. Third, we compute the first moment as a function of N, v,
(8 and ~ which is needed for the rescaling of the eigenvalues in the large-N limit.

All three steps will be performed by changing variables from independent
matrix elements or its eigenvalues to radial coordinates, following [36].

The generalized partition function reads in terms of eigenvalues

o N N
B(v+1)— 1
zw:/ [ H/\2 H|)\ — \|? .
0 =1 i=1 ik (1 + ﬁ Zf\il V(/\i)>
e 1 (V+l) N(N-1)
:/ daN/ drrN NGO+ I)H( ) T#’[;-
Q(N) 0

/\j_ﬁﬁ

N
Hj>k T T

(s Vi)

(B.0.1)
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Here we have changed to radial coordinates of the N-component vector of the
eigenvalues (A1,...,Ax), and day denotes the angular integration over the N-
dimensional unit sphere Q(N). The eigenvectors e; = A;/r of norm unity span
Q(N) and no longer depend on the radius. Collecting all powers of r in the
numerator and comparing to the leading power of the denominator dv at large

r > 1, the integral only converges if the following inequality holds:

gN(N—|-y)—1—’yd < -1 (B.0.2)

which is exactly eq. (4.2.2).

Next we compute the partition function Z(¢), where for the rest of this ap-
pendix we restrict ourselves to the potential V(A) = A. The same steps can be
taken for a purely monic potential V() = \? as well.

In principle we could repeat the same calculation in terms of eigenvalues as

above, but it will be more instructive to start directly from the matrix elements:

2(&) = / dX exp {—gn—fTrxTx}

= / dagn(n-+v) / drr?N ) exp [—5%7‘2]
QBN (N+v)) 0 Y

BEN(N+v)
as) r(reren) |
N I'f =N(N+v da A(B.0.3
Q(W VW) [ (309

Here we have used radial coordinates for the SN (N + v) component vector of all
independent matrix elements X;;, with squared norm r?> = TrXTX. We do not
need to compute the angular integral explicitly as it cancels out below.

If we insert the result eq. (B.0.3) into the relation (4.2.8) we immediately

obtain
1 o
= /0 dg e€ £12(6)
SN(N+v)
1 7?2 B B
= —QF(’y) (E) r (’y — §N(N + V)) r (§N(N + V)) .
/ da,gN(NJr,/) (B04)
Q(BN(N+v))
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Combining the last two equations we arrive at

2 g
L2y T (y- 2NN +v))

(B.0.5)

the ratio of the two Gaussian partition functions at finite values of N, v and ~
valid for all three (.

In the last step of this appendix we compute the mean eigenvalue position in
the Gaussian model. It can be either defined through the spectral density, see
eq. (4.3.3), or in terms of the first moment, where we start with the standard
WL ensembles:

1 1
(A&)) = w/deTr (XTX) exp [—{n—fYﬁTrDCTDC]
= ; - BN(N+v)—1,.2 (o [ _ﬁ }
NZ(§) /Q(ﬂN(N—I—V)) daﬁN(N+y)/o drr rexp | =L
_ 275 (N +v) (B.0.6)

in agreement with section 2.4.2. Note that the §-dependence has cancelled out.
We can immediately use this result to compute the same quantity for the gener-

alised Gaussian model,

1Tr DCTDC)
N = — [ dx
ok /‘ 1+Wﬂw@
_ 6—6 y—1
- v ) et e HOmE)

B Y(N +v)
o (y=SN(N +v)—1) (B.0.7)

This result is used in the rescaling of both large-N limits. As a check it reduces

to eq. (B.0.6) in the limit v — oo, with a weight exp[—ngr?].
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Appendix C

Explicit § = 2-solution for all

k-point densities at finite N and v

In this appendix we present all details for the solution of the generalized WL
ensemble with unitary invariance § = 2 and confining potential V/(\) = A. In
this case the orthogonal polynomials of the WL ensemble are know to be Laguerre,
allowing for an explicit solution at finite N and finite ~.

The orthogonal polynomials in eq. (4.2.12) read for the weight function
exp[—£22 ]

k
2n&
PN = (0)Fk (=) Ly (=2 C.0.1
) = (o) o (5) (o)
with norms
N 2k+v+1
= k! N — 0.2
I k! (k+v) <2n§) (C.0.2)
Here the Laguerre polynomials are defined as usual
k .
v 1 k+V Z] : v v
Li(z) = Z(—l)j (k_]>? , with Ly(2) = —L{H(2) (C.0.3)

j=0
Using eq. (4.2.17) we can immediately read off the WL partition function from

the norms,
) Nv+N2 N—-1

[T+ 1k + ) (C.0.4)

k=0

2(6) = (Q—zg
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As the next step we can compute the partition function eq. (4.2.8) given by

00 Nv4+N2 N-1
2, = %w/o dé e € 71 (ﬁ) H(k‘—l—l)!(k+u)!

k=0

_ <l)NV+N2F(’)/ NN—i-V Ii;[ ) (k4 )1 (C.0.5)

2n

This leads to the following ratio needed for example inside the relation (4.2.10)
Z(€) _ ¢—N(N+v) 1
I'(7)Z, I'(y = N(N+v))
It confirms independently part of the result from the previous appendix, eq.
(B.0.5) for g = 2.
The spectral density for finite N follows by inserting this ratio as well as the

(C.0.6)

standard Laguerre density at finite-/V,

. . v 7527”)\ k‘ an vt v QTLf
0 DHLIN L) UL S
into (4.2.10):
_ 1 T e o€ 1NV ().
RO = = /0 de € eIV (C08)

With the help of eq. (C.0.3) we can derive and simplify the Christoffel-Darboux
identity for Laguerre polynomials of equal arguments

N-1

> rr o 0 = g [Hea 0L ) - L5 0L )]
- (C.0.9)

We thus arrive at our final result for the generalized density at finite N and ~:

N! o\, e 2 Nyt
RO = e () ) e e

~[L’j\,1 (¥A> Ly (271%) v (235 )Lyvtg (2%%)] (C.0.10)

This single integral over an exponential times polynomials can be performed

explicitly, at the expense of a double sum. Since this equivalent result is not very

illuminating or useful for the asymptotic we do not display it here.

131



Proceeding along the same lines as above we can write down the general result

for the k-point density correlations functions as they follow from eq. (4.2.16)

Ik (n .
Ry(A\i,..., ) = M <”> : )\V/ de =S5 i n),
R L(y = N? = Ny)D(N +v)k 2177 g

TIN (N—RY et (L]VV (%%AZ) L1 <2WL§>\J> — Ly (2%5)\],) Ly (2_::5/\’»

1<i,j<k Aj— N

(C.0.11)

In order to compare the finite- N result (C.0.10) with the macroscopic 7- and
N-independent density J4(x) eq. (4.3.13), we adopt the following procedure:

1. We rescale R,(\) with mean value (\), eq. (4.3.3) and normalize to 1:
pr(x) = N7HA)L Ry ((A)52).

2. Next, we express v as a function of @ and N, v =&+ N(N +v) + 1, and

pass to squared variables: J4(z) = |]p,(22).

3. Then, we compare Ug(z) and 4 (x) for v = 0 in Fig. C.1. The agreement

is already very good for N = 4, apart from the region close to the origin.
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R | i 2 3

Figure C.1: The macroscopic generalized semi-circle density J4(z) eq. (4.3.13)
for & = 1.02 and 14 (green and dashed red), compared with the finite N = 4

result U4(z) (blue and dash-dotted orange).
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Appendix D

Hypergeometric function of a

matrix argument

Following Kaneko [140], we first report the definition of the constant C appearing
in (5.2.17):
Cl = Sn,()(gl + m, 62, ﬁ) (DOl)

where:

Tl )T A1+ (= D5 (e + 14— 1)5)
S0l 92, 2) '_1:[ TG+ (n+y+2+ (n+i—2)5)

=1

(D.0.2)

The hypergeometric function of a matrix argument takes a symmetric matrix
(m x m) X as input and provides a real number as output. It is defined as a
series of Jack functions of parameter (3, which generalize the Schur function, the
zonal polynomial and the quaternion zonal polynomial to which they reduce for
B =1,2,4 respectively. Given a partition x of an integer k, i.e. a set of integers
K1 > Ky > ... > 0 such that |k| = k1 + k2 + ... = k, and a matrix X, the Jack
function O )(X) is a symmetric and homogeneous polynomial of degree |x| in

the eigenvalues zq, ..., x,, of X.

134



The hypergeometric function is defined as:

qu(B)(al,...,ap;bl,.. ZZ

K
B
kOnl—k : ()

where the symbol k - k£ means that  is a partition of k£ and

NCS ()
) C¥(X), (D.0.3)

(a),(f) = H(m.)en (a — % +J— 1) is a generalized Pochhammer symbol.
The series (D.0.3) converges for any X if p < ¢; it converges if max; |z;| < 1

and p = g + 1; and diverges if p > ¢ + 1, unless it terminates [132; 141].
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Appendix E

The 1 — 0 limit of the spectral

density

In the case Ny = N, = N and 3 = 2, the average spectral density was computed
exactly in [135] as:
N2

RQ(/\,leNQIN) :m

{Py(a) = 2aPy(a)Py-1(e) + Py_y()}
(E.0.1)
where v = 2\ — 1 and Py(x) is a Legendre polynomial.
This case corresponds to ;¢ — 0 in eq. (5.2.14). In this appendix, we show
explicitly how to get from (5.2.14) to (E.0.1).
First, we remark that the identity between Jacobi and Legendre polynomials
P (z) = P,(x) holds [formula 22.5.35 in [155]]. Hence, in the case y — 0 we

have from (5.2.14):

=

Ro(A; Ny =Ny =N) =Y (2n+ 1D{P,(1—-2)\)}? (E.0.2)

n

Il
o

Next, we use the Christoffel-Darboux formula for Legendre polynomials [see for-
mula 22.12.1 in [155]] at equal arguments z =y = 1 — 2X:

N-1

> @n+1)P2(y) = N[Pi(y)Py-1(y) — Ph_1(y) Pn(y)] (E.0.3)

n=0
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Then, we exploit the differential relation [22.8.5 in [155]]:

(1=y")Po(y) = —nyPuly) + nPu1(y) (E.0.4)
to get:
Ra(s Ny = Ny = N) = 725 [VP1(9) = 0Py () Pxaly) = (N = 1)
- Pn(y) Prn-2(y)] et (E.0.5)

Thanks to the recurrence relation [22.7.10 in [155]], we obtain the following iden-
tity for Py_o(y):

1

Pr-a(y) = (2N = DyPy-1(y) = NPx(y) (E.0.6)

which is then substituted into (E.0.5). Eventually, given that y = 1 — 2\ and the

Legendre polynomials have the same parity of their index, we obtain:

Ry(\; Ny = Ny = N) = %[va(% —1) = 22X = 1)Py(2X — 1)
Py 12X — 1) + P:_(2A —1)] (E.0.7)

in complete agreement with (E.0.1).
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