Brownian Motion in wedges, last passage time and the second arc-sine law

Alain Comtet1,2 and Jean Desbois1

8th June 2007

1 Laboratoire de Physique Théorique et Modèles Statistiques. Université Paris-Sud, Bât. 100, F-91405 Orsay Cedex, France.
2 Institut Henri Poincaré, 11 rue Pierre et Marie Curie, 75005, Paris

Abstract

We consider a planar Brownian motion starting from O at time $t=0$ and stopped at $t=1$ and a set $F = \{OI_i; i = 1, 2, \ldots, n\}$ of n semi-infinite straight lines emanating from O. Denoting by g the last time when F is reached by the Brownian motion, we compute the probability law of g. In particular, we show that, for a symmetric F and even n values, this law can be expressed as a sum of arcsin or $(\text{arcsin})^2$ functions. The original result of Levy is recovered as the special case $n = 2$. A relation with the problem of reaction-diffusion of a set of three particles in one dimension is discussed.

The first arc-sine law gives the distribution of the number of positive partial sums in a sequence of independent and identically distributed random variables. It was first discovered by P. Levy in his study of the linear Brownian motion and then discussed a lot for its relevance to the coin-tossing game [1]. The second arc-sine law, also discovered by P. Levy [2], provides an information on the last passage time which can be stated as follows. Consider a linear Brownian motion $B(\tau)$ starting at 0 at time $\tau = 0$ and stopped at time t and let g be the last time when 0 is visited. The random variable

$$g = \sup\{ \tau < t, B(\tau) = 0 \}$$

satisfies

$$P(g < u) = \frac{2}{\pi} \arcsin \sqrt{\frac{u}{t}}$$

with the density

$$P(u) = \frac{1}{\pi} \frac{1}{\sqrt{u(t-u)}}$$

Over the years, this result has been extended in several different directions (see for instance, [3, 4]) and is still a subject of active research in probability [5]. Generalizations of the first arc-sine law have also been considered in different contexts (one-dimensional diffusion in a random medium [6], Brownian motion on graphs [7] and, also, in two dimensions [8]).
The purpose of this Letter is to present a two dimensional generalization of the law (2). As a by-product of this result we also derive an explicit expression of the first passage time distribution which is relevant for a problem of reaction-diffusion involving three identical particles.

Exit problems for Brownian motion have a rich history and several applications in physics (see for instance [9]). They are in particular related with problems of capture of independent Brownian particles diffusing on the line. This connection was first anticipated by Arratia [10] and then discussed in the mathematics [11, 12] and physics literature [9, 13, 14, 15] mainly in the context of reaction-diffusion models. In the case of three particles, the process \((x_1(t) - x_2(t), x_2(t) - x_3(t)) \) defines a certain diffusion in a quadrant of \(R^2 \). By a suitable transformation, this process can be mapped on a diffusion inside a wedge whose angle depends on the diffusion constants. Using this correspondence, it has been shown that the first passage time through the wedge gives the survival probability; a quantity which decays with a power law which only depends on the angle of the wedge [14, 16]. At the end of this work, we exploit this correspondence to compute exactly (and not only asymptotically) the first collision time distribution for a three particle problem. Our approach is based on an identity relating the first passage and last passage distribution which has an interesting probabilistic interpretation [17].

To begin with, let us start by considering, as in Figure 1, a wedge of apex \(O \) and angle \(\phi \) with a boundary \(F = \{OI_i; \ i = 1, 2\} \) and a two dimensional Brownian motion \(\bar{r}(t) \) starting from \(O \) at \(t = 0 \) and stopped at \(t \) somewhere in the plane. We denote by \(g \) the last time when \(F \) is visited and compute the probability \(P(g < u) \). Due to the scaling property of the Brownian motion, this distribution is a function of the reduced variable \(u/t \). In the following, we will for simplicity set \(t = 1 \).

Suppose that the particle reaches some point \(\bar{r}_0 \) at time \(t = u \) (see Figure 1). Clearly, if \(\bar{r}_0 \) belongs to region (1) (resp. (2)), the particle must stay in (1) (resp. (2)) between \(t = u \) and \(t = 1 \) in order to satisfy the condition \(g < u \). We can therefore write

\[
P(g < u) = P^{(1)}(u) + P^{(2)}(u)
\]

Expressing the fact that the propagation is free between \(t = 0 \) and \(t = u \) and that the particle has not hit the boundary between \(t = u \) and \(t = 1 \), we get

\[
P^{(i)}(u) = \int_{(i)} d^2\bar{r}_0 \int_{(i)} d^2\bar{r} \frac{1}{2\pi u} e^{-\frac{u^2}{4}} G^{(i)}(\bar{r}, 1; \bar{r}_0, u) \quad ; \quad i = 1, 2
\]
The propagator $G^{(1)}$ satisfying the diffusion equation with Dirichlet boundary conditions on F is given by

$$G^{(1)} = \frac{2}{\phi} \left(1 - u \right) \sum_{m=1}^{\infty} \sin \frac{m\theta \pi}{\phi} \sin \frac{m\theta_0 \pi}{\phi} e^{-\frac{r^2 + r_0^2}{2(1-u)}} I_m \left(\frac{rr_0}{\phi} \left(\frac{1}{1-u} \right) \right)$$

where I_ν is a modified Bessel function and the notations are defined on Figure 1.

Performing the spatial integrations in (5), we get

$$P^{(1)}(u) = \frac{1}{\pi} \sum_{p,k=0}^{\infty} \frac{u^{p+k} \pi}{2^p} \frac{[\Gamma(p+\frac{k+1}{2})]^2}{\Gamma(\frac{2p}{\phi} + \frac{\pi}{\phi} + k + 1)} \frac{1}{k!}$$

$P^{(2)}$ is obtained by the change $\phi \rightarrow 2\pi - \phi$ in (7). Therefore, for arbitrary values of ϕ the law $P(g < u)$ is written in terms of a double series.

As a check, let us first consider the special case $\phi = \pi$. We may write

$$P(g < u) = 2P^{(1)}(u) = \frac{2}{\pi^2} u^{1/2} \sum_{p,k=0}^{\infty} \frac{\Gamma(p+k+1/2)^2}{k! (2p+k+1)!}$$

$$= \frac{2}{\pi} \arcsin \sqrt{u}$$

The fact that one recovers Levy’s second arc-sine law is not surprising since, when $\phi = \pi$, F divides the plane into two half-planes. Therefore the component of the Brownian motion parallel to F factorises and plays no role: we are thus left with a one dimensional problem.

Coming back to general values of ϕ, we can derive the behavior of the probability density $P(\equiv \frac{dP(g < u)}{du})$ when $u \to 0$ and $u \to 1$. By using (11) and (7), one gets a power-law behavior when $u \to 0^+$

$$P(u) \sim \frac{1}{\pi} u^{-1/2} \quad \text{for } \phi = \pi$$

$$P(u) \sim C(\mu) u^{\mu - 1} \quad \text{for } \phi \neq \pi$$

with

$$C(\mu) = \frac{\mu^2}{2\pi^2} \frac{[\Gamma(\frac{\mu}{\pi})]^2}{\Gamma(\mu + 1)}$$

and

$$\mu = \frac{\pi}{2\pi - \phi} \quad \text{when } 0 < \phi < \pi$$

$$\mu = \frac{\pi}{\phi} \quad \text{when } \pi < \phi < 2\pi$$

Now, for the limit $u \to 1^-$, using asymptotic expansions for Γ functions and also an equivalence between series and integrals, we get

$$P(u) \sim \frac{1}{\pi} \frac{1}{\sqrt{1-u}}$$

i.e. the same behavior as for (11). The expression (15) doesn’t depend on ϕ and we have already seen that $\phi = \pi$ gives the Levy’s law. Remark that $u \to 1^-$ corresponds to Brownian curves
that stop close to F. Therefore, between $t = u$ and $t = 1$, the Brownian particle only “sees” an infinitesimal part of F, i.e. a straight line as for $\phi = \pi$. This is, in our opinion, why the result (15) doesn’t depend on ϕ. Actually, it only depends on the fact that the plane is divided by F into two regions. We will come back to this point latter on.

![Figure 2: F consists in n semi-infinite straight lines starting from O.](image)

To go further, let us remark that for $F = \{OI_i ; i = 1, 2, \ldots, n\}$ as in Figure 2, (14) becomes simply:

$$P(g < u) = \sum_{i=1}^{n} P^{(i)}(u)$$

(16)

(Replace ϕ by ϕ_i in (7) in order to get $P^{(i)}$).

Let us now specialize to the situation when F is symmetric and n is even ($n \equiv 2l$). In that case, F consists in l infinite straight lines crossing at point O and dividing the plane into $2l$ equal angular sectors, each one of angle $\phi = \pi/l$.

![Figure 3: F is symmetric. The analytic form of $P(g < u)$ will depend on the parity of l. Thus, it will be different for the cases a) and b). For further explanations, see text.](image)
Equation (16) writes
\[P(g < u) \equiv P_l(u) = \frac{2}{\pi^2} l^2 \frac{u^{l/2}}{l} \sum_{p=0}^{\infty} u^p \sum_{k=0}^{\infty} \frac{\Gamma(lp + k + l/2)^2 u^k}{(2lp + l + k)!} \frac{u^k}{k!} \] (17)

\(l \) being an integer, we can sum the series and, finally, get
\[P_l(u) = \frac{2l}{\pi^2} \left(\sum_{k=0}^{l-1} \sin \left(\frac{2\pi k}{l} \right) \right) \quad , \quad l \text{ odd} \] (18)
\[P_l(u) = \frac{2l}{\pi^2} \left(\sum_{k=0}^{l-1} (-1)^k \left(\sin \left(\sqrt{\frac{\pi k}{l}} \right) \right)^2 \right) \quad , \quad l \text{ even} \] (19)

which is the central result of this paper.

We remark that the correct small \(u \) behavior for \(P_l(u) \) follows from the two identities
\[\sum_{k=0}^{l-1} \left(\cos \frac{2\pi k}{l} \right)^m = 0 \quad , \quad l \text{ odd} \quad , \quad m = 1, 3, \ldots, l-2 \] (20)
\[\sum_{k=0}^{l-1} (-1)^k \left(\cos \frac{\pi k}{l} \right)^m = 0 \quad , \quad l \text{ even} \quad , \quad m = 0, 2, 4, \ldots, l-2 \] (21)

In particular
\[P_1(u) = \frac{2}{\pi} \sin \sqrt{u} \] (22)
\[P_2(u) = \frac{4}{\pi^2} \left(\sin \sqrt{u} \right)^2 \] (23)
\[P_3(u) = \frac{6}{\pi} \left(\sin \sqrt{u} - 2 \sin \sqrt{\frac{u}{2}} \right) \] (24)
\[P_4(u) = \frac{8}{\pi^2} \left(\sin \sqrt{u} \right)^2 - 2 \left(\sin \sqrt{\frac{u}{2}} \right)^2 \] (25)
\[P_5(u) = \frac{10}{\pi} \left(\sin \sqrt{u} - 2 \sin \left(\cos \frac{\pi}{5} \sqrt{u} \right) \right) + 2 \sin \left(\cos \frac{2\pi}{5} \sqrt{u} \right) \] (26)

These functions are displayed below in Figure 4.

As expected, the Levy’s second arc-sine law is recovered in (22). Moreover, the result (23) is straightforward since, when \(l = 2 \), the 2 components of the Brownian motion factorize. Thus, for \(l = 2 \), \(\left(\sin \sqrt{u} \right)^2 \) functions appear. What is surprising is that they will appear each time \(l \) is even while being absent when \(l \) is odd.

For the probability density, \(P_l (\equiv \frac{dP}{du}) \), with (18) and (19), we obtain:
\[P_l(u) \sim \frac{l}{\pi} \frac{1}{\sqrt{1 - u}} \quad \text{when} \quad u \to 1^- \] (27)

This is consistent with (15) that corresponds to \(l = 1 \).
We now present a formula which relates the first passage and the last passage time distribution. The starting point is (4) and (5) which may be rewritten as

\[
P(g < u) = \int Pr(T > 1 - u | r_0) \frac{1}{u} e^{-\frac{r_0^2}{2u}} r_0 \, dr_0
\]

where \(Pr(T > (1 - u) | r_0) \) is the probability distribution of the first passage time \(T \) through \(F \), given that the process starts at \(r_0 \). Then, by scaling one has

\[
Pr(T > (1 - u) | r_0) = Pr(T > \frac{(1 - u)}{r_0^2} | 1)
\]

By a simple change of variables it follows that

\[
P(g < \frac{1}{1 + t}) = \int Pr(T > \frac{t}{2x} | 1) e^{-x} \, dx
\]

Therefore

\[
P(g < \frac{1}{1 + t}) = E(e^{-\frac{t}{2T}})
\]

which is a relation between the first passage characteristic function for a process starting at \(r_0 = 1 \) and the probability distribution of the last passage time. Interestingly enough this formula can also be derived in a more intrinsic fashion using only time inversion and scaling [17].

As an application, let us derive the density of first passage time in a wedge of angle \(\phi = \frac{\pi}{3} \). In the context of the capture problem mentioned in the introduction, this corresponds to a set of three identical and independent particles [11]. In this case, the distribution \(P(g) \) is given in eq (24). By an inverse Laplace transform [31] gives the density of first passage time:

\[
f(T) = \frac{6}{\pi^2 T} e^{-\frac{1}{4T}} \left(\int_0^{\sqrt{\frac{T}{3}}} e^{y^2} \, dy - 2 \int_0^{\sqrt{\frac{T}{8}}} e^{y^2} \, dy \right)
\]

One can check that this formula is in agreement with (16) of [11] which expresses the first collision time probability for a given set of initial conditions. By averaging this formula over the angle and setting \(r = 1 \) one recovers [32].
ACKNOWLEDGMENT We are particularly grateful to Prof. Marc Yor for introducing us to the subject and for pointing out [31].

References

[4] Yor M 1992 *Some Aspects of Brownian Motion*, Part 1, Lectures in Mathematics, ETH Zurich (Birkhauser-Verlag)

[17] Yor M Private communication