
ar
X

iv
:c

on
d-

m
at

/0
00

44
91

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  2
8 

A
pr

 2
00

0

Multifractality in uniform hyperbolic lattices and in quasi–classical

Liouville field theory

Alain Comtet1, Sergei Nechaev1,2 and Raphaël Voituriez1
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91405 Orsay Cedex, France

2 L D Landau Institute for Theoretical Physics, 117940, Moscow, Russia

We introduce a deterministic model defined on a two dimensional hyper-

bolic lattice. This model provides an example of a non random system whose

multifractal behaviour has a number theoretic origin. We determine the mul-

tifractal exponents, discuss the termination of multifractality and conjecture

the geometric origin of the multifractal behavior in Liouville quasi–classical

field theory.

I. INTRODUCTION

The concept of multifractality consists in a scale dependence of critical exponents [1].
It has been widely discussed in the literature in the context of various problems such as,
for example, statistics of strange sets [2–4,13], diffusion limited aggregation [5], wavelet
transforms [6], conformal invariance [7]. This concept also proves to be useful in the context
of disordered systems [25,28]. It was recently found that the ground state wave function
of two dimensional Dirac fermions in a random magnetic field has a multifractal behavior.
The field theoretic investigation of the multifractality has been undertaken in the papers [8],
while different interpretations of these field theoretic results from a geometrical and physical
points of view were presented in [9] and [10] correspondingly. This problem was recently
reanalyzed in the more general setting of systems caracterized by logarithmic correlations
[25].

Our work is mainly inspired by the approach developed in [9] where the authors obtain
the multifractal exponents of the critical wave function by a mapping on the problem of
directed polymers on a Cayley tree. However our starting point is different and we treat a
deterministic model defined on a Cayley tree. We take advantage of the fact that the Cayley
tree can be isometrically embedded in a space of constant negative curvature. We assume
that each vertex of the tree carries a Boltzmann weight that depends on the hyperbolic
distance from a given root point. The corresponding partition function is a sum over a
finite number of tree vertices and has the form of a truncated Poincaré series. Its scaling
dependence on the size of the system is controlled by the probability distribution of traces
of 2 × 2 matrices which belong to a discrete subgroup of PSL(2, IR). This distribution,
obtained by using the central limit theorem for Markov multiplicative processes [30], allows
us to compute the multifractal exponents and discuss the termination of multifractality.
The study of the convergence of the measure on the boundary reveals some interesting links
with work of Gutzwiller and Mandelbrot [13] on multifractal measures. Another interesting,
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although more speculative, aspect is connected with a geometric approach to Liouville field
theory arising in the study of low dimensional disordered systems [8,9,28,29]. We suggest
that in two dimensions our model exhibits a new type of multifractal behavior which has a
purely geometric origin.

This paper is organized as follows. In section II we introduce the geometrical model
possessing the multifractal behavior, develop methods for its investigation and explicitly
show the number theoretic origin of multifractality; section III is devoted to applications
of these results to quasi–classical 2D Liouville field theory (LFT); the conclusion presents
some speculations regarding the applicability of our geometric considerations to some other
disordered physical systems.

II. THE MODEL

We begin with the investigation of geometrical properties of lattices uniformly embedded
in the hyperbolic 2-space. Lattices under consideration are defined as follows: we construct
the set of all possible orbits of a given root point under the action of a discrete subgroup
of PSL(2, IR) (group of motion of the hyperbolic 2-space). We restrict ourselves with the
simplest example of 3–branching Bethe lattice (Cayley tree) which is generated by reflections
of zero–angled curvilinear triangle—see fig.1.
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FIG. 1. A Cayley tree in the Poincaré disc. Sample points: A
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The graph connecting the centers of the neighboring triangles forms a Cayley tree iso-
metrically embedded in the Poincaré unit disc (a Riemann surface of constant negative
curvature).

Consider the nth generation of the vertices of the 3–branching Cayley tree. Denote by
rj(n) the Euclidean distance of the vertex j (which belongs to the nth generation of the
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Cayley tree) from the center of the unit disc (1 ≤ j ≤ 3 × 2n−1). The corresponding
hyperbolic (geodesic) distance dj(n) is given by:

dj(n) = ln
1 + rj(n)

1 − rj(n)

(

rj(n) = tanh
dj(n)

2

)

(1)

Define the generating function Z(q,N)

Z(q,N) =
N
∑

n=1





3×2n−1
∑

j=1

e−q dj(n)



 (2)

In a physical context Z(q,N) may be interpreted as a partition function on the hyperbolic
lattice with an action linear in the length of trajectory.

The Bethe lattice involved can be constructed by the action of the discrete group Γθ

which operates on the unit disc by a set of fractional–linear transformations. Despite the
simple structure of the group it is believed that the techniques involved are quite general
and could be easily generalized in order to cover more sophisticated lattices.

We are interested in the scaling dependence of the partition function Z(q,N) as a function
of the size N of the system. Scaling considerations suggest the following behaviour

Z(q,N) = L−τ⋆(q)
max (3)

where in our case Lmax = 3(2N − 1) is the total number of Cayley tree vertices in the bulk
restricted by the generation n = N .

We show below that the critical exponent τ(q) defined as follows

− lim
N→∞

lnZ(q,N)

N
= τ(q) (4)

depends nonlinearly on q i.e. exhibits the multicritical behavior (note that τ ⋆ = τ/ ln 2).

Note that the free energy normalized per volume of the system f(q,N) = − lnZ(q,N)
N

coincides
with the multifractal exponent τ(q):

lim
N→∞

f(q,N) = τ(q) (5)

A. Numerical results

We first compute numerically the histogram, which counts the number of vertices be-
longing to generation n (properly normalized), Wn(d), lying in the shell [d, d+ δd].

In our particular computations we restrict ourselves with two cases depending on the
length of the trajectories:
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1. Short trajectories. We enumerate all trajectories and the computations have been
carried out for all n ∈ [1, N ] up to N = 25 generations. The figure fig.2a shows the
histogram for the distribution of hyperbolic distances for n = 25. The absolute value
of number of events in the fig.2a depends on the particular choice of the width of the
shell δ. It can be seen from fig.2a that the corresponding plot is highly nonsymmetric
with respect to the mean value 〈d〉.

2. Long trajectories. For n = 200 the enumeration of all different paths is very time
consuming, therefore we compute numerically the histogram Wn(d) developing partial
ensemble of 200 000 directed random walks of n = 200 step each. As n → ∞ the
distribution function Wn(d) becomes more and more symmetric in accordance with
the statement that there exists a central limit theorem for such random walks on
noncommutative groups (see the discussion below). The results of corresponding nu-
merical computations are presented in Fig.2b. The distribution Wn(d) is well fitted by
a Gaussian function:

Wn(d) = A0 e
− (d−〈d〉)2

2∆2

where for n = 200 one has: A0 ≈ 1929.96 and depends on normalization; 〈d〉 ≈ 159.18;
∆2 ≈ 17.01.
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FIG. 2. Distributions Wn(d) up to normalization, compared to their Gaussian fits: one can

notice the slow convergence from strongly nonsymetric regime for n = 25 (a) to a Gaussian regime

for n = 200 predicted by the central limit theorem (b).

In spite of the fact that convergence to the Gaussian distribution is slow, the linear
dependence in n of the mean value 〈d〉 = γn and the variance 〈(d− 〈d〉)2〉 ≡ ∆2 = σ2n is
numerically evident, which permits one to get an accurate estimate of γ and σ2.
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The numerical computation of the probability distribution Wn(d) allows one to compute
the multifractal exponent τ(q) following the definitions (3)–(5). The corresponding results
are shown in fig.3, for N = 40. Due to the slow convergence of the distribution, the
discrepancy between numerical data (technically limited to N ≤ 40) and the theoretical
prediction can not be quantitatively taken into account. We here insist on the multifractal
behaviour, shown by the non-linear depence on q.

−30 −20 −10 0 10 20
q

−30

−20

−10

0

10
τ(

q)

Theoretical prediction
Numerical data
Linear fit at q=0

FIG. 3. Multicritical behavior of the exponent τ(q) for N = 40, compared to theoretical predic-

tion.

B. Analytic results

Let us return to the definition of the model and recall that the group Γθ acts in the
hyperbolic Poincaré upper half–plane H2 = {z ∈ |C, Im(z) > 0} by fractional–linear trans-
forms1. The matrix representation of the generators of the group Γθ is well known (see,
for example [23]), however for our purposes it is more convenient to take a framework that
consists of the composition of standard fractional–linear transform and complex conjugacy.
Namely, denoting by z̄ the complex conjugate of z, we consider the following action

(

a b
c d

)

: z → az̄ + b

cz̄ + d
(6)

A possible set of generators is then:

1It is convenient first to define the representation of the group Γθ in the Poincaré upper half–plane

and then use the conformal transform to the unit disc.
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h0 =

(

1 −2/
√

3
0 −1

)

, h1 =

(

1 2/
√

3
0 −1

)

, h2 =

(

0 1/
√

3√
3 0

)

(7)

Choosing the point (x0, iy0) = (0, i) as the tree root—see fig.4, any vertex on the tree is

associated with an element Mn =
n
∏

k=1

hαk
where αk ∈ {0, 1, 2} and is parametrized by its

complex coordinates zn = Mn((−1)ni) in the hyperbolic plane.

z=i

z

z=i/3

1/3
1/2

-1/3
1/2

0

FIG. 4. Poincaré hyperbolic upper half–plane H2

Strictly speaking H2 should be identified with SL(2, IR)/SO(2); we here identify an
element with its class of equivalence of SO(2). If one denotes by d(Mn) ≡ d(i, zn) the
hyperbolic distance between i and zn, the following identity holds

2 cosh
(

d(Mn)
)

= Tr(MnM
†
n) (8)

where dagger denotes transposition.

1. Distribution function, invariant measure on the boundary and Lyapunov exponents

We are interested in the distribution function Wn(d) which is the probability to find the
tree vertices in generation n at the distance d from the root point. It means that we are
looking for the distribution of the traces for matrices Mn which are the irreducible products
of n generators. If we denote by l(Mn) the irreducible length of the word represented by the
matrix Mn, then Mn is irreducible if and only if l(Mn) = n. Such word enumeration problem
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is simple in case of the group Γθ, because of its free product structure: Γθ ∼ ZZ2 ⊗ ZZ2 ⊗ ZZ2.

Indeed, if Mn =
n
∏

k=1

hαk
one has l(Mn) = n if and only if hαk

6= hαk−1
∀k. Hence we have to

study the behavior of the random matrix Mn, generated by the following Markovian process

Mn+1 = Mnhαn+1 with αn+1 =







(αn + 1) mod 3 with probability 1
2

(αn + 2) mod 3 with probability 1
2

(9)

We use the standard methods of random matrices and consider the entries of the 2× 2–
matrix Mn as a 4–vector Vn. The transformation Mn+1 = Mnhα reads

Vn+1 =

(

h†α 0
0 h†α

)

Vn (10)

This block–diagonal form allows one to restrict ourselves to the study of one of two 2–
vectors, composing Vn, say vn. Parametrizing vn = (̺n cos θn, ̺n sin θn) and using the re-
lation d(Mn) ≡ dn ≃ 2 ln ̺n valid for n ≫ 1, one gets a recursion relation vn+1 = h†αvn in
terms of hyperbolic distance dn:

dn+1 = dn + ln
[

5

3
+

4

3
cos(2θn + ϕα)

]

(11)

where ϕα depends on the transform hα through ϕα = (2α − 1)π/3 (α = 0, 1, 2), while for
the angles one gets straightforwardly

tan θn+1 = hα̃

(

tan(θn)
)

(12)

and the change α → α̃ means the substitution (0, 1, 2) → (1, 0, 2). Action of hα is still
fractional–linear.

Define now three invariant measures µα(θ) corresponding to transformations of Mn (n≫
1) whose last step is given by a matrix hα. The form of (12) suggests to consider the
corresponding µα(x) with x = tan θ. We are then led to study the action of Γθ restricted on
the real line parametrized by x. Interesting properties of the average µ = (µ0 + µ1 + µ2)/3
have been discussed by Gutzwiller and Mandelbrot [13]. In particular they pointed out the
connexion with the arithmetic function β(ξ) which maps some number ξ ∈ [0, 1] written as
a continued fraction expansion

1

n1 +
1

n2 + . . .

to the real number β whose binary expansion is made by the sequence of n1 − 1 times 0,
followed by n2 times 1, then n3 times 0, and so on. To account for this fact, one has first
to notice that the construction (9) of any word M in Γθ is exactly encoded by the binary
representation of a real ξ, the n’s letter of this expansion being αn+1 − αn + 1 mod3. The
second argument, due to Series [14], is that the real part of the vertex M(i) is precisely the
continued fraction µ(ξ). Therefore β(ξ) has to be proportional to the “number” of vertices
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lying in the interval [0, ξ], that is to µ([0, ξ]). Taking the limit n → ∞ is not well defined.
An alternative, which was used in this work, is to define µα(x) as the limit of the following
recurrency:

µ(n+1)
α (x) =

1

2

∣

∣

∣

∣

∣

dhα(x)

dx

∣

∣

∣

∣

∣

∑

α′ 6=α

µ
(n)
α′

(

hα′(x)
)

(13)

The symetry of such expression leads, after summing over α, to the following relation ad-
mitting as fixed point µ(x) at n→ ∞:

µ(n+1)(x) =
1

3

2
∑

α=0

µ(n)
(

hα(x)
)

∣

∣

∣

∣

∣

dhα(x)

dx

∣

∣

∣

∣

∣

(14)

−2 −1 0 1 2
θ

0

1

2

3

4

5

FIG. 5. Invariant measure µ as a function of θ

The convergence µ(n)(x) → µ(x) for n → ∞ is assured by ergodic properties of such
functional transform in case of equation (14), and has been successfully checked numerically
by comparing to direct sampling of different orbits. Obtaining µα for α = {0, 1, 2} from µ
is not difficult, taking into account the symmetric role that they play with respect to the
three intervals I0 =] −∞,−1/

√
3], I2 = [−1/

√
3, 1/

√
3], I1 = [1/

√
3,+∞[ (see fig.II B 1).

Contracting properties of hα(x) allow convergence of (14) only if

µk(x) = 3χIk
(x)µ(x) (15)

where χIk
is the characteristic function of the interval Ik.
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We would like to point out an interesting fact, even if far from being rigorous, which is
very similar to the argument put forward in [13] for justifying the connexion between the
invariant measure and the arithmetic function β(ξ). It has been shown in [22] that the lattice
under consideration can be isometrically embedded in a 2–manifold M = {c|η(z)|4, z ∈ H2},
where

η(z) = eπiz/12
∞
∏

n=1

(1 − e2πinz)

is the Dedekind η–function. The mountain range (relief) M displays a very steep valley
structure, and our tree lattice was defined as the ridges of this relief. The natural “counting”
of vertices whose real part lies in [0, ξ] in [13] is in our case equivalent to counting the number
of maxima of |η(x+ i0+)|4, that can be directly reexpressed as a density if one admits that
all maxima are equivalent and well separated:

µ(x) ∼ |η(x+ i0+)|4
∫ 1
0 |η(t+ i0+)|4dt (16)

The intriguing fact is that η4 is an automorphic form of weight 2, what makes |η|4 precisely
a possible fixed point of Eq.(14). We recall the fundamental property of automorphic forms
f of weight 2 under the action of SL(2, IR):

f(z) =
eiφ(a,b,c,d)

(cz + d)2
f

(

az + b

cz + d

)

(17)

The main problem is that the boundary behavior of automorphic forms is far from trivial
(see [27]), and (16) has no rigorous mathematical sense. In particular compatibility of (14)
and (16) is not obvious even numerically. Nevertheless we insist on the fact that µk is defined
with no ambiguity by (14), what enables us to compute the desired Wn(d). The crucial point
here, already required for convergence of µ(n), is ergodicity property of θn. It means that
for n ≫ 1, the distribution of θn is exactly given by µ(θ), independently of n and initial
condition. Then, denoting by dα

n the value dn obtained for a word ending with hα, one can
transform (11) in the following way:

dn+1 =
1

3

2
∑

α=0

(

dα
n + ln

[

5

3
+

4

3
cos(2θn + ϕl)

])

(18)

with the condition l 6= α. Thus we obtain

〈

eikdn

〉

=
1

6

2
∑

k=0

∑

j 6=k

[

∫ π/2

−π/2
dθµk(θ)

(

5

3
+

4

3
cos(2θ + ϕj)

)ik
]n

(19)

which finally leads to

Wn(d) =
1

2π

∫ ∞

−∞
dk e−ikd

[

∫ π
3

0
dθµ1(θ −

π

6
)
(

5

3
+

4

3
cos 2θ

)ik
]n

(20)
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This form suggests that for n large Wn(d) satisfies a central limit theorem. Indeed such
a theorem exists (see [24,30]) for Markovian processes, provided that the phase space is
ergodic. We are then led to compute only the first two moments (Lyapunov exponents)
which gives

γ =
〈d〉
n

=
∫ π

3

0
dθµ1(θ −

π

6
) ln

(

5

3
+

4

3
cos 2θ

)

≈ 0.792 (21)

and

σ2 =
〈(d− 〈d〉)2〉

n
= γ2 − γ2 (22)

with

γ2 =
∫ π

3

0
dθµ1(θ −

π

6
) ln2

(

5

3
+

4

3
cos 2θ

)

≈ 0.68 (23)

Numerical simulations presented in previous section yield γ ≈ 0.793 and γ2 ≈ 0.66, which
finally allow us to conclude that for n≫ 1 Wn(d) has a Gaussian behavior

Wn(d) = Ae−
(d−nγ)2

2σ2n (24)

centered at γn and of variance σ2n (A is the normalization).

The numerical values of the Lyapunov exponents γ and γ2 (see Eqs.(21) and (23)) are
obtained by means of semi–numerical procedure which involves the numerical information
about the invariant measure µ1(θ). However one can get the estimates for the Lyapunov
exponents γ and γ2 by approximating the measure µ1(θ) on the interval 0 ≤ θ ≤ π

3
in two

different ways:

µ1(θ −
π

6
) ≈ µA

1 (θ) =
3

π

µ1(θ −
π

6
) ≈ µB

1 (θ) =
3

2
sin(3θ)

(25)

Both measures µA
1 and µB

1 are properly normalized on the interval [0, π
3
]. Substituting (25)

in (21) and (23) and computing (analytically for γ) the corresponding integrals, one finally
gets:

µA
1 :

{

γ ≈ 0.749
γ2 ≈ 0.665

µB
1 :

{

γ ≈ 0.792
γ2 ≈ 0.684

(26)

As one can see, the agreement between numerical values of Lyapunov exponents obtained
for the measures µ1 and its approximants µA,B

1 is reasonable for µA
1 and very good for µB

1 .
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2. Multifractal exponents

The partition function Z(q,N) introduced in (2) can be defined for any discrete subgroup
of PSL(2, IR) of generic element τ by

Z(q,N) =
∑

τ, l(τ)≤N

e−qd(τ) (27)

and the associated critical exponent is then

τ(q) = − lim
N→∞

lnZ(q,N)

N
(28)

The probability distribution (24) enables us to rewrite (27) for the group Γθ in the limit
n≫ 1 as follows

Z(q,N) =
N
∑

n=1

3 × 2n−1an (29)

where

an =
∫ ∞

0
e−qtWn(t)dt =

∫ ∞

0
Ae−

(t−nγ)2

2nσ2 e−qtdt (30)

The following two cases should be distinguished:

• For q < γ/σ2, the minimum of the exponent in Eq.(30) is within the range of integra-
tion and

an ∼ e−nγq+nσ2q2/2 (31)

hence

Z(q,N) ∼ 3

2

N
∑

k=1

ek(ln 2−γq+σ2q2/2) (32)

The convergence of the sum (32) for N → ∞ depends on the sign of the function in
the exponent. For

q < q0 =
γ −√

γ2 − 2σ2 ln 2

σ2
(33)

one has − ln 2 + γq − σ2q2/2 > 0 and the multifractal exponent is

τ(q) = − ln 2 + γq − σ2q2/2 (34)

while for q > q0, the series Z(q,N) converges and τ(q) = 0 what signals the termination
of the multifractality. Note that q0 is real at least in the case of the group Γθ.
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• For q > γ/σ2 the minimum of the exponent in Eq.(30) is out of the range of integration
and

ln an ∼ −nγ
2

2σ2
(35)

hence Z(q,N) is no longer extensive in N , which leads to τ(q) = τ(q0) = 0.

The nonlinear dependence on q obtained above shows the multifractal behaviour of this
model below the termination point q0. It seems more transparent to summarize all these
results in a table

q < γ/σ2 q < q0 =
γ−
√

γ2−2σ2 ln 2

σ2 τ(q) = − ln 2 + γq − σ2q2/2

q > q0 =
γ−
√

γ2−2σ2 ln 2

σ2 τ(q) = 0

q > γ/σ2 τ(q) = τ(q0) = 0

3. Conformal mapping approach to computation of partition function and multifractal exponent

We propose in this section a completely different approach allowing to get a closed
analytic expression for the partition function similar to Z(q,Nmax) (see Eq.(2)). The con-
struction presented below is a by-product of our former investigations of analytic structure
of the covering Riemann space of the multi–punctured complex plane (see, for review [21]).
We explore the properties of the Jacobian of conformal mapping of the infinite complex plane
with a triangular lattice of punctures into the unit disc parametrized by w = reiα, which in
this particular case represents the multi–sheeted universal covering space [21]. Namely, we
define two functions f(r, α) and g(r):

f(r, α) = c

∣

∣

∣θ′1
(

0, eiπζ(w)
)∣

∣

∣

8/3

|1 + iw|4 ≡ c
|η(ζ(w))|8
|1 + iw|4 , g(r) =

1

(1 − r2)2
(36)

where










































θ′1
(

0, eiπζ
)

= 2 ei π
4
ζ

∞
∑

n=0

(−1)n(2n+ 1) eiπn(n+1)ζ

ζ(w) = e−iπ/3 w + eiπ/6

w − i

c =
∣

∣

∣θ′1
(

0, eiπζ(0)
)∣

∣

∣

−8/3 ≈ 0.933293

(37)

One can show that the functional equation

f(r, α)

g(r)
− 1 = 0 (38)
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has a family of solutions (rc, αc) exactly at positions of 3–branching Cayley tree isometrically
embedded in the hyperbolic unit disc (in the Klein’s model of the surface of constant negative
curvature). In fig.6 we have plotted the 3D section of the function

u(r, α) =
f(r, α)

g(r)
(39)

in polar coordinates (r, α) for 0.9 < u(r, α) ≤ 1. The function u(r, α) has local maxima with

one and the same value u = 1 only at the coordinates of isometric embedding of 3–branching

Cayley tree in the hyperbolic unit disc. The proof of this fact is given in Appendix A.

Thus, we can rewrite (2) in the following closed form (recall that Euclidean distance r
and the corresponding hyperbolic distance d are linked by the relation (1))

Z̃(q, d) =
1

2π

r(d)
∫

0

2π
∫

0

e−q ln 1+r
1−r δ (ln u(r, α))

∣

∣

∣

∣

∣

d lnu(r, α)

dr

∣

∣

∣

∣

∣

rdrdα (40)

where for δ[ln u(x)] we use the standard integral representation δ[ln u(x)] = 1
2π

∞
∫

−∞
dξ [u(x)]iξ.

FIG. 6. 3D parametric plot of the function u(r, α) in the section 0.9 < u(r, α) ≤ 1.

It is noteworthy to pay attention to the difference between the partition functions Z(q,N)
(Eq.(2)) and Z̃(q, d) (Eqs.(27) and (40)). The function Z(q,N) counts the weighted number
of Cayley tree vertices up to the generation N for nonfixed maximal radius r(d) = tanh(d/2)
in the hyperbolic unit disc, while the function Z̃(q, d) counts the weighted number of Cayley
tree vertices within the hyperbolic disc of radius r(d) for nonfixed maximal generation N .
The last partition function is in fact related to the number of tree vertices inside the disc of
radius d. This is the content of the famous circle problem first formulated by Gauss for the
Euclidean lattice ZZ

2. The extension to the non-Euclidean case is due to Delsarte [31] (see
also [18]).
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III. MULTIFRACTALITY IN 2D QUASI–CLASSICAL LIOUVILLE FIELD

THEORY

Our starting point is the family of normalized wave functions ψk(x) defined as follows

ψk(x) =
|x|ke−ϕ(x)

[
∫

dx |x|2ke−2ϕ(x)]
1/2

(41)

where integration extends to a disc of radius R and the potential ϕ(x) is distributed with
Gaussian distribution function

P [ϕ(x)] ∝ exp

{

− 1

2g

∫

dx (∇ϕ(x))2

}

(42)

The problem defined in (41)–(42) appears in various models which will be discussed in the
next section.

The multifractal exponent for the quenched and annealed distributions of disorder in
(41)–(42) can be computed in the standard way

τqu(q) = − lim
R→∞

〈lnQ(q, R)〉
lnR

for quenched disorder

τan(q) = − lim
R→∞

ln 〈Q(q, R)〉
lnR

for annealed disorder

(43)

where Q(q, R) =
∫

dx|ψk(x)|2q and the brackets 〈...〉 denote averaging with the distribution
P [ϕ(x)].

We pay attention to the case of annealed disorder and our aim is to evaluate the corre-
lation function

〈Q(q, R)〉 =
∫

dx
〈

|ψk(x)|2q
〉

(44)

The averaging 〈...〉 in (44) means

〈...〉S[ϕ] =
∫

D[ϕ(x)]e−S[ϕ(x)] (45)

where

S[ϕ(x)] =
1

2g

∫

dx
{

(∇ϕ(x))2
}

(46)

In order to take into account proper normalization of the wave function ψk(x) it is
convenient to use a Lagrange multiplier λ, so that eventually

〈Q(q, R)〉 =
∫

dx0

∫

D[ϕ(x)]e−2q(ϕ(x0)−k ln |x0|) e−Sk[ϕ(x)] (47)

14



where

Sk[ϕ(x)] =
1

2g

∫

dx
{

(∇ϕ(x))2 + 2λg
(

|x|2ke−2ϕ(x) − 1

πR2

)}

(48)

is the action of 2D Liouville Field Theory (LFT).

The careful treatment of the quantum LFT in the case k = 0 (see for review [15]) enables
one to find the conformal weights ∆ (e−2qϕ) = q(Q − q), where Q(g) is the “background
charge”, obtained by imposing conformal invariance of S0[ϕ]. The authors of work [8] have
related the value ∆ (e−2qϕ) to the critical exponent τan(q) in the scaling dependence of the
average inverse participation ratio (44)

〈Q(q, R)〉 ∼ R−τan(q) (49)

Despite the multiscaling exponent τan(q) has been computed in the general framework
of Conformal Field Theory (CFT) few years ago, from our point of view, the geometrical
interpretation of the multifractal behavior in the model has not yet been cleared up. A
more physical approach put forward in [9] exploits an analogy between this model and the
problem of directed polymers on a Cayley tree. This analogy is supported by the fact that
in both cases the correlation functions grow logarithmically with the distance. For directed
polymers it is the correlation function of the random potential defined on the tree vertices
that scales logarithmically with the ultrametric distance (i.e. distance along the tree). The
same logarithmic behaviour occurs in 2D Gaussian Field Theory [8].

We adopt a different point of view. Let us notice that the tree structure (conjectured
by C.Chamon et al) emerges quite naturally from the Liouville field theory treated at a
semi-classical level. Our idea is as follows. Indeed there is not just one saddle point solution
but a whole orbit of solutions parametrized by SL(2, IR). If one further assumes that the
integration has to be performed not over the whole group but only over a subgroup (for
instance Γθ), one recovers quite naturally the model defined in section II.

Our starting point is the semi–classical (g → 0) treatment of (47) (a similar approach
can be found in [19]). Using a saddle point method, one is led to the classical equation

∆ϕ− 2qgδ2(x − x0) + 2λg|x|2k e−2ϕ = 0 (50)

which gives, after integration

λ = q − F/2g (51)

where
F =

∫

dx∆ϕ

is the magnetic flux. We then introduce the shifted field

ϕ̃(x) = ϕ(x) − ln |x|k (52)

and taking into account that

15



∆ϕ̃(x) = ∆ϕ(x) − 2πkδ2(x) (53)

we end up with the following equation

∆ϕ̃ + 2πkδ2(x) − 2q gδ2(x − x0) + (2q g − F )e−2ϕ̃ = 0 (54)

The most general solution of (54) (away from singularities) in Euclidean space of complex
coordinate z can be written as follows [15]

e−2ϕ̃ =
4

|F − 2qg|
∂zA(z)∂zB(z)

(

1 + ǫA(z)B(z)
)2 (55)

where A(z) and B(z) are correspondingly holomorphic and anti–holomorphic functions of z
and ǫ = sign(F − 2q g). The semi–classical treatment assumes g to be small, hence in order
to have real ϕ̃ in Eq.(55) we should put ǫ = 1, i.e. q ≪ F/2g. The relevant solution of (55),
compatible with the singularities, reads

e−2ϕ̃cl(z) =
4(k + 1)2

F

(zz̄)k

(1 + (zz̄)k+1)2 (56)

The normalization condition of the wave function is then satisfied only if F = 4π(k+1). We
would like to stress that for k = 0 we here recover the critical value 4π of the magnetic flux:
uniqueness of the ground state wave function holds only below this value. It also should be
mentioned that our analysis does not depend on a peculiar basis of eigenfunctions and the
results presented here can be extended to wave functions of the form ψ(z) = Pk(z)e

−ϕ(z), Pk

being a polynomial of degree k. It is noteworthy that (56) is an algebraically decaying wave
function, what is, following [8], a signature of the existence of prelocalized states.

Using the fact that the Liouville field is not exactly a scalar but varies under holomorphic
coordinate transformations z → w(z) as

ϕ̃(z) → ϕ̃ (w(z)) − ln |w′(z)|, (57)

one can check that the set of solutions (56) is invariant under the following family of trans-
formations, parametrized by the group PSL(2, |C):

z → wk(z; a, b, c, d) =

(

azk+1 + b

czk+1 + d

) 1
k+1

(58)

The orbit of ϕ̃cl(z) is then given by

ϕ̃cl (z; a, b, c, d) =
1

2
ln







π
(

|azk+1 + b|2 + |czk+1 + d|2
)2

(zz̄)k





 (59)
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Up to redefinition of the measure dτ on PSL(2, |C), we restrict the domain of integration to
PSL(2, IR).

Due to the angular symmetry of (56), we take points of the form z = i
1

k+1ρ (ρ ∈ IR), and
following [19] we rewrite (44)–(46)

〈

ρ2qke−2qϕ(ρ)
〉

Sk[ϕ]
= R− 4π(k+1)2

g Det

[

δ2Sk

δϕ2

]−1/2
∫

PSL(2,IR)
e−2qϕ̃cl(ρ,τ)dτ (60)

Let us denote

τ =

(

a b
c d

)

and νρ =

(

ρ(k+1)/2 0
0 ρ−(k+1)/2

)

(61)

then we can rewrite (60) as follows

〈

ρ2qke−2qϕ(ρ)
〉

Sk[ϕ]
∝ ρ−2q

∫

PSL(2,IR)
e−2q lnTr[(τνρ)(τνρ)†]dτ = ρ−2qI(ρ, q) (62)

where we have got rid of irrelevant factors and the function I(ρ, q) reads

I(ρ, q) =
∫

PSL(2,IR)
[2 cosh d(i, τνρ(i))]

−2q dτ (63)

Instead of summing over the whole group PSL(2, IR), we restrict the sum over a discrete
subgroup, Γθ in our case. Even if this discretization of the saddle manifold has no evident
physical justification, we believe that the model obtained yields interesting results. It leads
to consider the so-called Poincaré series (see [26] for review) H , defined as follows

I(ρ, q) = H(i, νρ(i), q) =
∑

τ∈Γθ

[2 cosh d(i, τνρ(i))]
−2q (64)

As shown in [26], the series H does not converge for q < q⋆ with q⋆ depending on Γθ only
(the analysis of the previous sections show that we roughly may set q⋆ ≃ q0/2). A new
dependence on ρ occurs only if H does not converge, we will therefore consider only this
regime. We must introduce in this case a cut-off N to regularize the series, and finally study
asymptotics of the finite sum

IN (ρ, q) = HN (i, νρ(i), q) =
∑

τ∈Γθ/l(τ)≤N
[2 cosh d(i, τνρ(i))]

−2q (65)

This Poincaré series has the same asymptotic properties as the one that defines our model.
In particular it will exhibit a multifractal behaviour in N . However what really matters for
a physical system is the multifractal behaviour under transformations parametrized by ρ.
We therefore have to relate the behaviour in the group manifold to the behaviour in the real
space. This will be achieved through a renormalization transformation of the form
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IN (ρ, q) = CρκIN ′(N ,ρ)(1, q) (66)

Appendix B provides a heuristic derivation which gives

IN (ρ, q) = Cρ−(k+1) ln 2/γIN+
(k+1)

γ
ln ρ

(1, q) (67)

Comparing (27) and (64) gives IN (1, q) ≈ Z(2q,N ). Therefore

IN (ρ, q) = Cρ−(k+1) ln 2/γZ(2q,N +
k + 1

γ
ln ρ) (68)

This relation allows to extract the scale dependence in ρ for a given cut-off N . Using the
asymptotics of Z obtained in previous sections yields

〈

ρ2qke−2qϕ(ρ)
〉

Sk[ϕ]
∝ ρ−2q−(k+1) ln 2/γ ρ−

k+1
γ

τ(2q) (69)

with the notations of previous sections. After integrating over the whole domain we arrive
at the final expression for the multifractal exponent τan(q):

τan(q) = − lim
R→∞

ln 〈Q(q, R)〉
lnR

= 2(q − 1)

(

1 − (k + 1)σ2

γ
q

)

for q < q0/2 (70)

with q0 defined in (33). The regular term 2(q − 1) corresponds to the one obtained in [9]
for g → 0. Multifractality of the wave function is induced by the quadratic term, which
is directly related to geometric properties of the saddle point hyperbolic manifold (target
space), and holds in absence of any random potential in this target space. The regime
q > q0/2 is not affected by these geometric properties.

IV. CONCLUSION

The wave function ψk(x) introduced in (41) belongs to the general class of exponential
functionals of free fields. Such functionals appear in several physical contexts.

1. The square of the wave function (for k = 0) may be interpreted as the equilibrium
Gibbs measure in the random potential ϕ(x). In the 1D case the problem was first studied
in [32]. A rather deep and complete analysis of this problem was recently presented in [25].

2. Exponential functionals of free fields play an important role in the context of one
dimensional classical diffusion in a random environment. Their probability distribution
controls the anomalous diffusive behaviour of particles at large time [33]. They also arise in
the study of disordered samples of finite length [34,29]. Some mathematical properties are
discussed in [35].

3. In the context of one dimensional localization in a random potential such functionals
arise in the study of the Wigner time delay [36].
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4. The function ψk(x) is the ground state wave function of 2D Dirac fermions in a
random magnetic field with B = ∆ϕ. The multifractal behaviour first conjectured in [8] has
been recently confirmed by an independent investigation based on renormalization group
method [25]. The scenario of multifractality which is presented here relies mainly on a
geometric approach to a semiclassical quantization scheme of the Liouville field theory. The
fact that tree like structure emerges quite naturally in our consideration is an interesting
feature which obviously deserves further investigation. The multifractality in our approach
appears as a by-product of isometric embedding of a Cayley tree in the hyperbolic plane.
The objects which possess multifractal behavior are the moments of the partition function
defined as sums over all vertices of a Cayley tree isometrically embedded in the hyperbolic
plane where each vertex carries a Botzmanm weight depending on the hyperbolic distance
from the root point. No randomness is imposed in the model.

From the mathematical side our work reveals some interesting links between the theory
of automorphic functions, invariant measures and spectral theory. We hope to return to
these problems in a forthcoming publication.
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APPENDIX A:

Let us prove that the function u(w) = (1−ww)2 f(w) where f(w) is defined in (36) has
the following properties:

• At all centers w = wc of zero–angled triangles tesselating the Poincaré hyperbolic unit
disc u(wc) = 1;

• The function u(w) has local maxima at the points wc.

I. The proof of the first statement implies the proof of the fact that the function u(w) is
invariant with respect to the conformal transform w(1)(w) of the unit Poincaré disc to itself
where

w(1)(w) =
w − w0

ww0 − 1
, (A1)

and w0 is the coordinate of any center of zero–angled triangle in the hyperbolic Poincaré
disc obtained by successive transformations from the initial one.

Hence, it is neccessary and sufficient to show that the values u(w = 0), u
(

w = − i
2

)

,

u
(

w = 1
2
eiπ/6

)

and u
(

w = 1
2
ei5π/6

)

coincide. Then, performing the conformal transform and

taking w0 =
{

− i
2
, 1

2
eiπ/6, 1

2
ei5π/6

}

, we move the centers of the first generation of zero–angled

triangles to the center of the disc w(1). Now we can repeat recursively the contruction, i.e.
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find the new coordinates of the centers of the second generation of zero–angled triangles in
the disc w(1) and compute the function u(w) at these points, then we perform the conformal
transform w(2)(w(1)) and so on...

We have at the point w = 0:

u(w = 0) = c
∣

∣

∣θ′1(0, e
iπ[1/2+i

√
3/2])

∣

∣

∣

8/3
= 1

while at the point w = − i
2

the function u(w) can be written in the form

u
(

w = − i

2

)

=
c

∣

∣

∣1 − 1
2
e−iπ

∣

∣

∣

4

∣

∣

∣θ′1(0, e
iπ[1/2+i/(2

√
3)])
∣

∣

∣

8/3
(

1 − 1

4

)2

(A2)

Let us use the properties of Jacobi θ–functions:







θ′1(0, e
iπ(w+k)) = θ′1(0, e

iπw); k ∈ N

θ′1(0, e
iπ[1/2+i/(2

√
λ)])λ−3/4 = θ′1(0, e

iπ[1/2+i
√

λ/2]); λ ∈ R
(A3)

Taking into account (A3) we can rewrite (A2) in the form

u
(

w = − i

2

)

=
24 c

34
(33/4)8/3

∣

∣

∣θ′1(0, e
iπ[1/2+i/(2

√
3)]3)

∣

∣

∣

8/3
(

3

4

)2

= c
∣

∣

∣θ′1(0, e
iπ(1/2+i

√
3/2)+iπ)

∣

∣

∣

8/3
= 1

(A4)

Thus, u(w = 0) = u
(

w = − i
2

)

= 1.

At the point u
(

w = 1
2
eiπ/6

)

we have

u
(

w =
1

2
eiπ/6

)

=
24 c

32

∣

∣

∣θ′1(0, e
iπ[3/2+i

√
3/2])

∣

∣

∣

8/3
(

1 − 1

4

)2

= c
∣

∣

∣θ′1(0, e
iπ[1/2+i

√
3/2]+iπ)

∣

∣

∣

8/3
= 1

(A5)

In the same way we can transform the function u
(

w = 1
2
ei5π/6

)

:

u
(

w =
1

2
ei5π/6

)

=
24 c

32

∣

∣

∣θ′1(0, e
iπ[−1/2+i

√
3/2])

∣

∣

∣

8/3
(

1 − 1

4

)2

= c
∣

∣

∣θ′1(0, e
iπ[1/2+i

√
3/2]−iπ)

∣

∣

∣

8/3
= 1

(A6)

The transforms (A4)–(A6) complete the proof of the part I.

II. Let us prove that the function u(w) has local maxima at all centers wc of zero–angled
triangles tesselating the Poicaré hyperbolic disc. Actually, the function f(w) by construction
gives a metric of some discrete subgroup of the group of motions of Poicaré hyperbolic disc.
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Hence the function f(w) cannot grow faster than the isortopic hyperbolic metric (1−ww)2

and the following inequality is valid

0 < u(w) ≤ 1

for all points w inside the unit disc. But we have shown that u(w) = 1 at w = wc what
means that the function u(w) reaches its local maxima at the points wc and at all these
maximal points the function u(w) has one and the same value u(wc) = 1. The part II is
proved.

APPENDIX B:

Our aim is to extract explicitly the ρ–dependence of the truncated series (65) and to
connect it to I(1, q). More precisely we are looking for a renormalization transformation of
the form

IN (ρ, q) = CρκIN ′(N ,ρ)(1, q) (B1)

Using the correspondance (up to the volume of SO(2)) between PSL(2, IR) and H2, we
interpret the shift τ → τνρ as a change of hyperbolic coordinates—see fig 7.

i
d

r

d
t

1

d
t

2

v (i)
r

tv (i)
r

a
t
1

a
t
2

FIG. 7. Change of coordinates in hyperbolic Poincaré disc

Note that the expression (65) does not depend on the particular representation of the
hyperbolic 2-space, since the hyperbolic distance is invariant. The only one requirement is
to define a compatible action of Γθ in the space under consideration. We use for conveniency
the unit disc representation whose center is the image of the point νρ(i) where νρ is defined
by Eq.(61) in the H2 representation. For shortness the generic element of Γθ is labelled by τ
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independent on the representation. We parametrize the point τνρ(i) by its hyperbolic polar
coordinates (dτ

1, α
τ
1) with the origin at the point i and by “shifted” hyperbolic coordinates

(dτ
2, α

τ
2) with the origin at the point νρ(i). Note that dρ = d(i, νρ(i)) ∼ (k + 1) ln ρ, and the

following “triangle equation” in hyperbolic 2-space holds:

cosh dτ
1 = cosh dτ

2 cosh dρ + sinh dτ
2 sinh dρ cosατ

2 (B2)

In order to extract the scaling conjectured in (66), we make an approximation which consists
in neglecting fluctuations of Wn(d). In this approximation we can sum over the generations
n and the angles αjn

of the vertices within each generation (1 ≤ jn ≤ 3 × 2n−1). Namely
(dτ

2, α
τ
2) = (γn, αjn

). Thus one has

IN (ρ, q) =
N
∑

n=1

[2 cosh γn cosh dρ]
−2q

3×2n−1
∑

jn=1

(1 + tanh γn tanh dρ cosαjn
)−2q (B3)

Assuming that αjn
are uniformly distributed, we get for n≫ 1 the following expression

3×2n−1
∑

jn=1

(1 + tanh γn tanh dρ cosαjn
)−2q ≈ 3 × 2n−1

2π

∫ 2π

0

dα

(1 + tanh γn tanh dρ cosα)2q
(B4)

which leads to the asymptotic behavior:

lim
n→∞ 2−n

3×2n−1
∑

jn=1

(1 + tanh γn tanh dρ cosαjn
)−2q

∣

∣

∣

∣

∣

∣

ρ→∞
∼






const for q ≤ 1/4

e2dρ(2q− 1
2
) for q > 1/4

(B5)

As justified hereafter we consider as relevant only the case q ≤ 1/4. Using that for n ≫ 1
and ρ≫ 1 one has 2 cosh γn cosh dρ ∼ cosh(γn+ dρ) we can rewrite Eq.(B3) as follows

IN (ρ, q) = Cρ−(k+1) ln 2/γ
N
∑

n=1

2(n+dρ/γ)[cosh(γn + dρ)]
−2q (B6)

Performing the shift ñ = n+ dρ/γ we get finally

IN (ρ, q) = Cρ−(k+1) ln 2/γIN+
(k+1)

γ
lnρ

(1, q) (B7)

This expression fulfills the condition (B1). We assume that this renormalization also holds
for the full function IN (ρ, q).

Let us pay attention to some contradiction between (63) and (B5) raised by the set of
successive approximations of (63) which however is irrelevant for our final conclusions about
multifractality. The equation (63) shows that if the integral over PSL(2, IR) converges, it
should not depend on ρ. Using the Poincaré series, the convergence of (63) occurs for q > q⋆.
For q > 1/4 and q > q⋆ the ρ–dependence shown in (B5) should then cancel by summing
over all n. The discrepancy between (63) and (B5) appears for q ∈ [1/4, q⋆]. First of all
we should note that the interval [1

4
, q⋆] is numerically small (following previous sections we
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have q⋆ ≃ q0/2 ≃ 0.4) and is nonuniversal, i.e. depends on the particular choose of the
subgroup under consideration. Moreover, both the threshold q = 1/4 and the asymptotics
(B5) depend on the distribution of αjn

and we believe that more careful treatment of angle
dependence in (63) would allow disregard the region [1/4, q⋆].
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