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Monochromatic path crossing exponents and graph connectivity in 2D percolation
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We consider the fractal dimensions dk of the k-connected part of percolation clusters in two
dimensions, generalizing the cluster (k = 1) and backbone (k = 2) dimensions. The codimensions
x̃k = 2−dk describe the asymptotic decay of the probabilities P (r,R) ∼ (r/R)x̃k that an annulus of
radii r ≪ 1 and R ≫ 1 is traversed by k disjoint paths, all living on the percolation clusters. Using
a transfer matrix approach, we obtain numerical results for x̃k, k ≤ 6. They are well fitted by the
Ansatz x̃k = 1

12
k2 + 1

48
k + (1 − k)C, with C = 0.0181 ± 0.0006.

Percolation is a classical model of statistical mechanics
[1,2], and plays an important role in the study of disor-
dered systems [3]. It is also one of the simplest models
displaying a critical point. In two dimensions, exact val-
ues for a variety of critical exponents have been found
over the last two decades, and quite recently many of
them have been confirmed by rigorous probabilistic ar-
guments [4]. Most of these exponents can be defined
through the fractal dimensions of suitably defined sets at
the percolation threshold.

In the present Letter we shall be concerned with an
infinite family of critical exponents whose exact values
remain unknown to this date. These exponents charac-
terize the connectivity structure of the percolating clus-
ter(s) at criticality.

Following Tutte [5], we define a graph to be k-
connected (for k ≥ 1) if no separation into disconnected
subgraphs is possible by eliminating at most k−1 vertices
along with their ingoing edges. It is easy to see that we
may equivalently require any two vertices in the graph to
be connected by (at least) k disjoint paths. 1-connected
graphs are simply the percolation clusters, and to inquire
into the connectivity structure of a given cluster, we may
decompose it into its largest 2-connected components [5]
(better known as 2-blocks, or “blobs”, in the percolation
literature), and so on. Tutte has shown that the decom-
position of a 2-connected graph into its largest 3-blocks is
unique [5]. 3-blocks are relevant for applying Kirchhoff’s
laws to resistor networks, and are useful for analyzing the
performance of certain algorithms [6].

To better study the transport properties of percolation
clusters, we henceforth consider critical percolation in a
large square of linear size L, and we specialize to clus-
ters that connect to the boundary of the system. In the
limit L → ∞, the boundary becomes the “point at infin-
ity”, and the above definition states that a given vertex
is k-connected if it is connected to infinity by (at least)
k disjoint paths within a percolating cluster. Following
Ref. [6], we shall call the set of k-connected vertices the k-

bone. The 2-bone is of course nothing but the (geometri-
cal) backbone, i.e. the part of the percolation cluster that
sustains a non-zero current, when a voltage difference is
applied between its two terminal points. (As usual we
disregard rare Wheatstone’s bridge-like arrangements.)

We shall here be interested in the fractal dimension dk

of the k-bone, assuming its mass to change with system
size like Ldk . The cluster dimension d1 = 91

48
has been

known exactly for a long time [7–9]. The backbone di-
mension has recently been related to the solution of a
partial differential equation [9], which however appears
to be intractable, even numerically. Still, numerical es-
timates are available from Monte Carlo [10] and transfer
matrix methods [11]: d2 = 1.6431 ± 0.0006. After the
completion of this work, a first estimate for d3 appeared:
d3 = 1.2 ± 0.1 [6]. Actually, this result was obtained
from block-decomposition of clusters and backbones, but
for reasons of universality we expect it to apply to the
3-bone as well. Also, the above definitions are stated for
site percolation, but the exponents should be the same
for bond percolation, with the clusters being separated
by cutting edges rather than vertices.

A useful alternative formulation of the k-bone problem
is obtained by passing to an annular geometry, limited by
two concentric circles of radii r ≪ 1 and R ≫ 1, by means
of a conformal mapping. (This is permissible since per-
colation has been proved to be conformally invariant [4].)
Interpreting the inner circle as the point which is a po-
tential element of the k-bone, and the outer as the point
at infinity, we see that a given percolating configuration
in the annulus contributes to the k-bone if and only if the
two circles are connected by k disjoint paths on the per-
colating cluster(s); see Fig. 1. The fractal dimension dk

of the k-bone is linked to the scaling of the path-crossing
probability Pk(r, R) ∼ (r/R)x̃k through the codimension
x̃k = 2 − dk [12].
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FIG. 1. Annular geometry endowed with critical percola-
tion (here shown in the continuum limit). The existence of
two disjoint traversing paths on the clusters implies that this
configuration contributes to the 2-bone.

A more general class of path-crossing exponents can be
defined from traversing configurations where some of the
paths live on the percolating clusters (black paths), and
the rest on the dual clusters (white paths). Interestingly,
the corresponding critical exponents xk only depends on
the number of paths, k ≥ 2, and not on their colors,
provided that both are represented [12]. Their values

xk =
1

12
(k2 − 1) (1)

are known rigorously [12] and differ from those of the
monochomatic exponents x̃k defined above.

Some information on the x̃k is provided by the inequal-
ities

x̃k < xk+1. (2)

This inequality is valid since a configuration contribut-
ing to xk+1 can be taken to have k black paths and one
white path. Clearly, it then also contributes to x̃k. Fur-
thermore, as k → ∞, the effect of a single extra path
should be small and we expect it to be of the same order
if one changes the color of one of the k existing paths;
thus, xk+1 − x̃k ≈ xk+1 − xk = O(k).

In view of Eq. (1) we find the asymptotic result x̃k =
1

12
k2 + O(k) as k → ∞. In analogy with Eq. (1) it

thus seems natural to conjecture that the spectrum x̃k

is quadratic in k. From x̃1 = 5

48
we then get

x̃k =
1

12
k2 +

1

48
k + (1 − k)C, (3)

with C = 0.0181 ± 0.0006 from the numerical result on
x̃2 [11].

To check the conjectured form of the spectrum, Eq. (3),
we now turn to our numerical results. But first we must
briefly describe our transfer matrix algorithm; it is a nat-
ural generalization of the one used in [11].

First we consider the annulus of Fig. 1 as a cylinder
with circular space and radial time. We have tried several
choices of lattices to discretize it. For practical applica-
tions, it turns out to be best (see [11]) to use a square
lattice with a “light-cone” orientation, that is such that
the periodic direction forms a 45 degrees’ angle with the

two axes of the lattice. We then define the discrete time
slices such that they intersect the lattice at vertices only:
we call L the number of such vertices (in units of the

lattice spacing the period is then L
√

2).

Next we define the basis of states on which our transfer
matrix acts. A basis state is a collection of path configu-
rations; a path configuration is the data of the positions
of our k paths at a given time, with possible additional
“arches” to allow backtracking of paths, see Fig. 2. Note
that the encoding of states can be easily implemented
as follows: basis states are encoded as sorted lists of
path configuations, and path configurations are repre-
sented by words of length L made out of the four letters
{opening, closing, path, empty} and which contain k let-
ters path. The letters opening and closing define the
backtracking arches.

FIG. 2. Path configurations for k = 3, L = 5.

The transfer matrix itself acts on a basis states by
“evolving” all the path configurations it contains with
a single configuration of bonds (i.e. percolating/non-
percolating state of each bond) and recombining the re-
sult into a single state, then summing over all configu-
rations of bonds. Evolving a path configuration means
considering all possible continuations of the paths from
one time slice to the next, including possible appearances
of new arches, or existing arches connecting to paths or
other arches. We use sparse matrix factorization tech-
niques to build up the entire transfer matrix; dihedral
symmetries are quotiented over once a time slice has been
completed.

As in [11], it is convenient to allow “perpendicular tan-
gencies” for paths even though they should be in princi-
ple excluded; that is to allow two paths to touch at one
vertex in the configuration whenever the tangent of ei-
ther path is perpendicular to the transfer direction (we
still exclude “parallel tangencies”). It is expected, and
we have numerically verified, that inclusion of either or
both types of tangencies and/or changing the lattice ori-
entation does not alter the first finite-size correction of
the eigenvalue of the transfer matrix, which yields x̃k.
However, the particular choice of allowing perpendicu-
lar tangencies on the light-cone oriented lattice has the
advantage of greatly decreasing the number of states gen-
erated (see below) and improving the convergence prop-
erties of the finite-size data.

Finally, the following procedure is used to compute the
matrix elements of the transfer matrix: Starting with an
arbitrary basis state (e.g. the one consisting of the single
path configuration pathkemptyL−k), one acts on it with
the transfer matrix, stores the corresponding matrix ele-
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ments, then considers all new basis states generated and
iterates the procedure until no further new states are gen-
erated [13]. What we build this way is a submatrix of the
transfer matrix corresponding to a stable subspace; this
submatrix is in fact much smaller than the full transfer
matrix, which is essential for practical applications. One
then extracts its largest eigenvalue λk(L), which yields
the codimension x̃k via the formula

1

22L
λk(L) = 1 − πx̃k

L
+ o(L−1) (4)

We show in Tab. I the results for 2 ≤ k ≤ 6. Since the
memory and time requirements presumably grow facto-
rially with L, we cannot push the calculation very far in
L. It is however sufficient to estimate x̃k, which is also
given in Tab. I together with approximate error bars.
The data for k = 2 are in fact taken from [11], where the
state space was reduced by exploiting that the case of
two paths can be treated as an extra backtracking arch.

For k > 2, all the exponents x̃k are consistent with,
but less precise than, the conjectured spectrum (3) with
C given by x̃2. We also note that the inequality xk < x̃k

seems to be satisfied, and if would be interesting if one
could prove this. Another open question is the possi-
ble rationality of the x̃k; in this respect, the failure of
computing these exponents by conformal field theory is
particularly intriguing.

For k ≥ 5, the dimensions dk = 2 − x̃k are negative.
Physically this means that k-bones with k ≥ 5 become
increasingly rare as the system size increases. Of course,
the lattice model does not support a k-block when k ex-
ceeds the coordination number of the lattice. However,
the exponents x̃k characterize the continuum limit, and
are thus believed to be independent of the microscopic
details; an appropriate lattice definition of the k-bone
for high k is obtained by demanding that k independent
paths connect any small neighborhood to the point at
infinity.

Finally, we remark that the k-bone problem extends
to the Kasteleyn-Fortuin representation [14] of the q-
state Potts model (bond percolation being the limit

q → 1). Our numerical algorithm can straightforwardly
be adapted to this case as well.
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TABLE I. Eigenvalues λk(L) of the transfer matrix and estimate of x̃k for 2 ≤ k ≤ 6.

k 2 3 4 5 6

L
4 0.718747415570 0.413598206498 0.121093750000
5 0.775012703547 0.526618869796 0.257122218539 0.061523437500
6 0.812529692986 0.603476157424 0.362299981029 0.153371684616 0.031005859375
7 0.839330907375 0.658986646726 0.443031423565 0.237989873966 0.088905009155
8 0.859432882632 0.700919030179 0.506272495802 0.310651059489 0.150977532764
9 0.875067710677 0.556925756584 0.372225212770 0.210050339522
10 0.263993624780

x̃k 0.3569 ± 0.0006 0.77 ± 0.02 1.33 ± 0.03 2.1 ± 0.2 3.0 ± 0.3
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