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Abstract

Distance matrices are matrices whose elements are the relative dis-

tances between points located on a certain manifold. In all cases con-

sidered here all their eigenvalues except one are non-positive. When

the points are uncorrelated and randomly distributed we investigate

the average density of their eigenvalues and the structure of their

eigenfunctions. The spectrum exhibits delocalized and strongly local-

ized states which possess different power-law average behaviour. The

exponents depend only on the dimensionality of the manifold.

1 Introduction

In a recent work about general properties of complete metric spaces [1]
A.M. Vershik introduced a specific type of random matrices, which he called
distance matrices, and asked questions about their statistical properties.

Distance matrices are defined for any metric space X with some prob-
ability measure on it in the following way. Consider N points randomly
distributed on X according to the measure. The matrix element Mij of the
N × N (real symmetric) distance matrix M equals the distance on X be-
tween points i and j. In all cases considered here it is tacitly assumed that
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there always exists a distance || . . . || on X between two points i and j which
depends only on their relative position and we use the notation

Mij = ||~xi − ~xj ||, (1)

where ~xi is the d-dimensional vector locating the point i on X, and d is the
dimension of the base manifold.

For any realization of the random points, (real) eigenvalues Λn and eigen-
vectors u(n) of distance matrices are well defined

N
∑

j=1

Miju
(n)
j =

N
∑

j=1

||~xi − ~xj ||u(n)
j = Λnu

(n)
i . (2)

We are interested in their statistical properties.
The first quantity to be considered is the average eigenvalue density de-

fined as

ρ(Λ) =<
1

N

N
∑

j=1

δ(Λ − Λj) >, (3)

or equivalently the average integrated eigenvalue density, i.e. the average
staircase function

N(Λ) =<
1

N

N
∑

j=1

Θ(Λ − Λj) > . (4)

Here < . . . > denotes an average taken over realizations. NN(Λ) (counting
function) counts the number of eigenvalues up to the value Λ.

As the elements of distance matrices are non-negative there is one large
positive eigenvalue whose existence follows from the Perron-Frobenius the-
orem (see e.g. [2] V. 2, p. 49). When the metric space X is Euclidean
or spherical all other eigenvalues have the remarkable property of being
non-positive (the counting function associated to a distance matrix satis-
fies N(0+) = (N − 1)/N). The proof of this for Euclidean spaces is given
in [3] (see [4] for a general discussion of the subject). The purpose of the
present note is the investigation of the asymptotics, in the limit of a large
number of points N , of the average eigenvalue density at large and small
negative eigenvalues and the properties of the corresponding eigenfunctions
for distance matrices built from a uniform distribution of uncorrelated points
on a base manifold.

The plan of the paper is the following. In Section 2 one-dimensional
spaces are considered in detail. In Section 2.1 we demonstrate that the case
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of the interval is equivalent to the one-dimensional Anderson model with
diagonal disorder. Though all states are localized, the localization length
increases for large negative eigenvalues as discussed in Section 2.2. When
the localization length is much larger than the system size, the concept of
localization becomes meaningless and a plane wave description of such states
is adequate. This happens for large negative eigenvalues and as shown in
Section 2.3 it leads to a power-law behaviour of the eigenvalue density. For
small negative Λ, states are strongly localized and in Section 2.4 it is demon-
strated that in the one-dimensional case the eigenvalue density tends to a
constant. The properties of the participation ratio are also discussed in this
Section.

When instead of the interval the circle is considered, two new phenomena
appear. First, as demonstrated in Section 3, the delocalized eigenvalues
corresponding to large negative Λ form quasi-doublets whose splittings are
much smaller than the distance among them. Second, as shown in Section
3.1, the localized eigenfunctions of the distance matrix on the circle are,
in general, localized not in one but in two diametrically opposite regions
(forming a kind of echo).

In Section 4 d-dimensional spaces are investigated. First in Section 4.1 we
introduce the continuous approximation valid for large negative eigenvalues
and show that it leads to a |Λ|−(2d+1)/(d+1) asymptotics of the average eigen-
value density. In Section 4.2 it is demonstrated that if the base manifold
has a symmetry group, large negative eigenvalues of its distance matrix form
quasi-multiplets whose dimensions equal the dimensions of the irreducible
representations of the group. For small |Λ|, the splitting of these multiplets
becomes comparable to the distance among them and the quasi-multiplet
structure disappears. The general condition for the applicability of the con-
tinuous approximation is discussed in Section 4.3 where it is demonstrated
that the quasi-multiplets are present only for the first

√
N largest negative

eigenvalues. In Section 4.4 the behaviour of the average eigenvalue density
for strongly localized states is investigated and it is shown that it vanishes
as |Λ|d−1. To investigate eigenfunction properties the participation ratio is
considered in the same Section. The presence of a localization echo is also
established for higher dimensions.

Numerical calculations when the points are distributed uniformly on sphe-
res and cubes of different dimensions are consistent with the results found.
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2 One-dimensional spaces

2.1 Distance matrices on an interval

Let us consider N uncorrelated points xj distributed uniformly on an interval
of length L. The distance matrix in this case is

Mij = |xi − xj |, (5)

where | . . . | stands for the usual modulus. The eigenvalue equation (2) reads

N
∑

j=1

|xi − xj |uj = Λui, for i = 1, . . . , N. (6)

The eigenvalues of distance matrices are insensitive to the ordering of the
N points but the understanding of the structure of the eigenvectors depends
heavily on it. We will rearrange the points xj in increasing order

0 ≤ x1 ≤ x2 ≤ . . . ≤ xN ≤ L. (7)

Subtract Eqs. (6) with indices i+ 1 and i (assuming (7)), then

Λ(ui+1 − ui) =
N

∑

j=1

(|xi+1 − xj | − |xi − xj|)uj. (8)

As

|xi+1 − y| − |xi − y| = (xi+1 − xi)

{

−1 when y ≥ xi+1

1 when y ≤ xi
, (9)

one gets

Λ(ui+1 − ui) = (xi+1 − xi)[−
i

∑

j=1

uj +
N

∑

j=i+1

uj ]. (10)

After simple manipulations one proves that these equations are equivalent to

Λ(Ri+1 − 2Ri +Ri−1) = 2(xi+1 − xi)Ri, (11)

where Ri = Li − LN/2 with Li =
∑i
j=1 uj for i = 1, . . . , N and L0 = 0.

This second order difference equation has to be completed with boundary
conditions. The first follows from the definition of Ri

RN = −R0. (12)
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The second one can be obtained from any of Eqs. (6) by expressing ui through
Li. Combining Eqs. (6) with i = 1 and i = N one gets

Λ(−R1 − 2RN +RN−1) = 2(x1 − xN)RN . (13)

This condition can be casted in the form of Eqs. (11) by introducing the
point xN+1 = x1. Then Eqs. (11) are valid for all i = 1, . . . , N + 1 and the
boundary conditions correspond to the anti-symmetric solutions

RN = −R0, RN+1 = −R1. (14)

Eqs. (11) coincide with the one-dimensional Anderson model

Ri+1 − (E − Vi)Ri +Ri−1 = 0, for i = 1, . . . , N + 1, (15)

with diagonal disorder

E − Vi = 2(1 +
li
Λ

), (16)

where li (= xi+1 − xi) are random variables equal to the distance between
adjacent points. When N → ∞ and the points xj are uncorrelated li are
independent random variables with the Poisson distribution

P (l) = ρ̄ exp(−ρ̄l), (17)

where

ρ̄ =
N

L
(18)

is the mean density of initial points.

2.2 Localization length

It is well known (see e.g. [5]) that all solutions of the one-dimensional An-
derson model (15) are exponentially localized i.e. they have asymptotically
the following decay from their maximum value, say at n0

|Rn| ∼ e−|n−n0|/lloc, (19)

where lloc is the dimensionless localization length.
When |Λ| → ∞ the fluctuating part of the random potential (16) tends to

zero and it is convenient to use the perturbation theory developed in [6]. The
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first terms of the expansion of the localization length for the one-dimensional
Anderson model (15) with a random potential ǫV of zero mean (< V >= 0)
are

1

lloc
≈ ǫ2/3[

√
x− < V 2 >

8x
], (20)

where E−2 = ǫ4/3x. In our case ǫ = 1/(Λρ̄), Vi = 2(liρ̄−1), and x = 2ǫ−1/3.
By introducing the dimensionless scaled eigenvalue

λ = ρ̄Λ =
N

L
Λ, (21)

one has
1

lloc
≈

√

2

λ
− 1

4λ
. (22)

This expression is valid for positive λ. When λ is negative the first term is
imaginary and only the second term remains

lloc → −4λ, when λ→ −∞. (23)

2.3 Crystal configuration

Though for the model (15) all states are formally localized, only N sites exist
in our problem and, as usual for finite systems, the effect of localization can
be ignored when the change of the wave function over the system size is small

N

lloc
≪ 1. (24)

For large N Eq. (23) indicates that states with |λ| ≥ N/4 are practically
delocalized and all states with smaller |λ| are localized.

For delocalized states, the fluctuating part of the potential (16) is unim-
portant. Neglecting it is equivalent to investigate the spectrum of the dis-
tance matrix for an equally spaced points configuration

xi =
i

N + 1
L, for i = 1, . . . , N, (25)

which we call the crystal configuration. From Eq. (15) it follows that for this
configuration the Ri take an especially simple form

Ri = aqi + bq−i, (26)
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where q is related to the scaled eigenvalue λ

λ =
2q

(1 − q)2
. (27)

The allowed values of q (and consequently of λ) are determined from the
boundary conditions (14). Straightforward calculations give two equations
for q

qN + 1 = 0, (28)

qN+1 + 1 =
N + 1

N − 1
(qN + q). (29)

The set of solutions of both equations (except q = −1) corresponds to eigen-
values of the crystal distance matrix. If q is a solution then 1/q is also a
solution and both give the same eigenvector and eigenvalue and the total
number of solutions is N , as it should be.

These equations have only one real solution which gives the Perron-
Frobenius (i.e. the largest positive) eigenvalue. All other solutions have
the form q = exp(iφ) and correspond to a negative value of λ

λ = − 1

2 sin2 φ/2
. (30)

For large N , solutions of Eqs. (28) and (29) have the form

q = exp(u/N) (31)

with u independent on N. The corresponding eigenvalues are

λ =
1

2 sinh2(u/2N)
→ 2N2

u2
, when N → ∞. (32)

In this limit Eq. (29) takes the form

cosh z = z sinh z (33)

where z = u/2. Its unique positive real solution is z ≈ 1.19968 and the
Perron-Frobenius eigenvalue λ ∼ 1.6671N2. The imaginary solutions u = iφ
of Eq. (29) lead to the following asymptotics φ = 2(πn− 1/(πn)) +O(n−2).
Together with the solutions of Eq. (28) φ = (2m + 1)π the allowed values
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of φ are approximately φn → πn, with 1 ≪ n ≪ N and the corresponding
scaled eigenvalues are

λn = − 2N2

π2n2
. (34)

The counting function N(λ) of large negative eigenvalues is

N(λ) =
1

N

N
∑

n=1

Θ(λ− λn) →
C

(−λ)1/2
, (35)

with C = 4
√

2/π.
The N → ∞ behaviour of the crystal configuration distance matrix can

also be obtained without the knowledge of the exact solution by noticing that
in this limit the eigenvector components uj can be replaced by a continuous
function u(x) with x as in Eq. (25). In this approximation (which we call
the continuous approximation) the eigenvalue equation (6) takes the form

Λu(x) =
N

L

∫ L

0
|x− y|u(y)dy. (36)

Differentiating this equation twice and taking into account that |x|′′ = 2δ(x),
one gets

Λu′′(x) = 2
N

L
u(x). (37)

Its general solution is u(x) = aevx + be−vx, with Λ = 2N/(v2L). Substituting
in Eq. (36) one obtains equations for a and b whose compatibility conditions
are exactly Eqs. (28) and (33).

The conditions of applicability of the continuous approximation are dis-
cussed in Section 4.3.

2.4 Strongly localized states

Strongly localized states with small eigenvalues correspond to the configu-
ration of points xj in which two points, say x1 and x2 are separated by a
distance r = |x1 − x2| much smaller than the mean distance between points
ρ̄r ≪ 1. Let u1 and u2 be the eigenvector components at points x1 and x2.
The eigenvalue equation (6) gives

Λu1 = ru2 +
∑

j 6=1,2

|x1 − xj | uj, Λu2 = ru1 +
∑

j 6=1,2

|x2 − xj | uj. (38)
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As x1 ≈ x2 the sums above are approximately equal and by subtracting these
equations one obtains that to leading order in ρ̄r

Λ = −r. (39)

Starting from this value of Λ it is possible to build a perturbation theory in
higher powers of ρ̄r.

Therefore, each time that there exists two points anomalously close to
each other, a strongly localized state with the eigenvalue (39) is formed. The
density of such states is equal to the probability that two uncorrelated points
are separated by a small distance r = −Λ. From Eq. (17) it follows that at
negative λ = ρ̄Λ

ρ(λ) ∼ eλ. (40)

Strictly speaking Eq. (40) is applicable only for very small λ and it indicates
that in the one-dimensional case ρ(λ) tends to a constant when λ→ 0.

A convenient way to distinguish between localized and delocalized states
is to compute the participation ratio R

R =
(
∑N
j=1 u

2
j)

2

∑N
j=1 u

4
j

. (41)

When an eigenfunction is delocalized, all uj are of the same order and the par-
ticipation ratio N increases linearly with N , R ∼ N . For strongly localized
states the participation ratio is independent of N and R ∼ lloc. Therefore,
when the number N of points is fixed, the participation ratio as function of
the corresponding eigenvalue is a constant (proportional to N) till it becomes
equal to the localization length and ceases to depend on N .

On Fig. 1 the results for the participation ratio from numerical simulations
are displayed and the expected behaviour is clearly seen. R is constant and
proportional to N far from the origin (on the right hand side of the figure),
and curves corresponding to different N coalesce to the localization length
when approaching the origin (towards the left of the figure).

3 Distance matrices on the circle

The distance between two points (i and j) on a manifold is defined as the
length of the shortest geodesic connecting them. For later discussion, it is
convenient to distinguish between two kinds of manifolds. We shall call a
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Figure 1: Participation ratio corresponding to a single realization for the
unit interval smoothed over a small window of δλ with different number
N of points. Straight line: asymptotics (23) of the localization length, for
comparison.
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manifold for which there exists a single geodesic connecting two points a
manifold of the first kind and of the second kind otherwise. The simplest
examples of this classification are provided by the interval and the circle for
the first and second kind respectively.

Let us proceed to discuss the case of the circle. For a circle of radius R
parameterized by the polar angle ϕ the distance is

||ϕi − ϕj || = R

{

|ϕi − ϕj|, if |ϕi − ϕj | ≤ π
2π − |ϕi − ϕj |, if π < |ϕi − ϕj | ≤ 2π

. (42)

This equation differs from Eq. (5) and the arguments of the previous Section
must be slightly modified, in particular for the crystal configuration consist-
ing of N equally spaced points located at ϕj = 2πj/N . In this case the
distance matrix M takes the form

Mij = ||ϕi − ϕj || =
2πR

N
f(i− j), i, j = 1, . . . , N, (43)

where f(k) are the integers

f(k) =

{

k, 0 ≤ k ≤ [N/2]
N − k, [N/2] < k < N

(44)

and [x] is the integer part of x. M is therefore a circulant matrix whose
successive rows are obtained by cyclic permutations of the first one (see e.g.
[7]). Its eigenvectors are the Fourier harmonics

u
(n)
j = e2πinj/N , n, j = 1, . . . , N (45)

with eigenvalues

Λn =
2π

N

N
∑

k=1

f(k)e2πink/N . (46)

As in the preceding Section it is convenient to define the scaled eigenvalues
λ as

λ = Λ
N

2πR
. (47)

The sum (46) takes a different form for N even or odd. For N even

λn = − 1 − (−1)n

2 sin2(πn/N)
, n = 1 . . . , N − 1, λN =

N2

4
, (48)
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and for N odd

λn = −1 − (−1)n cos(πn/N)

2 sin2(πn/N)
, n = 1 . . . , N − 1, λN =

N2 − 1

4
. (49)

The eigenvalues with n and N − n are degenerate due to the fact that both
u

(n)
j and u

(n)∗
j = e−2πinj/N are eigenvectors of the distance matrix (43). When

n/N ≪ 1

λn = λN−n → −(1 − (−1)n)
N2

2π2n2
, (50)

similar to Eq. (34) for the crystal solution for the interval except for exact
two-fold degeneracies for the circle.

As for the distance matrix on the interval, the asymptotic behaviour of
eigenvalues with n/N → 0 for the circle can be calculated by considering
uj as a continuous function u(2πj/N). In this approximation the eigenvalue
equation reads

Λu(ϕ) =
NR

2π

∫ 2π

0
||ϕ− ϕ′|| u(ϕ′)dϕ′. (51)

Taking the second derivative one gets

Λu′′(ϕ) =
NR

π
(u(ϕ) − u(ϕ− π)). (52)

The second term appears due to the definition (42) of the distance on the
circle when |ϕ − ϕ′| > π. The periodic solutions of this equation are e±inϕ

with eigenvalues given by (50). Notice that for n odd the contribution to
Eq. (51) from angles close to π is the same as the contribution from small
angles and for n even they cancel each other.

3.1 Strongly localized states

The behaviour of the eigenvalue density for the distance matrix on the circle is
practically the same as on the interval (except for quasi-degenerate doublets).
However, strongly localized eigenfunctions for the circle differ from those
for the interval. This is in contrast to the familiar situation (e.g. for the
Anderson model) in which strongly localized wave functions do not depend
on the choice of boundary conditions. The origin of this difference is to be
found in the (unusual) growth of the matrix elements with the distance.

Let us assume that an eigenfunction is localized in a region L of the order
of the localization length lloc with lloc ≪ 1 and ui are (large) components of
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this eigenfunction inside this region. Consider a certain point ϕ0 (measured
from a point inside L) at a distance large in comparison with the size of the
localization region. Due to localization the value u0 of the eigenfunction at
this point decreases exponentially |u0| ∼ e−|ϕ0/lloc|. On the other hand u0 has
to be computed from Eq. (2) where the sum can be restricted to points lying
in the localization region

Λu0 =
∑

i∈L

||ϕ0 − ϕi|| ui. (53)

Let 0 < ϕ0 − ϕi < π. Then

Λu0 = ϕ0

∑

i∈L

ui −
∑

i∈L

ϕi ui. (54)

As the eigenfunction considered is a localized state, |u0| should be much
smaller than |ui| for all ϕ0 ≫ lloc. But the sums on the right hand side
include only the values of ui inside L which are (almost) independent of
ϕ0. Therefore, in order to obey the localization property, the ui’s inside the
localization region should satisfy

∑

i∈L

ui ≈ 0,
∑

i∈L

ϕi ui ≈ 0. (55)

Here the sign ≈ 0 means that these sums should be exponentially small
(∼ e−|ϕ0|/lloc). When only powers of lloc/ϕ0 are considered, the above sums
are zero

∑

i∈L

ui = 0,
∑

i∈L

ϕi ui = 0, (56)

which can be interpreted as conditions for the vanishing of the total charge
and the total dipole moment of charges ui located at ϕi. These are the only
general relations to be satisfied for the interval. They do not depend on ϕ0

and express the necessary conditions for the vanishing of the eigenfunction
outside the localization region.

However, for the circle, a new feature appears when the point ϕ0 is close
to a region diametrically opposite to the localization region L. In that region
ϕ0 = π + ψ0 with |ψ0| ≪ 1 and, due to the definition of the distance (42),
Eq. (53) takes the form

Λu0 = π
∑

i∈L

ui −
∑

ϕi<ψ0

(ψ0 − ϕi)ui +
∑

ϕi>ψ0

(ψ0 − ϕi)ui. (57)
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The important difference with Eq. (54) is that the right hand side of this
equation depends strongly on ϕ0 which determines the splitting between
negative and positive sums in (57). No simple conditions can be imposed
on the values of the eigenfunction inside the localization region (similar to
Eqs. (56)) insuring naturally that the left hand side of Eq. (57) is small. Con-
sequently, our assumption (required in the usual localization theory) that a
circle eigenfunction is localized only in one small region is not correct and
the above arguments indicate that eigenfunctions of distance matrices on the
circle are, in general, localized not in one but in at least two diametrically
opposite regions. Exceptions to this rule may be constituted by states local-
ized in such a small region that the diametrically opposite one contains no
points (i.e. one of the sums in Eq. (57) is empty).

On Fig 2 numerically calculated eigenfunctions of the distance matrices
for the interval and the circle are plotted. In both figures the abscissa axis
is the distance from the origin divided by the total length. As predicted, for
the case of the interval (left hand side) each eigenfunction is localized in one
small region whereas for the circle (right hand side) the eigenfunctions are
large in two diametrically opposite regions (regions whose abscissas differ by
a value of 1/2).

Later we will show that the sort of ‘echo’ discussed here is present, in
general, for distance matrices on manifolds of the second kind. Examples are
given in the next Section.

4 Higher-dimensional spaces

In this Section we generalize the methods developed for the one-dimensional
case to higher-dimensional spaces.

4.1 Continuous approximation

The asymptotics of the average eigenvalue density at large negative eigen-
values is related to delocalized states whose contribution can be calculated
in the continuous approximation. It is then necessary to solve the following
equation

Λu(~x) =
N

V

∫

X
||~x− ~y|| u(~y)d~y, (58)

14
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Figure 2: Individual eigenfunctions u(n) corresponding to the n-th eigenvalue
with N = 1000 points on the unit interval (left hand side) and on the unit
circle (right hand side). From top to bottom: n = 200, 210, 220, 230, and
240.

where the points ~x and ~y belong to a d-dimensional base manifold X of
volume V .

In a small vicinity of each regular point the manifold can be considered
as a part of the d-dimensional Euclidean space Rd with coordinates ~z. In
such vicinity eigenfunctions of Eq. (58) can be considered as functions of ~z
and we seek for semiclassical-type solutions

u(~z ) ∼ ei~q~z (59)

with a large vector ~q.
Locally Eq. (58) leads to the following expression for the eigenvalues

Λ(q) ≈ N

V

∫

Rd

|~z|ei~q~zd~z. (60)

This formula is valid for manifolds of the first kind where two points can
be connected by a single geodesic. For manifolds of the second kind (like
spheres) there exist a few regions which will contribute to Λ(q). For clarity
only the first case will be considered in detail.
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Formally the integral (60) is divergent but it can be computed from the
convergent integral

I(α, ~q) =
∫

Rd

e−α|~z|ei~q~zd~z (α > 0), (61)

by using Λ(q) = −(N/V )∂I(α, ~q)/∂α|α=0. The integral (61) can be expressed
through the Beta function (see e.g. [8] V. 1, 1.5.1) and the final result is

Λ(q) = −Ωd−1(d− 1)!
N

V
(q2)−(d+1)/2, (62)

where Ωd−1 = 2πd/2/Γ(d/2) is the volume of the (d − 1)-dimensional unit
sphere x2

1 + . . .+ x2
d = 1, and Γ(x) is the Gamma function.

When the base manifold is a part of the d-dimensional Euclidean space
and d is odd, the result (62) can also be obtained by successive differentiation
of both sides of Eq. (58) similar to what was done in Section 2.1. In this case
one also obtains exact relations between the eigenfunctions of the distance
matrix and those of the Laplacian for d = 1, bi-Laplacian for d = 3, etc.

For any smooth boundary conditions the density of solutions of the form
(59) is asymptotically the same as for the spectrum of the Laplacian (∆ +
q2)Ψ = 0, given by

ρ(q) = V
∫

Rd

d~k

(2π)d
δ(q − |~k|) =

V Ωd−1

(2π)d
qd−1, (63)

where V is the volume of the manifold.
From Eqs. (62) and (63) the following estimate of the tail of the integrated

density of eigenvalues of distance matrices is obtained

N(Λ) ≈ 1

N

∫ ∞

0
Θ(Λ − Λ(q))ρ(q)dq

=
VΩn−1(q(Λ))d

(2π)dN d
= Cd

(

N

V

)1/(d+1)

(−Λ)−d/(d+1), (64)

where q(Λ) is the inverse of the function Λ(q) defined in Eq. (62) and Cd is
a constant depending only on the dimensionality of the system.

Introducing the dimensionless scaled eigenvalues

λ = Λ(
N

V
)1/d, (65)
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Figure 3: Averaged (over 50 realizations) staircase function with N = 1000
points in the unit hyper-cube of dimension d = 1, 2, 3, 4, 5 from bottom to
top. Straight dotted lines of slope −d/(d + 1), as predicted by Eq. (66), for
comparison. For clarity curves are shifted vertically by d− 1 units.

this result can be rewritten in the universal form

N(λ) ≈ Cd(−λ)−d/(d+1), (66)

where N(λ) is the counting function in the variable λ.
For manifolds of the second kind like spheres the only modification of the

above results is a slight change of the scaled eigenvalue

λ = Λ(
gN

V
)1/d, (67)

where g is the number of singular regions contributing to Eq. (60). For
spheres of arbitrary dimensions g = 2.

On Fig. 3 results of numerical calculations of the average staircase func-
tion for hyper-cubes of different dimensions are compared with the prediction
(66). They are in very good agreement.

4.2 Quasi-multiplets

The estimates of the previous Section are general but they do not take into
account the fine structure of the eigenfunctions.
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Let us assume that the manifold X is invariant under a certain symmetry
group G. As the kernel ||~x − ~y|| of Eq. (58) is the distance between two
points on this manifold, it remains unchanged under simultaneous transfor-
mation of ~x and ~y. Therefore from Eq. (58) it follows that the transformed
eigenfunction

u′(~x) = u(G(~x)) (68)

is also a solution of this equation. From this simple remark it is clear that in
the continuous approximation the eigenfunctions u(~x) form irreducible repre-
sentations of the symmetry group of the initial manifold similar to solutions
of the Laplace equation. When this group has h-dimensional irreducible rep-
resentations the eigenvalues of distance matrices will be h-times degenerate.

To be specific let us consider in detail the case of the d-dimensional sphere
as the base manifold. The invariance group of the sphere is the d-dimensional
rotation group. Let p = d−1. It is well known (see e.g. [8] V. 2, 11.2) that the

harmonic polynomials of degree p+ 2 (hyper-spherical harmonics) Yl ~m(~θ, ϕ)

form the basis of irreducible representations of the rotation group. Here ~θ =
θ1, . . . , θp and ϕ are the standard hyper-spherical angles and ~m = m1, . . . , mp

are integers obeying the inequalities

0 ≤ mp ≤ . . . ≤ m1 ≤ p + 2. (69)

The dimensions h(l, p) of these representations are

h(l, p) = (2l + p)
(l + p− 1)!

p!l!
(70)

(for d = 2, h(l, 1) = 2l+ 1, and Ylm(θ, ϕ) are the usual spherical harmonics).
The eigenvalues corresponding to these eigenfunctions have multiplicity

h(l, p). Their explicit form can easily be derived directly from the invariance
of Eq. (58) under rotation. Choose the z-axis along the vector ~x. Introducing
the hyper-spherical coordinates in the usual way one concludes that u(~y)
equals the unique harmonic polynomial depending only on cos θ where θ is
the angle between vectors ~x and ~y which is proportional to the Gegenbauer
polynomial C

p/2
l (cos θ) (see e.g. [8] V. 2, 11.2). Therefore

Λl = Clp
N

V

∫ π

0
θC

p/2
l (cos θ) sinp θdθ, (71)

with a constant Clp depending on p and l. The explicit form of Λl is not
instructive for our purposes.
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Figure 4: Averaged staircase function with N = 1000 points on the d-
dimensional unit sphere (d = 2, 3, 4, 9) showing quasi-degenerate multiplets.
For clarity, the counting function has been normalized to N .

From properties of the Gegenbauer polynomials (see e.g. [8] V. 2, 10.9) it
follows that all Λl with even l 6= 0 are zero and consequently beyond the reach
of the continuous approximation (see Section 4.3). The value corresponding
to l = 0 is the Perron-Frobenius eigenvalue. We therefore concentrate on odd
values of l.

In the continuous approximation the eigenvalues for d-dimensional sphe-
res are h(2k + 1, d − 1) times degenerate. For the one-dimensional sphere
(i.e. the circle) h(2k + 1, 0) = 2 as has been seen in Section 3. For the
2-sphere (the usual sphere) h(2k + 1, 1) equals 3, 7, 11 . . ., for the 3-sphere
the first multiplicities are 4, 16, 36, . . ., for the 4-sphere they are 5, 30, 91, . . . ,
etc. In general the first multiplet for the d-sphere corresponding to l = 1 has
multiplicity d + 1, i.e. it is equal to the dimension of the embedded space.
On Fig. 4 these degeneracies can be read off from the numerically calculated
average staircase function for spheres of different dimensions.

We also show on Fig. 5 the structure of some individual eigenstates. We
proceed as follows. Given an eigenvector u, choose its largest (in absolute
value) component, say u1, and plot the components uj as a function of the
distance ||~x1−~xj || (normalizing to the maximum distance between two points
on the manifold). By construction, the highest component corresponds to
the zero value of the abscissa. For the 1-dimensional case, this procedure
corresponds to the natural ordering of points on the interval or the circle. The
quasi-multiplet structure of the eigenstates is clearly visible on the figure. For
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Figure 5: Individual eigenfunctions u(n) corresponding to the n-th eigenvalue
with N = 1000 points on the unit 3-sphere (left hand side) and on the unit
2-sphere (right hand side). From top to bottom: n = 1, 5, and 21 for d = 3
and n = 1, 4, and 11 for d = 2. These values of n correspond to the lowest
eigenvalue of each of the first three quasi-multiplets. The Perron-Frobenius
eigenfunction (n = 1000) is at the bottom. See text for further explanation.

comparison, the Perron-Frobenius eigenstate is also displayed. For spheres
its components are constant to within 1/

√
N fluctuations.

4.3 Condition for applicability of the continuous ap-

proximation

The continuous approximation is based on the well known fact that under
quite general conditions the sum of a large number of independent random
variables ~xj with distribution dµ(~x) tends to its mean value

1

N

N
∑

j=1

f(~xj) =
∫

f(~x)dµ(~x) +
ζ√
N
, (72)

where, when N → ∞, ζ is a random variable with zero mean and variance
independent on N .

This type of ‘ergodic theorem’ makes natural to consider, instead of the
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true eigenvalue Eq. (2),

Λ̃nu
(n)
i =

1

N − 1

N
∑

j=1

||~xi − ~xj || u(n)
j , (73)

its continuous approximation

Λ̃(c)
n un(~x ) =

1

V

∫

X
||~x− ~y|| un(~y )d~y (74)

(we introduce for convenience the factor 1/(N − 1) with the corresponding
redefinition Λ̃n = Λn/(N − 1) because in the sum in (73) there are only
N − 1 non-zero terms). Here for simplicity uncorrelated points ~xj uniformly
distributed on the base manifold X (i.e. dµ(~x) = d~x/V ) are considered.

As the kernel of the integral equation (74) is symmetric, its eigenvalues
Λ̃(c)
n are real and its eigenfunctions un(~x ) can be chosen real orthogonal

1

V

∫

X
un(~x )um(~x )d~x = δmn. (75)

Let us first consider the case when the eigenvalue Λ̃(c)
n of the continuous

equation (74) is non degenerate and let us look for solutions of the true
eigenvalue equation (73) in the form

u
(n)
j = un(~xj) +

∑

m6=n

cmum(~xj), (76)

where cm are considered as small quantities. (This procedure is often used
in perturbation theory when dealing with the Schroedinger equation.) Sub-
stituting these expressions in Eq. (73), multiplying both sides by un(~xi), and
summing from i = 1 to N one obtains

Λ̃n
1

N

N
∑

i=1

un(~xi)



un(~xi) +
∑

m6=n

cmum(~xi)



 =

1

N(N − 1)

N
∑

i,j=1

un(~xi) ||~xi − ~xj ||


un(~xj) +
∑

m6=n

cmum(~xj)



 . (77)

The mean values of the terms which are multiplied by cm are zero and,
consequently, they are of the order of 1/

√
N (see Eq. (72)). Therefore in
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Eq. (77) these terms can be ignored to first order in 1/
√
N and this equation

is reduced to
Λ̃nAN(n) = BN (n), (78)

where

AN (n) =
1

N

N
∑

i=1

un(~xi)un(~xi), (79)

BN (n) =
1

N(N − 1)

N
∑

i,j=1

un(~xi) ||~xi − ~xj || un(~xj). (80)

When N → ∞ these sums tend to their mean value plus corrections

AN(n) → 1 +
σ(n)√
N
, BN(n) → Λ̃(c)

n +
Σ(n)√
N
. (81)

The mean value of σ(n) and Σ(n) is zero. When N → ∞ their variances are
independent on N and can be computed from straightforward calculations.

By taking the average of AN (n) and BN (n) one recovers the continuous
approximation result. The first correction δΛn = Λ̃n − Λ̃(c)

n is determined by
their fluctuating part

δΛn =
1√
N

(Σ(n) − Λ̃(c)
n σ(n)). (82)

The mean value of δΛn is, of course, zero and its variance is equal to

< δΛ2
n >=

Λ̃(c) 2
n

N
v2(n), (83)

where
v2(n) =

∫

X
u4
n(~x )dµ(~x) − 1, (84)

provided that the un(~x ) are orthogonal. For semiclassical-type solutions
(59), where real orthogonal solutions can be chosen in the form

√
2 sin ~q~z

and
√

2 cos ~q~z, v2(n) = 5, independent of n.
If the eigenvalue Λ̃(c)

n of the continuous equation (74) is h-fold degenerate,
a simple extension of the previous arguments leads to an estimate of the
splitting of the degeneracy by including the next order corrections.
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Let u(m)
n (~x ) m = 1, . . . , h be the solutions of the the continuous equation

(74) corresponding to an h-fold degenerate eigenvalue Λ̃(c)
n normalized as

follows ∫

X
u(m)
n (~x )u(m′)

n (~x )dµ(~x) = δmm′ . (85)

The total splitting ∆Λn =
∑h
j=1 δΛ

(j)
n is a random variable which has the

following estimate
∆Λn

Λ̃
(c)
n

= h · ζ · v(n)√
N

(86)

with < ζ >= 0 and < ζ2 >= 1 and

v2(n) =
1

h2

h
∑

m=1

h
∑

m′=1

∫

X

[

u(m)
n (~x )u(m′)

n (~x )
]2
dµ(~x) − 1. (87)

More generally, if a function f(Λn) is computed in the continuous approxi-
mation, it will have a random (depending on realizations) fluctuation δf(Λn)
which to first order in 1/

√
N is

δf(Λn) =
df(Λn)

dΛn

hΛnζ
v(n)√
N
. (88)

We are interested mainly in the counting function. According to Eq. (66) it
has a power-law asymptotics when smoothed over a small window δΛ and
dN(Λ)/Λ = νN(Λ)/Λ with ν = −(d+ 1)/d. Consequently

δN(Λ) ∼ N(Λ)
ζ√
N
. (89)

The condition that perturbed eigenvalues do not deviate from the ones com-
puted in the continuous approximation (or equivalently that the splitting
(83) is much smaller than the distance between multiplets in the continuous
approximation) leads to the following inequality

δN(Λ) ≪ 1

N
. (90)

Together with (89) it implies that, in general, the continuous approximation
gives correctly the eigenvalues of only the first

√
N eigenstates ordered by

increasing eigenvalues and that by increasing N more and more distinct and
isolated multiplets are present. In terms of scaled eigenvalues, one has that
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the continuous approximation can be used for the approximation of non-
averaged eigenvalues satisfying

|λ| ≥ N (d+1)/2d. (91)

For smaller |λ| the spacing between successive eigenvalues computed in the
continuous approximation becomes comparable to the fluctuating corrections
and the mixing of different states is important.

Nevertheless, one can still use the continuous approximation for the cal-
culation of average quantities (e.g. the counting function). The main point
is that the first correction to (89) vanishes because the mean value of ζ is
zero to first order in 1/

√
N . If there are no singularities (which is probably

true for d > 2), the next order correction will be of the order of G(λ)/N
with a certain function G(λ) and the conditions (90) on the average will be
valid till λ is of the order of 1. Therefore for averaged quantities one can
use the continuous approximation for a finite fraction of the total number of
eigenvalues.

4.4 Strongly localized states

The properties of strongly localized states can be estimated by slightly mod-
ifying the arguments used for the one-dimensional case.

For manifolds of the second kind (like for the circle), assume that an
eigenfunction is localized in a small region L and ui are (large) values of this
eigenfunction inside this region. Choose the origin somewhere inside this
region and consider a point ~x0 at large distance from it. The value u0 of the
eigenfunction at this point from Eq. (2) is

Λu0 =
∑

i∈L

||~x0 − ~xi|| ui. (92)

As ||~x0|| ≫ ||~xi||, the right-hand side of this expression can be expanded into
powers of ~xi

Λu0 = R
∑

i∈L

ui +
∑

i∈L

~ζ · ~xi ui + . . . , (93)

where R = ||x0|| and ~ζ = ∂||~x0||/∂~x0.
As |u0| should decrease exponentially with R and each term in the above

equation decreases as a different power of R, one concludes, similar to the
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case of the circle, that in order to obey the localization property ui should
obey the relations

∑

i∈L

ui ≈ 0,
∑

i∈L

~ζ · ~xi ui ≈ 0, etc. (94)

In regions not too close to a region diametrically opposite to the localization
region ~ζ = ~x0/R and these equations take the form of zero multipole moments

∑

i∈L

ui = 0,
∑

i∈L

~xiui, . . . (95)

But close to the diametrically opposite region there are points for which the
distance changes its form as in Eq. (42). For these points the derivative of ||~x||
will change sign and, in general, conditions (95) will be impossible to fulfill.
Consequently, the eigenfunction in the diametrically opposite region cannot,
in general, be exponentially small as required by the usual localization theory.

The above discussion about the localization ‘echo’ is valid for manifolds
of the second kind (i.e. if there exist a few geodesics connecting two points)
e.g. for spheres of different dimensions. In Fig. 6 we present the structure of
the localized eigenfunctions of the distance matrices for 2 and 3 dimensional
spheres in the same way as it was done in Fig. 5. In all cases the eigen-
functions have large values near the left and right ends of the interval, in
agreement with localization on two diametrically opposite regions. Compari-
son with Fig. 5 illustrates also the completely different structure of extended
and localized states (notice the difference in scale in both figures).

To compute the density of strongly localized states let us, as above, as-
sume that an eigenfunction is localized in a small region L and denote by ui
its large components inside L. (For simplicity we consider only manifolds of
the first kind.)

The eigenvalue equation (2) gives

Λui =
∑

j∈L

||~xi − ~xj || uj. (96)

Because we assume that all ui are localized (are large) in a small region, all
differences ||~xi−~xj || are of the order of the distance r between nearest points

Λui ≈ r
∑

j 6=i

uj. (97)
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Figure 6: Individual eigenfunctions u(n) as for Fig. 5 except n = 800, 801,
802, 803 for d = 3 and n = 650, 651, 652, 653 for d = 2 from top to bottom.
All states are localized.
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As already indicated in Eq. (94), one of the necessary conditions of localiza-
tion is

ui +
∑

j 6=i

uj = 0. (98)

Therefore
Λ ≈ −r, (99)

which means that the distribution of eigenvalues of localized states is approx-
imately the same as the distribution of distances between two uncorrelated
points randomly distributed on the manifold. For small distances the latter
is proportional to the volume and, consequently, the staircase function at
small negative λ is

N(λ) ≈ 1 −Kd(−λ)d, (100)

where Kd is a constant depending on the dimensionality of the system. (In
situations where points though uniformly distributed exhibit repulsion we
expect that the exponent in Eq. (100) will be larger.)

On Fig. 7 (same numerical data as for Fig. 3) the small Λ behaviour of
the staircase function is displayed. It is clear that the estimate (100) is in
good agreement with the numerical simulations.

Eq.(100) together with Eq. (66), which govern the small and large λ
behaviour of the average staircase function respectively, strongly suggest that
N(λ) is independent on the number of points N when N → ∞. This is
illustrated on Fig. 8 .

To get further insight on localization properties let us first remind some
qualitative properties of the Anderson model. In one dimension all states
are localized, irrespective of the size of disorder. In two dimensions pertur-
bation theory cannot be applied and the localization length increases ex-
ponentially when disorder decreases. For dimensions larger than two there
is a localization-delocalization transition at finite strength of disorder and
the threshold value increases with dimensionality of the system. For dis-
tance matrices, the parameter governing the size of the disorder is the scaled
eigenvalue λ = Λ(N/V )1/d, with increasing disorder as |λ| → 0. In Fig. 9 we
present the numerically computed participation ratio for spheres of dimen-
sions 2 and 3. For the 3-sphere the effect of the localization-delocalization
transition (i.e. the sharp increase of the localization length at a finite value
of λ) is clearly visible.
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Figure 7: Averaged fraction of eigenvalues above Λ with N = 1000 points in
the unit hyper-cube of dimension d = 1, 2, 3, 4, 5 (from left to right). Straight
lines of slope d as predicted by Eq. (100), for comparison.
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Figure 8: Averaged staircase function for the unit 3-dimensional cube for
different number of points.
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Figure 9: Participation ratio corresponding to a single realization for 2-
dimensional (left part) and 3-dimensional (right part) unit sphere smoothed
over a small window δλ with different number N of points . The abscissa
axis is log(−λ) where λ = ΛN1/2 (left part) and λ = ΛN1/3 (right part).

5 Summary and conclusions

Let N points be distributed on a certain manifold. The (i, j) matrix element
of the distance matrix is defined as the distance between points i and j.
Schoenberg [3] proved long time ago that for Euclidean manifolds all eigen-
values of such matrices, except one, are non-positive. This property can be
extended to other manifolds, in particular, for spherical manifolds treated
here (see [4] for a general discussion).

The study of the one-dimensional case (interval and circle) provides al-
ready some clues of what are the ingredients governing the properties in
higher dimensions and the properties related to the very simple crystal con-
figuration are partially kept when ‘disorder’ is added.

In general it is demonstrated that, if the points are uncorrelated and
uniformly distributed on a base manifold, the average density of eigenvalues
of distance matrices in the limit N → ∞ has a power-law behaviour for
large and small negative eigenvalues, the exponent depending only on the
dimension of the manifold (see Eqs. (66) and (100)).

The eigenfunctions of the distance matrices with large negative eigenval-
ues are delocalized (for 1 and 2 dimensional manifolds the localization length
is much larger than the system size) whereas the eigenfunctions with very
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small negative eigenvalues are strongly localized.
If the manifold possess a symmetry group, large negative eigenvalues form

almost degenerate multiplets whose dimensions equal the dimensions of the
irreducible representations of the group and the conditions for the presence
of isolated multiplets are established.

A distinction among base manifolds for which two points are connected
by one or several geodesics is made. In the latter case the eigenfunctions of
the distance matrix are, in general, localized not in one but in several regions
(echo). For spheres of any dimension we find strongly localized states in two
diametrically opposite regions. The understanding of the structure of the
echo for more general spaces deserves further study.

Strongly localized states are, by definition, mostly sensitive to local prop-
erties of the base manifold. The existence of the echo shows, however, that
certain global properties of the manifold are reflected on these states as well.

What precedes is illustrated in detail by studying distance matrices of
uncorrelated points uniformly distributed on hyper-spheres and hyper-cubes
of different dimensions.

The introduction of distance matrices in Ref. [1] was to a large extent
motivated by the fact that they encode the metric properties of the base
manifold. Our results show one possible way of solving the inverse problem,
namely, the reconstruction of the initial manifold from the knowledge of the
spectral properties of its distance matrix. We demonstrate that large negative
eigenvalues can be approximated with 1/

√
N accuracy by the solutions of the

continuous approximation Eq. (58). As this integral equation is similar to
the Laplace equation, one may conjecture that for this equation, similarly
as for the former, the question raised by Kac “Can one hear the shape of
a drum?”[9] can also be answered affirmatively, except probably for very
special isospectral cases.

When completing this work we became aware of Ref. [10] where Euclidean
Random Matrices were introduced. Matrix elements are then a function of
finite range of the relative distance between two points in Euclidean space
Mij = f(||~xi− ~xj ||). One of the main differences with respect to the present
work is that in [10] the results strongly depend on the choice of f whereas
here it is kept fixed f(x) = x and emphasis is put on the choice of the
manifold.
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