Functionals of the Brownian motion, localization and metric graphs

Alain Comtet(a,b), Jean Desbois(a) and Christophe Texier(a,c)

July 22, 2005

(a) Laboratoire de Physique Théorique et Modèles Statistiques, UMR 8626 du CNRS. Université Paris-Sud, Bât. 100, F-91405 Orsay Cedex, France.
(b) Institut Henri Poincaré, 11 rue Pierre et Marie Curie, F-75005 Paris, France.
(c) Laboratoire de Physique des Solides, UMR 8502 du CNRS. Université Paris-Sud, Bât. 510, F-91405 Orsay Cedex, France.

Abstract

We review several results related to the problem of a quantum particle in a random environment.

In an introductory part, we recall how several functionals of the Brownian motion arise in the study of electronic transport in weakly disordered metals (weak localization).

Two aspects of the physics of the one-dimensional strong localization are reviewed: some properties of the scattering by a random potential (time delay distribution) and a study of the spectrum of a random potential on a bounded domain (the extreme value statistics of the eigenvalues).

Then we mention several results concerning the diffusion on graphs, and more generally the spectral properties of the Schrödinger operator on graphs. The interest of spectral determinants as generating functions characterizing the diffusion on graphs is illustrated.

Finally, we consider a two-dimensional model of a charged particle coupled to the random magnetic field due to magnetic vortices. We recall the connection between spectral properties of this model and winding functionals of the planar Brownian motion.

PACS numbers: 72.15.Rn ; 73.20.Fz ; 02.50.-r ; 05.40.Jc.

Contents

1 Introduction 2
 1.1 Weak and strong localization . 2
 1.2 Overview of the paper . 4

2 Functionals of the Brownian motion in the context of weak localization 4
 2.1 Feynman paths, Brownian motion and weak localization 4
 2.2 Planar Brownian motion: stochastic area, winding and magnetoconductance . . 5
 2.3 Dephasing due to electron-electron interaction and functionals of Brownian bridges 6

3 Exponential functionals of Brownian motion and Wigner time delay 8
 3.1 Historical perspective . 8
 3.2 Wigner time delay . 9

4 Extreme value spectral statistics 11
 4.1 Distribution of the n-th eigenvalue: relation with a first exit time distribution . . 12
1 Introduction

1.1 Weak and strong localization

At low temperature, the electric conductivity σ of metals and weakly disordered semiconductors is determined by the scattering of electrons on impurities. It is given by the Drude formula

$$\sigma_0 = \frac{n_e e^2 \tau_e}{m},$$

(1)

where e and m are the charge and mass of the electron respectively. n_e is the electronic density and τ_e the elastic scattering time\(^1\). This purely classical formula is only valid in a regime where quantum mechanical effects can be neglected. This is the case if the elastic mean free path of electrons $\ell_e = v_F \tau_e$ is large compared with the De Broglie wave length $\lambda_F = \frac{2\pi \hbar}{mv_F}$ corresponding to the Fermi energy (v_F is the Fermi velocity).

Strong localization.– When these two length scales are of the same order $\ell_e \approx \lambda_F$ (strong disorder) the fact that the electrons are quantum objects must be taken into account and the wave like character of these particles is of primary importance. It is indeed this wave character which is responsible for the localization phenomenon. The multiple scattering on impurities distributed randomly in space creates random phases between these different waves which can interfere destructively. These interference effects reduce the electronic conductivity. In the extreme case of very strong disorder the waves do not propagate anymore and the system becomes insulating. This is the strong localization phenomenon which was conjectured by Anderson in 1958.

Weak localization.– In the 80’s it was realized that even far from the strong localization regime the quantum transport is affected by the disorder. Diagrammatic techniques used in the weak disorder limit $\lambda_F \ll \ell_e$, were initiated by the works of Al’tshuler, Aronov, Gor’kov, Khmel’nitzki, Larkin and Lee \[116, 12\] (see ref. \[13\] for an introduction and ref. \[4\] for a recent presentation). In this regime, called the weak localization regime, the Drude conductivity gets a small sample dependent correction whose average, denoted $\langle \Delta \sigma \rangle$, is called the “weak localization correction”. $\langle \cdots \rangle$ denotes averaging with respect to the random potential. From the experimental side, this phenomenon is well established and has been the subject of many studies (see refs. \[34, 16\] for review articles).

\(^1\)The elastic scattering time τ_e is the time characterizing the relaxation of the direction of the momentum of the electron. The conductivity is proportional to τ_e for isotropic scattering by impurities. For anisotropic scattering the conductivity involves a different time τ_{tr} called the “transport” time \[17\] (see ref. \[4\] for a discussion within the perturbative approach).
Phase coherence and dimensional reduction.—The localization phenomenon comes from the interplay between the wave nature of electronic transport and the disorder. This manifestation of quantum interferences requires that the phase of the electronic wave is well defined, however several mechanisms limit the phase coherence of electrons in metals, among which are the effect of the vibrations of the crystal (electron-phonon interaction) or the electron-electron interaction. We introduce a length scale L_φ, the phase coherence length, that characterizes the length over which phase breaking phenomenon becomes effective. The lack of phase coherence in real systems is the reason why the strong localization regime has not been observed in experiments on metals. In dimension $d = 3$ the strong localization regime is only expected to occur for sufficiently strong disorder. However, strong localization can also be observed in the weak disorder limit ($\lambda_F \ll \ell_e$) by reducing the dimensionality. It has been shown in the framework of random matrix theory that the localization length of a weakly disordered quasi-1d wire behaves as $\lambda \sim N_c \ell_e$, where N_c is the number of conducting channels. Therefore the strong localization regime is expected to occur when coherence is kept at least over a scale λ. At low temperature, in the absence of magnetic impurity, phase breaking mechanisms are dominated by electron-electron interaction, which leads to a divergence of the phase coherence length $L_\varphi(T) \propto (N_c/T)^{1/3}$ predicted in ref. 9 and verified in several experiments like 224, 213, 84 (see ref. 180 for recent measurements down to 40mK). Therefore the temperature below which strong localization might be observable is given by $L_\varphi(T_c) \sim \lambda$, which leads to $T_c \sim 1/(N_c^2 d \tau_e)$. The crossover temperature in metals is out of the experimental range, however it becomes reachable in wires etched at the interface of two semiconducting materials, when the number of conducting channels is highly reduced, and the manifestation of the strong localization has been observed in ref. 109.

Strictly one-dimensional case.—In a weakly disordered and coherent quasi-1d wire, the weak localization regime only occurs for length scales intermediate between the elastic mean free path and the localization length $\ell_e \ll L \ll \lambda$. In the strictly one dimensional case, since $\lambda \approx 4\ell_e$ for weak disorder, such a regime does not exist and the system is either ballistic ($\ell_e \gg L$) or strongly localized ($\ell_e \ll L$).

Anderson localization in one dimension has been studied by mathematicians and mathematical physicists from the view point of spectral analysis and in connection with limit theorems for products of random matrices. A breakthrough was the proof of wave localization in one dimension by Gol’dshtein, Molchanov & Pastur. Although some progress has been made, the multidimensional case is still out of reach and the subject of weak localization has almost not been touched in the mathematical literature. One of the main fields of interest in the last twenty years is the investigation of random Schrödinger operators in the presence of magnetic fields (see for example the refs. 220, 46, 77, 78, 100, 101; for recent results on Lifshitz tails with magnetic field see refs. 104, 153). From the physics side significant advances have been realized. Field theoretical methods based on supersymmetry provide a general framework for

2Following the scaling ideas initiated by Thouless and Wegner it was shown in ref. 4 that the localization-delocalization transition exists only for dimension $d = 3$. In $d = 1$ and $d = 2$, the fully coherent system is always strongly localized, whatever the strength of the disorder is.

3The effective dimension of the system is obtained by comparing the sample size with the phase coherence length L_φ. For example, a long wire of length L and of transverse dimension W is effectively in a 1d regime if $W \ll L_\varphi \ll L$.

4The localization length predicted by the random matrix theory (RMT) can be found in ref. 30: $\lambda_{\text{RMT}} = [\beta(N_c - 1) + 2\ell_e]$, where $\beta = 1, 2, 4$ is the Dyson index describing orthogonal, unitary and symplectic ensembles, respectively. Note that one must be careful with the coefficient involved in this relation since the definitions of λ_{RMT} and ℓ_e differ slightly in RMT and in perturbation theory.

5The elastic mean free path $\ell_e = v_F \tau_e$ is given by the self energy $1/(2\tau_e) = -\text{Im} \Sigma^R(E)$. For example, for a Gaussian disorder with local correlations, $(V(x)V(x')) = w\delta(x-x')$, we obtain $1/\tau_e \approx 2\pi \rho_0 w$ for a weak disorder, where ρ_0 is the free density of states. In one dimension $\rho_0 = 1/(\pi v_F)$, therefore $\ell_e \approx v_F^2/(2w)$, which coincides with the high energy (weak disorder) expansion of the localization length $\lambda \approx 2v_F^2/w$.
disordered systems and also allow establishing some links with quantum chaos.

While writing this review, we have tried to collect a large list of references which is however far from being exhaustive. Ref. [157] provides a reference book on strong localization, mostly focused on spectrum and localization properties (see also ref. [158] for a review on 1d discrete models and Lifshitz tails). A recent text about disorder and random matrix theory is ref. [86]. Many excellent reviews have been written on weak localization among which [34, 55] (for the role of disorder and electron-electron interaction, see the book [87] or [152]). A recent reference is [4].

1.2 Overview of the paper

Section 2 shows that several functionals of the Brownian motion arise in the study of electronic transport in weakly disordered metals or semiconductors (weakly localized). The brief presentation of weak localization given in sections 2.1 and 2.2 follows the heuristic discussion of refs. [13, 55], which is based on the picture proposed by Khmel’nitzki˘ı & Larkin. In spite of its heuristic character, it allows drawing suggestive connections with well known functionals of the Brownian motion.

The sections 3 and 4 deal with problems of strong localization in one dimension. A powerful approach to handle such problems is the phase formalism (presented in refs. [15, 157] for instance). This formalism leads to a broad variety of stochastic processes. Section 3 discusses scattering properties of a random potential and section 4 studies spectral properties of a Schrödinger operator defined on a finite interval.

In section 5 we review some results obtained for networks of wires (graphs), which can be viewed as systems of intermediate dimension between one and two. We will put the emphasis on spectral determinants, which appear to be an efficient tool to construct several generating functions characterizing the diffusion on graphs (or its discrete version, the random walk).

Finally, in section 6 we show that the physics of a two dimensional quantum particle submitted to the magnetic field of an assembly of randomly distributed magnetic vortices involves fine properties of the planar Brownian motion.

2 Functionals of the Brownian motion in the context of weak localization

2.1 Feynman paths, Brownian motion and weak localization

In the path integral formulation of quantum mechanics, each trajectory is weighted with a phase factor $e^{iS/\hbar}$ where S is the classical action evaluated along this trajectory. The superposition principle states that the amplitude of propagation of a particle between two different points is given by the sum of amplitudes over all paths connecting these two points. This formulation of quantum mechanics is most useful when there is a small parameter with respect to which one can make a quasiclassical expansion. One encounters a similar situation in the derivation of geometrical optics starting from wave optics. In this case the small parameter is the ratio of the wavelength to the typical distances which are involved in the problem and the classical paths are light rays. In the context of weak localization the small parameter is λ_F/ℓ_e and the quasiclassical approximation amounts to sum over a certain subset of Brownian paths. The fact that Brownian paths come into the problem is not so surprising if one goes back to our previous physical picture of electrons performing random walk due to the scattering by the impurities.

The phase formalism is a continuous version of the Dyson-Schmidt method [83, 188]. A nice presentation can be found in ref. [158].
In the continuum limit, describing the physics at length scales much larger than ℓ_e, this random walk may be described as a Brownian motion. It can be shown that $\langle \Delta \sigma \rangle$ is related to the time integrated probability for an electron to come back to its initial position (see ref. [55] for a heuristic derivation or ref. [4] for a recent derivation in space representation):

$$\langle \Delta \sigma \rangle = -\frac{e^2 D}{\pi \hbar} \int_{\tau_e}^{\infty} dt \mathcal{P}(\vec{r}, t | \vec{r}', 0) e^{-t/\tau_\phi}.$$

(2)

where D is the diffusion constant and the factor 2 accounts for spin degeneracy. $\mathcal{P}(\vec{r}, t | \vec{r}', 0)$ is the Green’s function of the diffusion equation

$$\left(\frac{\partial}{\partial t} - D \Delta \right) \mathcal{P}(\vec{r}, t | \vec{r}', 0) = \delta(\vec{r} - \vec{r}') \delta(t).$$

(3)

In eq. (2) the exponential damping at large time describes the lack of phase coherence due to inelastic processes. The phase coherence time τ_ϕ can be related to the phase coherence length by $L_\phi^2 = D \tau_\phi$. We have also introduced a cut-off at short time in eq. (2), that takes into account the fact that the diffusion approximation is only valid for times larger than τ_e.

2.2 Planar Brownian motion: stochastic area, winding and magnetoconductance

Weak localization corrections are directly related to the behaviour of the probability of return to the origin and thus to recurrence properties of the diffusion process. It therefore follows that dimension $d = 2$ plays a very special role. Consider for instance a thin film whose thickness a is much less than L_ϕ. The sample is effectively two dimensional and the correction to the conductivity is given by

$$\langle \Delta \sigma \rangle = -\frac{e^2}{\pi^2 \hbar} \ln(L_\phi/\ell_e).$$

(4)

On probabilistic grounds the logarithmic scaling is of course not unexpected here, it is the same logarithm which occurs in asymptotic laws of the planar Brownian motion [181, 151]. The neighbourhood recurrence of the planar Brownian motion favors the quantum interference effects and leads to a reduction of the electrical conductivity. A more striking effect is predicted if one applies a constant and homogeneous magnetic field B over the sample. In this case the classical action contains a coupling to the magnetic field $S = e BA$ where A is a functional of the path given by the line integral

$$A = \frac{1}{2} \int (x dy - y dx).$$

(5)

Properly interpreted, this line integral is nothing but the stochastic area of planar Brownian motion, whose distribution was first computed by P. Lévy before the discovery of the Feynman path integral. The weak localization correction reads

$$\langle \Delta \sigma(B) \rangle - \langle \Delta \sigma(0) \rangle = \frac{e^2}{2 \pi^2 \hbar} \int_0^\infty dt \frac{e^{-t/\tau_\phi}}{t} \left(1 - E\left[e^{2i e BA/\hbar}\right] \right).$$

(6)

The coupling to the magnetic field now appears with an additional factor 2 coming from the fact that the weak localization describes quantum interferences of reversed paths. The expectation $E[\cdots]$ is taken over Brownian loops for a time t. The magnetoconductivity is given by [42, 34, 55]

$$\langle \Delta \sigma(B) \rangle - \langle \Delta \sigma(0) \rangle \approx \frac{4 e^2}{3 \hbar} \left(\frac{BL_\phi^2}{\phi_0} \right)^2,$$

(7)
where \(\psi(z) \) is the digamma function and \(\phi_0 = \hbar/e \) is the quantum flux. The \(r.h.s \) corresponds to the weak field limit \(B \ll \phi_0/L^2 \). This increase of the conductivity with magnetic field is opposite to the behaviour expected classically. This phenomenon is called “positive (or anomalous) magnetoconductance”. Experimentally this effect is of primary importance: the magnetic field dependence allows one to distinguish the weak localization correction from other contributions and permits to extract the phase coherent length \(L_\phi \). This expression fits the experimental results remarkably well\(^7\) \[34\].

Strictly speaking eq. (7) only holds for an infinite sample. In the case of bounded domains the variance depends on the geometry of the system and can be computed explicitly for rectangles and strips \[76\]. The case of inhomogeneous magnetic fields can be treated along the same line. Consider for instance a magnetic vortex carrying a flux and strips \[76\]. The case of inhomogeneous magnetic fields can be treated along the same line.

Another interesting example of a non trivial connection between a physical quantity and a functional of the Brownian motion occurs in the study of electron-electron interaction and weak localization correction in a quasi-1d metallic wire. In ref. \[9\], Al'tshuler, Aronov & Khmel'nitzkii (AAK) proposed to model the effect of the interaction between an electron and its surrounding environment by the starting point is a path integral representation of the probability \(P(\vec{r},t|\vec{r}',0) \) in which is included the effect of the fluctuating field that brings a random phase. After averaging over Gaussian fluctuations of the field, given by the fluctuation-dissipation theorem, AAK obtained

\[
\langle \Delta \sigma \rangle = -2 e^2 D \int_0^\infty dt \, e^{-\gamma t} \int_{x(0)=x}^{x(t)=x} Dx(\tau) e^{-\frac{1}{2} \int_0^t d\tau \dot{x}(\tau)^2 - \frac{e^2}{\sigma_0 S_w} \int_0^\infty d\tau |x(\tau) - x(t-\tau)|},
\]

where \(T \) is the temperature (the Planck and Boltzmann constants are set equal to unity \(\hbar = k_B = 1 \)), and \(S_w \) is the area of the section of the quasi-1d wire. In contrast with eq. (2) where the loss of phase coherence was described phenomenologically by an exponential damping\(^8\) with

\[7\] Note that in materials with strong spin orbit scattering, like gold, the effect is reversed and a negative magnetoconductance is observed at small magnetic fields \[127\] \[54\].

\[8\] Note that the introduction of an exponential damping describes rigorously several effects: the loss of phase coherence due to spin-orbit scattering or spin-flip \[127\], the penetration of a weak perpendicular magnetic field in a quasi 1d wire \[5\]. In this latter case the effect of the magnetic field is taken into account through \(\gamma = \frac{\gamma}{4} (eBW)^2 \) where \(W \) is the width of the wire of rectangular section.

2.3 Dephasing due to electron-electron interaction and functionals of Brownian bridges

Dephasing in a wire: relation with the area below a Brownian bridge. – Another interesting example of a non trivial connection between a physical quantity and a functional of the Brownian motion occurs in the study of electron-electron interaction and weak localization correction in a quasi-1d metallic wire. In ref. \[9\], Al’tshuler, Aronov & Khmel’nitzkii (AAK) proposed to model the effect of the interaction between an electron and its surrounding environment by the interaction with a fluctuating classical field. The starting point is a path integral representation of the probability \(P(\vec{r},t|\vec{r}',0) \) in which is included the effect of the fluctuating field that brings a random phase. After averaging over Gaussian fluctuations of the field, given by the fluctuation-dissipation theorem, AAK obtained

\[
\langle \Delta \sigma \rangle = -2 e^2 D \int_0^\infty dt \, e^{-\gamma t} \int_{x(0)=x}^{x(t)=x} Dx(\tau) e^{-\frac{1}{2} \int_0^t d\tau \dot{x}(\tau)^2 - \frac{e^2}{\sigma_0 S_w} \int_0^\infty d\tau |x(\tau) - x(t-\tau)|},
\]

where \(T \) is the temperature (the Planck and Boltzmann constants are set equal to unity \(\hbar = k_B = 1 \)), and \(S_w \) is the area of the section of the quasi-1d wire. In contrast with eq. (2) where the loss of phase coherence was described phenomenologically by an exponential damping\(^8\) with
the parameter \(\tau_e \), here the electron-electron interaction affects the weak localization correction through the introduction in the action of the functional of the Brownian bridge\(^9\)

\[
\tilde{A}_t = \int_0^t d\tau |x(\tau) - x(t - \tau)|, \tag{11}
\]

The additional damping \(\exp -\gamma t \) in eq. (10) describes the loss of phase coherence due to other phase breaking mechanisms. By using a trick which makes the path integral local in time, AAK have computed explicitely the path integral and obtained :

\[
\langle \Delta \sigma \rangle = \frac{e^2}{\pi S_w} L_N \frac{\text{Ai}(\gamma \tau_N)}{\text{Ai}'(\gamma \tau_N)}, \tag{12}
\]

where \(\text{Ai}(z) \) is the Airy function. The Nyquist time \(\tau_N = \left(\frac{\sigma_0 S_w}{e^2 T \sqrt{D}} \right)^{2/3} \) gives the time scale over which electron-electron interaction is effective and therefore plays the role of a phase coherence time. We have also introduced the corresponding length \(L_N = \sqrt{D \tau_N} \). Note that the \(T \) dependence of \(\tau_N \propto T^{-2/3} \) directly reflects the scaling of the area with time : \(\tilde{A}_t \propto t^{3/2} \tilde{A}_1 \). We stress that the AAK theory makes a quantitative prediction for the dependence of the phase coherence length \(L_N \) as a function of the temperature, which has been verified experimentally for a wide range of parameters: on metallic (Gold) wires \cite{84,180} (the behaviour of \(L_N \propto (S_w/T)^{1/3} \) was observed before in Aluminium and Silver wires \cite{224}), and on wires etched at the interface of two semiconductors \cite{213}.

It is interesting to point out that the result of AAK can be interpreted as the Laplace transform of the distribution of the functional \(\tilde{A}_t \), \(\mathbb{E}[\exp -p \tilde{A}_t] \). This functional represents the area between a Brownian bridge and its time reversed counterpart (cf. figure 1a), where \(\mathbb{E}[\cdots] \) describes averaging over Brownian bridges. The conjugate parameter \(p \) is played in (10) by the temperature : \(p = \frac{e^2 T}{\sigma_0 S_w} \). The result (12) has also been derived in the probability literature. Let us consider the functional

\[
A_t = \int_0^t d\tau |x(\tau)|, \tag{13}
\]

giving the absolute area below the Brownian bridge starting from the origin, \(x(0) = x(t) = 0 \) (cf. figure 1a). The double Laplace transform of the distribution of \(A_t \) has been computed first by Cifarelli and Regazzini \cite{58} in the context of economy and independently by Shepp \cite{195}, and led to

\[
\int_0^\infty \frac{dt}{\sqrt{t}} e^{-\gamma t} \mathbb{E}[e^{-\sqrt{2} A_t}] = -\sqrt{\pi} \frac{\text{Ai}(\gamma)}{\text{Ai}'(\gamma)},
\]

which is equivalent\(^10\) to the result (12). The connection

\(^9 \)A Brownian bridge, \((x(\tau), 0 \leq \tau \leq 1 | x(0) = x(1))\), is a Brownian path conditioned to return to its starting point.

\(^{10} \)Note that the \(1/\sqrt{t} \) in the integral computed by Shepp corrects the fact that the averaging over Brownian curves in (10) is not normalized to unity, whereas \(\mathbb{E}[\cdots] \) is.

Figure 1: Left: The functional \(A_t \) gives the absolute area below a Brownian bridge \(x(\tau) \). Right: The functional \(\tilde{A}_t \) measures the area between the Brownian bridge \(x(\tau) \) and its time reversed counterpart \(x(t - \tau) \). The two functionals are equal in law \([\text{eq. (14)}] \).
between the two results is clear from the equality in law11:

\[A_t \overset{\text{(law)}}{=} \tilde{A}_t \]

(14)

which follows from12

\[x(\tau) - x(t - \tau) \overset{\text{(law)}}{=} x(2\tau) \quad \text{for} \quad \tau \in [0, t/2]. \]

(15)

The relation (14) allows us to understand more deeply the trick used by AAK to make the path integral (10) local in time. The distribution of the area \(A_t \) has been also studied by Rice in ref. 183. Interestingly, the inverse Laplace transform of eq. (12) obtained by Rice has been rederived recently independently in ref. 168 in order to analyze the loss of phase coherence due to electron-electron interaction in a time representation.

The study of statistical properties of the absolute area below a Brownian motion was first addressed by Kac 135 for a free Brownian motion, long before the case of the Brownian bridge studied by Cifarelli & Regazzini and by Shepp. Later on, it has been extended to other functionals of excursions and meanders13 133, 179, which arise in a number of seemingly unrelated problems such as computer science, graph theory 95 and statistical physics 160, 161.

\textbf{Dephasing in a ring.}—Very recently, the question of dephasing due to electron-electron interaction in a weakly disordered metal has been raised again in ref. 159. In particular it has been shown that the effect of the geometry of the ring and the effect of electron-electron interaction combine in a nontrivial way leading to a behaviour of the harmonics of the magnetoconductance that differs from the one predicted by eq. (2) in ref. 10. For the ring, the functional describing the effect of electron-electron interaction on weak localization is now given by

\[R_t = \int_0^t d\tau \left| x(\tau) \right| \left(1 - \frac{\left| x(\tau) \right|}{L} \right) \]

(16)

instead of the area defined by eq. (13). \(x(\tau) \) is a Brownian path14 on a ring of perimeter \(L \) such that \(x(0) = x(t) = 0 \). The question has been re-examined in more detail in ref. 211, where the double Laplace transform of the distribution \(\int_0^\infty dt e^{-\gamma t} \frac{1}{\sqrt{t}} e^{-\frac{(aL)^2}{4}} E_n[e^{-R_t}] \) has been derived. \(E_n[\cdots] \) denotes averaging over Brownian bridges defined on a circle, with winding number \(n \). Note that the Laplace transform of the distribution \(E_n[e^{-R_t}] \) has been also studied in ref. 211.

\section{Exponential functionals of Brownian motion and Wigner time delay}

\subsection{Historical perspective}

Exponential functionals of the form,

\[A_t^{(\mu)} = \int_0^t ds \exp\left\{-2(B(s) + \mu s)\right\} \]

(17)

11For a given process \(x(\tau) \) the two functionals \(A_t \) and \(\tilde{A}_t \) are obviously different, however they are distributed according to the same probability distribution. They are said “equal in law”.

12The relation (15) is easily proved by using that a Brownian bridge \((x(\tau), \ 0 \leq \tau \leq 1 \ | \ x(0) = x(1) = 0) \) can be written in terms of a free Brownian motion \((B(\tau), \ \tau \geq 0 \ | \ B(0) = 0) \) as: \(x(\tau) = B(\tau) - \tau B(1) \).

13An excursion is a part of a Brownian path between two consecutive zeros and a meander is the part of the path after the last zero.

14As for the case of the wire, the functional involved in the study of dephasing in the ring 211 involves the difference \(x(\tau) - x(t - \tau) \) instead of the bridge \(x(\tau) \). We have used the equality in law 15 which implies the following property: given a Brownian bridge \((x(\tau), \ 0 \leq \tau \leq 1 \ | \ x(0) = x(t) = 0) \), for any even function \(f(x) \) we have \(\int_0^t d\tau f(x(\tau) - x(t - \tau)) \overset{\text{(law)}}{=} \int_0^t d\tau f(x(\tau)) \).
where \((B(s), s \geq 0, B(0) = 0)\) is an ordinary Brownian motion have been the object of many studies in mathematics [228], mathematical finance and physics [63]. In the physics of classical disordered systems, the starting point was the analysis of the series (Kesten variable)

\[
Z = z_1 + z_1z_2 + z_1z_2z_3 + \cdots
\]

(18)

where the \(z_i\) are independent and identical random variables. Several papers have been devoted to the study of this random variable in the physics [68, 71] and mathematics [138, 217] literature. It was realized that \(Z\) is the discretized version of \(A^{(\mu)}_\infty\) defined in eq. (17), which may be interpreted as a trapping time in the context of classical diffusion in a random medium. The tail of the probability distribution \(P(Z)\) controls the anomalous diffusive behaviour of a particle moving in a one-dimensional random force field [32]. The functional \(A^{(\mu)}_t\) also arises in the study of the transport properties of disordered samples of finite length [170, 173]. In the context of one dimensional localization the fact that the norm of the wave function is distributed\(^{15}\) as \(A^{(1)}_\infty\) is mentioned in the book of Lifshitz et al [157].

3.2 Wigner time delay

As discussed in the introduction, the localization of quantum states in one dimension is well understood. However since real systems are not infinite, asking about the nature of the states which are not in the bulk is a perfectly legitimate question. It was pointed out by Azbel in ref. [21] that, when a disordered region is connected to a region free of disorder, the localized states acquire a finite lifetime which shows up in transport through sharp resonances, referred as “Azbel resonances”. This picture was used in ref. [132] where it was argued that these resonances could be probed in scattering experiments and lead to an energy dependent random time delay of the incident electronic wave. Motivated by this result and by developments in random matrix theory we consider the scattering problem for the one dimensional Schrödinger equation (in units \(\hbar = 2m = 1\))

\[
-\frac{d^2}{dx^2} \psi(x) + V(x) \psi(x) = E \psi(x)
\]

defined on the half line \(x \geq 0\) with the Dirichlet boundary conditions \(\psi(0) = 0\). The potential \(V(x)\) has its support on the interval \([0, L]\). Outside of this interval, the scattering state of energy \(E = k^2\) is given by

\[
\psi_E(x) = \frac{1}{\sqrt{hv_E}} \left(e^{-ik(x-L)} + e^{ik(x-L)+i\delta} \right),
\]

(20)

where \(h = 2\pi\) is the Planck constant (in unit \(h = 1\)) and \(v_E = dE/dk = 2k\) the group velocity. Eq. (20) represents the superposition of an incoming plane wave incident from the right and a reflected plane wave characterized by its phase shift \(\delta(E)\). The Wigner time delay, defined by the relation \(\tau = d\delta/dE\), can be understood as the time spent by the wave packet of energy \(E\) in the disordered region (this interpretation is only valid at high energy ; see refs. [125, 50, 149, 69] for review articles on time delay and traversal times). This representation of the time delay has been used in many papers both in the mathematics and physics literature. Starting from this representation one can derive a system of stochastic differential equations which can be studied in certain limiting cases. However, to understand the universality of the statistical properties of the Wigner time in the high energy limit, we follow a different approach below.

\(^{15}\)When \(\mu > 0\), \(A^{(\mu)}_\infty\) possesses a limit distribution for \(t \to \infty\). Moreover, we have the equality in law (see footnote 11) : \(A^{(\mu)}_\infty \overset{(law)}{=} 1/\gamma^{(\mu)}\), where \(\gamma^{(\mu)}\) is distributed according to a \(\Gamma\)-law : \(P(\gamma) = \frac{1}{\Gamma(\mu)} \gamma^{\mu-1} e^{-\gamma}\).
Universality of time delay distribution at high energy

Using the expression of the scattering state \(\Psi \) and the definition \(\tau = d\delta/dE \), we can obtain the so-called Smith formula \[98, 196\] relating the time delay to the wave function in the bulk:

\[
\tau(E) = 2\pi \int_0^L dx \left| \psi_E(x) \right|^2 - \frac{1}{2E} \sin \delta(E).
\]

(21)

Following ref. \[15\] one can parametrize the wave function in the bulk in terms of its phase and modulus. For this purpose we rewrite the Schrödinger equation as a set of two coupled first order differential equations, \(d\psi_E/dx = \psi'_E \) and \(d\psi'_E/dx = (V(x) - E)\psi_E \), and perform the change of variables: \(\psi_E(x) = e^{\xi(x)} \sin \theta(x) \) and \(\psi'_E(x) = ke^{\xi(x)} \cos \theta(x) \). One obtains a new set of first order differential equations \(d\theta/dx = k - \frac{1}{2}V(x) \sin^2 \theta \) and \(d\xi/dx = \frac{1}{2k}V(x) \sin 2\theta \). Up till now everything is exact. If we now consider the high energy limit\[16\] we can neglect the second term on the r.h.s of eq. \[21\] and integrate out the phase which is a fast variable; we obtain

\[
\tau = \frac{1}{k} \int_0^L dx \, e^{2(\xi(x)-\xi(0))}.
\]

(22)

This representation of the time delay holds for any realization of the disordered potential. Moreover, one can prove under rather mild conditions on the correlations of the random potential that \(\xi(x) \) is a Brownian motion with drift \(\xi(x) = x/\lambda + \sqrt{1/\lambda} B(x) \) where \(B(x) \) is an ordinary Brownian motion and \(\lambda \) the localization length. Using the scaling properties of the Brownian motion gives the following identity in law

\[
\tau \overset{\text{law}}{=} \frac{\lambda}{k} \int_0^{L/\lambda} dx \, e^{-\lambda(B(x)+x)} = \frac{\lambda}{k} A_{L/\lambda}^{(1)},
\]

(23)

where \(A_{L}^{(1)} \) has been defined in eq. \[17\]. This representation of the time delay as an exponential functional of the Brownian motion, first established in ref. \[93\] by a different method, allows us to obtain a number of interesting results \[65, 207\]:

(i) Existence of a limit distribution for fixed\[17\] \(\tau \) and \(L \to \infty \)

\[
P(\tau) = \frac{\lambda}{2k\tau^2} e^{-\frac{\lambda}{2k\tau^2}}.
\]

(24)

This result is reminiscent of the random matrix theory prediction in spite of the fact that this theory does not apply to systems that are strictly one-dimensional\[18\].

(ii) Linear divergence of the first moment, \(\langle \tau \rangle = L/k \), and exponential divergence of the higher moments \(\langle \tau^n \rangle \propto e^{2n(n-1)L/\lambda} \). This divergence reflects a log-normal tail of the distribution for a finite length \(L \).

Time delay and density of states

The relation \[21\] also provides another interpretation to these results. In the situation under consideration, the scattering state is directly related to the local density of states (LDoS) by \(\rho(x; E) = \langle x | \delta(E - H) | x \rangle = |\psi_E(x)|^2 \). Therefore the time delay can be interpreted as the DoS

\[16\]To define precisely the high energy limit, let us introduce the integral of the correlation function of the disorder \(w = \int dx \, V(x)V(0) \). The high energy limit corresponds to \(k \gg w^{1/3} \).

\[17\]From the remark of the footnote \[16\] we notice that \(1/\tau \) is distributed according to an exponential law.

\[18\]The random matrix theory describes the regime of weak localization or systems whose classical dynamics is chaotic. The distribution of time delay in this framework has the same functional form \(P(\tau) \propto \frac{1}{\tau^{2+\mu}} e^{-\tau_0/\tau} \) \[102, 111, 173, 174\] with two differences: (i) the exponent \(2 + \mu > 2 \), (ii) the time scale \(\tau_0 \).
of the disordered region19. This establishes a relation between the results given above and the work of Al’tshuler & Prigodin14 where the distribution of the LDoS was studied for a white noise potential using the method of Berezinskii20.

Time delay for Dirac Hamiltonian at the threshold energy

The representation (23) of the time delay as an exponential functional of the Brownian motion only holds in the weak disorder (i.e. high energy) limit. A similar representation can be derived for the random mass Dirac model at the middle of the spectrum. The Dirac Hamiltonian is

$$H_D = \sigma_2 \frac{d}{dx} + \sigma_1 \phi(x),$$

where σ_i are the Pauli matrices. $\phi(x)$ can be interpreted as a mass21. The Dirac equation $H_D \psi = k \psi$ possesses a particle-hole symmetry reflected in the symmetry of the spectrum with respect to $k = 0$ (the dispersion relation of the Dirac equation is linear in absence of the mass term and energy is equal to momentum). The middle of the spectrum is an interesting point where the divergence in the localization length signals the existence of a delocalized state (see footnote 28). These properties should therefore show up in the probability distribution of the Wigner time delay. Since the dispersion relation of the Dirac equation is linear, the time delay is now defined as $\tau = d\delta/dk$. The following representation has been derived in ref. 198:

$$\tau = 2 \int_0^L dx \ e^{2 \int_0^x \phi(y)dy}.$$ (26)

In contrast with eqs. (22,23), which have been obtained after averaging over the fast phase variable, the representation (26) is exact (for $k = 0$). If $\phi(x)$ is a white noise, then

$$\tau = \frac{2}{g} A^{(0)} gL.$$ (27)

In this case since the drift vanishes, it is known170,228 that there is no limiting distribution when $L \to \infty$. The physical meaning of the lognormal tail

$$P(\tau) \sim \frac{1}{2\tau \sqrt{2\pi gL}} e^{-\frac{1}{2\tau^2} \ln^2(\gamma \tau)}$$ (28)

in the limit $\tau \to \infty$ is discussed in detail in ref. 198.

4 **Extreme value spectral statistics**

The density of states (DoS) and the localization length of a one-dimensional Hamiltonian with a random potential can be studied by the phase formalism15,157 (see also ref. 158 for discrete

19The relation between time delay and DoS is sometimes referred as Krein-Friedel relation24 144. This relation has been originally introduced in ref. 37 in the context of statistical physics (see also ref. 67 and §73 of ref. 148). Note that it has been recently discussed in the context of graphs in refs. 205,206,208.

20The method of Berezinskii blocks has been introduced to study specifically the case of white noise disordered potential in one dimension32. This powerful approach has been widely used and has allowed to derive numbers of important results like in refs. 119,121 for example.

21The Hamiltonian 26 with $\phi(x)$ a white noise was introduced by Ovchinnikov & Erikmann176 as a model of one-dimensional semiconductor with a narrow fluctuating gap. It is interesting to point out that the Dirac equation $H_D \psi = k \psi$ also has an interpretation in the context of superconductivity, as linearized Bogoliubov-de Gennes equations for a real random superconducting gap $\phi(x)$. Finally it is worth mentioning that more general 1d Dirac Hamiltonians with several kinds of disorder (mass term, potential term and magnetic field) have been studied in refs. 28,30.
models). In the previous section we pointed out that the physics of the strong localization in one-dimension can also be probed from a different angle by considering the scattering of a plane wave by the random potential. This has led to the study of the Wigner time delay. In this section we show that the phase formalism also allows describing finer properties of the spectrum such as the probability distribution of the \(n \)-th eigenvalue. This is an instance of an extreme value statistics: given a ranked sequence of \(N \) random variables \(x_1 \leq x_2 \leq \ldots \leq x_N \), the problem is to find the distribution of the \(n \)-th of these variables in a given interval. In the particular case of uncorrelated random variables, the extreme value distributions have been studied by E. Gumbel [119, 120, 121]. This problem becomes much more complicated when the random variables are correlated, a case which has recently attracted a lot of attention. Such extreme value problems have appeared recently in a variety of problems ranging from disordered systems [44, 54, 70] to certain computer science problems such as growing search trees [162]. In the case of the spectrum of a random Hamiltonian, the eigenvalues are in general correlated variables, apart from the case of strongly localized eigenstates [167]. Below we show that, in the one dimensional case, this problem is related to studying the first exit time distribution of a one-dimensional diffusion process.

4.1 Distribution of the \(n \)-th eigenvalue: relation with a first exit time distribution

We consider a Schrödinger equation \(H\varphi(x) = E\varphi(x) \) on a finite interval \([0, L]\). The spectral (Sturm-Liouville) problem is further defined by imposing suitable boundary conditions. We choose the Dirichlet boundary conditions \(\varphi(0) = \varphi(L) = 0 \). The spectrum of \(H \) is denoted by \(\text{Spec}(H) = \{E_0 < E_1 < E_2 < \cdots \} \). Our purpose is to compute the probability

\[
W_n(E) = \langle \delta(E - E_n) \rangle
\]

for the eigenvalue \(E_n \) to be at energy \(E \) (the bracket \(\langle \cdots \rangle \) means averaging over the random potential). Note that the sum of these distributions \(\frac{1}{L} \sum_n W_n(E) = \rho(E) \) is the average DoS per unit length. We now show how the calculation of \(W_n(E) \) can be cast into a first exit time problem.

Random Schrödinger Hamiltonian

We consider the Hamiltonian

\[
H = -\frac{d^2}{dx^2} + V(x),
\]

where \(V(x) \) is a Gaussian white noise random potential: \(\langle V(x) \rangle = 0 \) and \(\langle V(x)V(x') \rangle = w \delta(x-x') \).

We replace the Sturm-Liouville problem by a Cauchy problem: let \(\psi(x; E) \) be the solution of the Schrödinger equation \(H\psi(x; E) = E\psi(x; E) \) with the boundary conditions \(\psi(0; E) = 0 \) and \(\frac{d}{dx}\psi(0; E) = 1 \). The boundary condition \(\psi(L; E) = 0 \) is fulfilled whenever the energy \(E \) coincides with an eigenvalue \(E_n \) of the Hamiltonian. In this case, the wave function \(\varphi_n(x) = \psi(x; E_n)/\left[\int_0^L dx' \psi(x'; E_n)^2\right]^{1/2} \) has \(n \) nodes in the interval \([0, L]\), and two nodes at the boundaries.

Let us denote by \(\ell_m \) (\(m \geq 1 \)), the length between two consecutive nodes. We consider the Ricatti variable

\[
z(x; E) = \frac{d}{dx} \ln |\psi(x; E)|,
\]

which obeys the following equation:

\[
\frac{d}{dx} z = -E - z^2 + V(x),
\]
with initial condition \(z(0; E) = +\infty\). This equation may be viewed as a Langevin equation for a particle located at \(z\) submitted to a force \(-\frac{\partial U(z)}{\partial z}\) deriving from the unbounded potential

\[
U(z) = Ez + \frac{z^3}{3}
\]

and to a random white noise \(V(x)\).

Each node of the wave function corresponds to \(|z(x)| = \infty\). At “time” \(x = 0\) the “particle” starts from \(z(0) = +\infty\) and eventually ends at \(z(\ell_1 - 0^+) = -\infty\) after a “time” \(\ell_1\). Just after the first node it then starts again from \(z(\ell_1 + 0^+) = +\infty\), due to the continuity of the wave function. It follows from this picture that the distance \(\ell_m\) between two consecutive nodes may be viewed as the “time” needed by the particle to go through the interval \([-\infty, +\infty]\) (the “particle” is emitted from \(z = +\infty\) at initial “time” and absorbed when it reaches \(z = -\infty\)). The distances \(\ell_m\) are random variables, interpreted as times needed by the process \(z\) to go from \(+\infty\) to \(-\infty\). These random variables are statistically independent because each time the variable \(z\) reaches \(-\infty\), it loses the memory of its earlier history since it is brought back to the same initial condition and \(V(x)\) is \(\delta\)-correlated. This remark is a crucial point for the derivation of \(W_n(E)\). Interest in these random “times” \(\ell_m\) lies in their relation with the distribution of the eigenvalues. Indeed the probability that the energy \(E_n\) of the \(n\)-th excited state is at \(E\) is also the probability that the sum of the \(n + 1\) distances between the nodes is equal to the length of the system: \(L = \sum_{m=1}^{n+1} \ell_m\) (this is illustrated on figure 2). Since the \(\ell_m\) are independent and identically distributed random variables \(\text{Prob} \left[L = \sum_{m=1}^{n+1} \ell_m \right] \) is readily obtained from the distribution \(P(\ell)\) of one of these variables.

We introduce the intermediate variable \(\mathcal{L}(z)\) giving the time needed by the process starting at \(z\) to reach \(-\infty\); therefore we have \(\ell = \mathcal{L}(+\infty)\). The Laplace transform of the distribution \(h(\alpha, z) = \langle e^{-\alpha \mathcal{L}} \mid z(0) = z\rangle\) obeys \([105]\) :

\[
G_z h(\alpha, z) = \alpha h(\alpha, z),
\]

where the backward Fokker-Planck generator is

\[
G_z = -U'(z)\partial_z + \frac{w}{2}\partial_z^2.
\]

Figure 2: The probability for the \(n\)-th level \(E_n\) of the spectrum to be at \(E\) is also the probability for the \(n + 1\)-th node of \(\psi(x; E)\) to be at \(L\).
The boundary conditions are \(\partial_z h(\alpha, z) |_{z=+\infty} = 0 \) and \(h(\alpha, -\infty) = 1 \). By Laplace inversion we can derive \(P(\ell) \) since \(h(\alpha, +\infty) = \int_0^\infty d\ell P(\ell) e^{-\alpha \ell} \).

The solution of this problem is given in ref. [204]. Here we only consider the limit \(E \to -\infty \), which corresponds to the bottom of the spectrum. In this regime the dynamics of the Ricatti variable \(z \) can be read off from the shape of the potential (see figure 3).

Figure 3: The potential \(U(z) \) related to the deterministic force to which the Ricatti variable is submitted in eq. (32).

The particle falls rapidly in the well from which it can only escape by a fluctuation of the random force. Therefore the time needed to go from \(+\infty\) to \(-\infty\) is dominated by the time spent in the well, which is distributed according to the Arrhenius formula. It follows that the average “time”, which is related to the inverse of the integrated density of states (DoS) per unit length \(N(E) = \int_0^E dE' \rho(E') \), behaves as \(\langle \ell \rangle = N(E)^{-1} \simeq \frac{\pi}{\sqrt{-E}} \exp \frac{8}{3w} (-E)^{3/2} \). This simple picture, first provided by Jona-Lasinio [134] allows recovering the exponential tail obtained by several methods in refs. [99, 124, 15, 157, 130]. The distribution of the length \(\ell \) is a Poisson law (see [105] or appendix of ref. [204]):

\[
P(\ell) = N(E) \exp(-\ell N(E)).
\]

Using this result we can show that [204]

\[
W_n(E) = L \rho(E) \frac{(LN(E))^n}{n!} e^{-LN(E)}.
\]

This result has a clear meaning: \(L \rho(E) \) gives the probability to find any level at \(E \) and the factor \(\frac{1}{n!} e^{-x} \) “compels” the number of states below \(E \), \(x = LN(E) \), to be close to \(n \). We may go further and write

\[
W_n(E) = \frac{1}{\delta E_n} \omega_n \left(\frac{E - E_{\text{typ}}^n}{\delta E_n} \right),
\]

where the typical value of the energy is \(E_{\text{typ}}^n(L) = \left(\frac{3w}{8} \ln \tilde{L}\right)^{2/3} \), while the scale of the fluctuations reads \(\delta E_n = \frac{w^{2/3}}{2\sqrt{n+1}} (3 \ln \tilde{L})^{-1/3} \), where \(\tilde{L} = \frac{L w^{1/3}}{2\pi(n+1)} \). The function

\[
\omega_n(X) = \left(\frac{n+1}{n!} \right)^{n+\frac{1}{2}} \exp \left(\sqrt{n+1} X - (n+1) e^{X/\sqrt{n+1}} \right)
\]

has the form of a Gumbel law for uncorrelated random variables. The fact that the eigenvalues are uncorrelated is a consequence of the strong localization of the eigenfunctions [167].

\[22\]It is interesting to quote ref. [145] where it was shown that this non perturbative exponential tail can be obtained by a simple counting method of “skeleton” diagrams assuming that they all have the same value (this approach was also applied to the 3d case).
The work summarized in the above paragraph, which appeared in ref. [204], generalizes the result of McKean [165] for the ground state.

A similar result was obtained by Grenkova et al [117] for the model of δ-impurities with random positions, in the limit of low impurity density which has no counterpart in the model we considered here23. However both models describe the same physics of strongly localized eigenstates.

Supersymmetric random Hamiltonian

Random Schrödinger operators have been investigated through a wide range of models. Depending on the physical context, there are indeed many ways to model the disorder. In the previous paragraph we have assumed that the potential $V(x)$ is a white noise. We have also mentioned that if the potential is a superposition of δ-potentials randomly distributed along the line, although the spectra of the two models are quite different24, the extreme spectral statistics are the same. The localization properties and the statistics of the time delay at high energy are also similar for both models $^{203, 207}$. These two models belong to the same class of random Hamiltonians with a random scalar potential with short range correlations. They are both continuous versions of discrete tight binding models with on-site random potential. This is the case of so-called *diagonal disorder*, since the random potential appears on the diagonal matrix elements of the tight binding Hamiltonian in the basis of localized orbitals25.

Other interesting models can be constructed by introducing disorder in the hoppings, instead. We refer to such models as *off-diagonal disorder*. The Dirac Hamiltonian 25 introduced above provides a continuum limit of such a model26. Dirac Hamiltonians appear naturally in several contexts of condensed matter physics. The existence of symmetries in the Dirac Hamiltonian27 (particle-hole, chiral, ...) can lead to interesting features in the presence of disorder, which has attracted some attention (see for example refs. [172, 7, 48, 49, 40, 39, 88], the last of these references gives a brief overview). The square of the Dirac Hamiltonian, $H_D^2 = -d_x^2 + \phi(x)^2 + \sigma_3 \phi'(x)$, is related to the pair of supersymmetric Schrödinger isospectral Hamiltonians $H_{\pm} = -d_x^2 + \phi(x)^2 \pm \phi'(x)$. When $\langle \phi(x) \rangle = 0$ we may forget the sign and simply consider:

$$H_S = -\frac{d^2}{dx^2} + \phi(x)^2 + \phi'(x). \quad (40)$$

Such Hamiltonians appear in a variety of problems ranging from the 1d classical diffusion in a random force $^{42, 128}$, electronic structure of polyacetylene 200, spin Peierls chains $^{91, 92, 199}$

23See footnote [20]

24The model of δ-impurities with random positions was introduced and studied by Schmidt 185 but often referred as the Frisch & Lloyd model 99. Compared to the model for white noise potential, which is characterized by one parameter, the Frisch & Lloyd model is characterized by two parameters: the strength of the δ-potential, and their density. In the limit of high density of impurities this model is equivalent to the white noise potential model. The limit of low density presents different spectral singularities (Lifshitz singularity and, for negative weight of δ-potentials, an additional Halperin singularity in the negative part of the spectrum).

25Note that the continuum limit of tight binding Hamiltonian with diagonal disorder can lead to different continuous models. Let us consider the discrete model $H_{ij} = -\delta_{i,j+1} - \delta_{i,j-1} + \delta_{i} V_i$. For $V_i = 0$ the spectrum is $E_k = -2\cos(k)$, with $k \in [-\pi, \pi]$. (A) If the continuous limit is taken by considering the band edge $(k \sim 0)$, one is led to the continuous model $^{[30]}$. (B) If the band center is considered instead $(k \sim \pi/2)$, the spectrum can be linearized and one is led to a Dirac Hamiltonian, like in refs. $^{157, 156}$. This point has been recently rediscussed in ref. 156. The continuum limit of a tight binding Hamiltonian with random hoppings has been discussed in ref. 200 (see also the review in ref. 159). As pointed in footnote 25 random Dirac Hamiltonians can also appear as continuum limit of the band center of a discrete models with diagonal disorder.

26A complete classification of symmetries of disordered Hamiltonians extending the famous Wigner-Dyson ensembles of random matrix theory has been provided in refs. $^{210, 220, 24}$ (see also the recent review article 126).
and also in a continuum limit of the random field XY model \cite{122} (see ref. \cite{66} for a short review on supersymmetric disordered quantum mechanics). Spectral and localization properties have been studied in detail when $\phi(x)$ is a white noise \cite{176,157,11,42} and also when $\phi(x)$ has a finite correlation length as in a random telegraph process \cite{61} (this last case has found some application in the context of spin Peierls chains).

In the high energy limit, the localization properties and the statistics of the time delay do not show any difference with respect to the case of diagonal disorder. However the low energy properties are quite different. This is easily understood by noticing that, due to its relation to the Dirac Hamiltonian, the supersymmetric Hamiltonian can be factorized as $H_S = Q^\dagger Q$ where $Q = -d_x + \phi(x)$ and $Q^\dagger = d_x + \phi(x)$. In particular, such a structure enforces a positive spectrum : $\text{Spec}(H_S) \subset \mathbb{R}^+$. When $\phi(x)$ is white noise of zero mean, $\langle \phi(x) \rangle = 0$ and $\langle \phi(x) \phi(x') \rangle = g \delta(x - x')$, the case considered below, the DoS presents a logarithmic Dyson singularity : the integrated density of states (IDoS) reads $N(E) \sim 1/\ln^2 E$ \cite{176,41,42}, while the localization length diverges logarithmically\footnote{A more complete picture of the properties of this model at $E = 0$ is given in several works : (A) moments and correlations of the zero mode are studied in refs. \cite{157,11,42}. (B) Additionally to the statistical properties of the time delay, eq. \cite{27}. (C) The distribution of the transmission probability is derived in ref. \cite{183}. In particular it was shown that the average transmission through an interval of length L decreases like $(T) \propto 1/\sqrt{L}$, which is slower than in the diffusive regime. (D) The existence of a finite conductivity was demonstrated in ref. \cite{111}.} $\lambda(E) \sim \ln(1/E)$.

It is interesting to investigate the extreme value statistics of the spectrum in the low energy regime, where we expect properties quite different from the one obtained for the diagonal disorder. The derivation follows closely that in the previous case, however the relevant random processes and the approximations are different. The first step is to decouple the Schrödinger equation $H_S \varphi(x) = k^2 \varphi(x)$ into two first order differential equations (i.e. go back to the Dirac equation) :

\begin{align*}
Q^\dagger \chi(x) &= k \varphi(x) \\
Q \varphi(x) &= k \chi(x).
\end{align*}

Then we may use the phase formalism by introducing a phase variable and an envelope variable : $\varphi(x) = e^{\zeta(x)} \sin \vartheta(x)$ and $\chi(x) = e^{\zeta(x)} \cos \vartheta(x)$. The phase variable obeys a stochastic differential equation with a noise multiplying a trigonometric function of the phase. For convenience we introduce an additive process $\zeta(x)$ defined as $\zeta(x) = \pm \frac{1}{2} \ln | \tan \vartheta(x) |$. The sign $+$ is chosen for $(\vartheta \mod \pi) \in [0, \pi/2]$ and the sign $-$ for $(\vartheta \mod \pi) \in [\pi/2, \pi]$. This new process obeys the stochastic differential equation

\[
\frac{d}{dx} \zeta = k \cosh 2\zeta \pm \phi(x).
\]

Between two nodes of the wave function, the variable ζ crosses twice the interval $]-\infty, +\infty[$. Note that when $\phi(x)$ is a white noise of zero mean, the sign \pm can be disregarded. The study of the time required by the process to cross the interval can be performed by the same method as above : we introduce the “time” $\tilde{\Lambda}(\zeta)$ needed to go from ζ to $+\infty$. The Laplace transform of the distribution $h(\alpha, \zeta) = (e^{-\alpha \tilde{\Lambda}} | \zeta(0) = \zeta; \tilde{\Lambda}(\zeta) = +\infty)$ obeys a diffusion equation ($k \cosh 2\zeta \partial_\zeta + \frac{d}{dx} h(\alpha, \zeta) = \alpha h(\alpha, \zeta)$) that involves the backward Fokker-Planck operator related to the Langevin equation \cite{43}.

In the low energy limit $k \ll g$ we expect that most of the “time” $\Lambda \equiv \tilde{\Lambda}(-\infty)$ is spent in the region where the potential is almost flat (see figure \ref{fig:figure}), therefore we replace the diffusion equation for $h(\alpha, \zeta)$ by the free diffusion equation $\frac{d^2}{dx^2} h(\alpha, \zeta) = \alpha h(\alpha, \zeta)$ on the finite interval $\zeta \in [\zeta_-, \zeta_+]$, with a reflecting boundary condition at one side $\partial_\zeta h(\alpha, \zeta_-) = 0$ and $h(\alpha, \zeta_+) = 1$ at the other side (which corresponds actually to the absorption at $\zeta = \zeta_+$. The coordinates ζ_\pm are the points where the deterministic force and the white noise have equal strengths.
Now, we can obtain \(h(\alpha, \zeta) \) straightforwardly.

\[
\langle e^{-\alpha \Lambda} \rangle \simeq h(\alpha, \zeta) = \frac{1}{\cosh \sqrt{\alpha/N(E)}},
\]

where \(N(E) = g/2 \ln^2(g/k) \) is the IDoS per unit length.

Figure 4: The potential related to the deterministic force in eq. (43) felt by the variable \(\zeta \).

If \(\Lambda \equiv \tilde{\Lambda}(-\infty) \) is the “time” needed to cross the interval, the distance between two nodes of the wave function is a sum of two such (independent) random variables \(\ell = \Lambda_1 + \Lambda_2 \). Therefore its distribution is given by inverse Laplace transformation of \(\langle e^{-\alpha \ell} \rangle = 1/\cosh^2 \sqrt{\alpha/N(E)} \). We obtain:

\[
P(\ell) = \frac{N(E)}{\rho_0(N(E))} \Cosh^{-2} \sqrt{s},
\]

where \(\rho_0(x) \) is the inverse Laplace transform of \(\cosh^{-2} \sqrt{s} \):

\[
\rho_0(x) = Y(x) \sum_{m=0}^{\infty} [\pi^2 (2m+1)^2 x - 2] e^{-\pi^2 (2m+1)^2 x} = \sum_{m=1}^{\infty} (-1)^m m^2 e^{-m^2/x} \sim 4 \sqrt{\pi} Y(x) x^{-3/2} e^{-1/x},
\]

where \(Y(x) \) is the Heaviside function.

We find the distribution of the ground state energy:

\[
W_0(E) = L \rho(E) \rho_0(LN(E)),
\]

with the following limiting behaviour:

\[
W_0(E) \simeq \frac{8}{\sqrt{2\pi g L}} \exp \left(\frac{-\ln^2(g^2/E)}{2gL} \right) \quad \text{for } E \ll g^2 e^{-\sqrt{gL}}
\]

\[
W_0(E) \simeq \frac{8\pi^2 g^2 L^2}{E \ln^2(g^2/E)} \exp \left(\frac{-\pi^2 g L}{2 \ln^2(g^2/E)} \right) \quad \text{for } g^2 e^{-\sqrt{gL}} \ll E \ll g^2.
\]

In ref. [204], an integral representation of \(W_n(E) \) is also given together with an explicit expression for \(W_1(E) \).

It is also interesting to point out that the ground state distribution is characterized by a typical value \(E_0^{\text{typ}} \simeq g^2 e^{-gL} \), a median value \(E_0^{\text{med}} \simeq g^2 e^{-\sqrt{gL}} \), and a mean value \(\langle E_0 \rangle \simeq g^2 (gL)^{1/2} e^{-C(gL)^{1/3}} \) where \(C \) is a numerical constant (see ref. [204]). This latter expression has also been obtained in ref. [171] where upper and lower bounds were found using a perturbative expression for the ground state energy as a functional of \(\phi(x) \).
The distribution (46) was obtained in ref. [150] in the context of the classical diffusion by using a real space renormalization group method. In this case the distribution is interpreted as the distribution of the smallest relaxation time.

In summary, these two examples illustrate the fact that extreme value spectral statistics provides an information on correlations of eigenvalues: the extreme value statistics of independent and identically distributed random variables have been classified by Gumbel [120]. Therefore extreme value distribution for eigenvalues that differ from one of the three Gumbel’s laws indicates level correlations.

5 Trace formulae, spectral determinant and diffusion on graphs

5.1 Introduction

Up to now we have discussed several questions related to the physics of weak and strong localization. In the previous section we have considered spectral properties while in the sections 2 and 3 we mostly discussed transport properties.

In the present section we are going to review several results related to the study of the Laplace operator on metric graphs. An object at the core of our discussion is the spectral determinant of the Laplace operator, formally defined as $S(\gamma) = \det(\gamma - \Delta)$, where γ is a spectral parameter. This quantity encodes the information on the spectrum of the Laplace operator on the graph. The subsection 5.2 recalls the basic conventions required to describe metric graphs. The subsections 5.3 and 5.4 review general results on trace formulae and spectral determinants. These subsections will appear at first sight quite technical and unrelated to the previous sections. However we will see that there exists a close relation with the question of quantum transport: the Laplace operator is the generator of the diffusion on the graph and its spectral properties play a central role in the study of transport. This connection, already evoked in the introduction and section 2, will be emphasized again in subsection 5.6 where the explicit relation between quantum transport and spectral determinant is recalled.

One interest for spectral determinants is that they can be used as generating functions for various quantities characterizing the diffusion on the graph. This will be illustrated by using the connection with trace formulae (section 5.3) and further exploited in subsection 5.6 in the context of quantum transport. The efficiency of the method stems from the fact that, even though $S(\gamma)$ seems to be a complicated object at first sight, involving an infinite number of eigenvalues, it can be expressed as the determinant of a finite size matrix. This relation, established by Pascaud & Montambaux [177, 178], allows computing easily and systematically the spectral determinant for arbitrary graphs.

The study of the Laplace operator on metric graphs (or quantum graphs) is not restricted to transport and appears in many physical contexts ranging from organic molecules [187], superconducting networks [6], phase coherent transport in networks of weakly disordered wires [81, 178, 3, 210], transport in mesoscopic networks [191, 192, 52, 106, 20, 215, 209] or metallic aggregates [53]. We are not going to review this history and refer the interested reader to the references [6, 19, 59, 111, 3, 143] (for a recent review see the appendix of Pavel Exner in ref. [5]). Mathematical aspects of quantum graphs are discussed in the recent issues of Waves Random Media 14 (2004) and Journal of Physics A 38 (n°22) (June 2005). See in particular the refs. [116, 117].

5.2 Description of metric graphs

We collect some background material from the theory of graphs and establish our notations and conventions (illustrated on figure 5).
Vertices, bonds, arcs.– Let us consider a network of B wires (bonds) connected at V vertices. The latter are labelled with Greek indices α, β, ... Therefore, the bonds of the graph can be denoted by a couple of Greek indices $(\alpha \beta)$. The oriented bonds, denoted as arcs, will also play an important role. The two arcs related to the bond $(\alpha \beta)$ will be labelled by $\alpha \beta$ and $\beta \alpha$ or more simply with Roman letters i, j, ...

Adjacency matrix.– The basic object is the adjacency $V \times V$ matrix $a_{\alpha \beta}$ characterizing the topology of the network: $a_{\alpha \beta} = 1$ if α and β are connected by a bond; $a_{\alpha \beta} = 0$ otherwise29. The connectivity of the vertex α, denoted by m_α, is related to the adjacency matrix by $m_\alpha = \sum_\beta a_{\alpha \beta}$. Summed over the remaining index, the adjacency matrix gives the number of arcs: $\sum_{\alpha, \beta} a_{\alpha \beta} = 2B$.

Orbits.– A path is an ordered set of arcs such that the end of an arc coincides with the beginning of the following arc. The equivalence class of all closed paths equivalent by cyclic permutations is called an orbit. An orbit is said to be primitive when it can not be decomposed as a repetition of a shorter orbit.

Scalar functions.– The graphs we consider here are not simply topological objects but have also some metric properties: the bond $(\alpha \beta)$ is characterized by its length $l_{\alpha \beta}$ and identified with the interval $[0, l_{\alpha \beta}]$ of \mathbb{R}. A scalar function $\psi(x)$ is defined by its components $\varphi_{\alpha \beta}(x_{\alpha \beta})$ on each bond, where $x_{\alpha \beta}$ is the coordinate measuring the distance along the bond from the vertex α (note that $x_{\alpha \beta} + x_{\beta \alpha} = l_{\alpha \beta}$).

Continuous boundary conditions.– When studying the Laplace operator Δ acting on scalar functions, boundary conditions at the vertices must be specified in order to ensure self-adjointness of the operator. Let us introduce the notations:

\[
\begin{align*}
\varphi_{\alpha \beta} &\equiv \varphi_{\alpha \beta}(x_{\alpha \beta} = 0) \\
\varphi'_{\alpha \beta} &\equiv \frac{d\varphi_{\alpha \beta}}{dx_{\alpha \beta}}(x_{\alpha \beta} = 0),
\end{align*}
\]

for the value of the function and its derivative at the vertex α, along the arc $\alpha \beta$. The continuous boundary conditions assume:

(i) continuity of the function at each vertex: all the components $\varphi_{\alpha \beta}$ for all β neighbours of α are equal. The value of the function at the vertex is denoted $\varphi(\alpha)$.

(ii) $\sum_{\beta} a_{\alpha \beta} \varphi'_{\alpha \beta} = \lambda_\alpha \varphi(\alpha)$ where the adjacency matrix in the sum constrains it to run over the

\[\text{vertices connected by at most one bond and that a bond never forms a loop. We emphasize that this does not imply any particular restriction on the topology of the graph: one can always introduce a vertex on a bond, which separates the bond into two bonds, without modifying the properties of the graph. The numbers of vertices and bonds can always be made arbitrary large and this is partly a matter of choice. The case of closed bonds (forming a loop) or vertices connected by multiple bonds requires a simple generalization of the formalism presented here (see for example ref. 177 and appendix C of ref. 2). This generalization allows in particular to minimize B and V, which makes the computation sometimes easier.}
neighbouring vertices of \(\alpha \). Therefore the sum runs over all wires issuing from the vertex. The real parameter \(\lambda_\alpha \) allows describing several boundary conditions: \(\lambda_\alpha = \infty \) enforces the function to vanish, \(\varphi(\alpha) = 0 \), and corresponds to the Dirichlet boundary condition. \(\lambda_\alpha = 0 \) corresponds to the Neumann boundary condition. We refer to the case of a finite \(\lambda_\alpha \) as “mixed boundary conditions”. In the problem of classical diffusion, the Dirichlet condition describes the connection to a reservoir that absorbs particles, while the Neumann condition ensures conservation of the probability current and describes an internal vertex.

General boundary conditions.—Thanks to the continuity hypothesis, the simple boundary conditions we have just described allow us to introduce vertex variables \(\varphi(\alpha) \) (this is convenient since the number of vertices \(V \) is usually smaller than the number of arcs \(2B \)). However these are not the most general boundary conditions, and in general the different components associated to the arcs issuing from a given vertex do not have \textit{a priori} the same limit at the vertex. The most general boundary conditions can be written as:

\[
C \varphi + D \varphi' = 0 \tag{53}
\]

where \(\varphi \) and \(\varphi' \) are the column vectors of dimension \(2B \) collecting the variables \([51]\) and \([52]\), respectively. \(C \) and \(D \) are two square \(2B \times 2B \) matrices. In the arc formulation, the information on the topology of the graph is encoded in these two matrices. The self-adjointness of the Laplace operator is ensured if these two matrices satisfy the following conditions \([139]\): (i) \(CD^\dagger \) is self-adjoint. (ii) The \(2B \times 4B \) matrix \((C,D) \) must have maximal rank. Note that the choice of \(C \) and \(D \) is not unique. The introduction of boundary conditions without continuity at the vertices has been motivated physically in refs. \([192, 106, 52, 18, 89, 90]\).

Scattering theory interpretation.—We can give a more clear physical meaning to these conditions in a scattering setting. Let us consider the equation \(-\Delta \varphi(x) = E \varphi(x)\) for a positive energy \(E = k^2 \). We decompose the component on the bond as the superposition of an incoming and an outgoing plane wave: \(\varphi_{\alpha\beta}(x_{\alpha\beta}) = I_{\alpha\beta} e^{-ikx_{\alpha\beta}} + O_{\alpha\beta} e^{ikx_{\alpha\beta}} \). It is convenient to collect the amplitudes in column vectors \(I \) and \(O \). The vector \(I \) contains the incoming plane wave amplitudes and the vector \(O \) the outgoing plane wave amplitudes. Both are related by a vertex scattering matrix: \(O = Q I \). The self-adjointness of the Schrödinger operator is now ensured by imposing the unitarity of the scattering matrix: \(Q^\dagger Q = 1 \). The relation between the two formulations yields:

\[
Q = (\sqrt{\gamma} D - C)^{-1}(\sqrt{\gamma} D + C) . \tag{54}
\]

For the discussion below it is convenient to introduce the parameter \(\gamma \) related to the energy by \(E = -\gamma = k^2 + i0^+ \) (the matrix \(Q \) is unitary for \(E > 0 \) only). An example of a matrix \(Q \) for one vertex without continuity of the wave function was given in refs. \([192, 106, 52]\). This particular choice has become popular in mesoscopic physics (see also ref. \([209]\) where a more convenient parametrization was provided).

Since we are considering here compact graphs, we are dealing only with discrete spectrum. The study of noncompact graphs (with some wires of infinite length), which have continuous spectra, requires a scattering theory approach, initiated by the work of Shapiro \([191, 192]\) and discussed in refs. \([108, 20, 2, 139, 112, 25, 143, 209, 205, 206, 208]\).

Magnetic fluxes.—The Laplace operator arises in the context of diffusion equation but also in quantum mechanics. In this last case a natural generalization is to introduce a magnetic field. This is achieved by introducing a 1-form \(A(x)dx \) along the wires (the derivative must then be replaced by a covariant derivative: \(dx \rightarrow D_x = dx - iA(x) \)). We denote by \(\theta_{\alpha\beta} = \int_\alpha^\beta dx A(x) \) the corresponding line integral along the arc \(\alpha\beta \). In the context of classical diffusion, magnetic fluxes and winding numbers are conjugated variables.
5.3 Trace formulae and zeta functions

Trace formulae play an important role in spectral theory. A famous example is the Selberg trace formula which may be viewed as an extension of the Poisson summation formula to non-commutative groups [190]. An analogous formula in physics is the Gutzwiller trace formula [123] that has been extensively used in the context of quantum chaos and mesoscopic physics. Although one is exact and the other only a semiclassical approximation, both of them express the partition function (or the density of states, whose Laplace transform gives the partition function) as a sum over closed geodesics. They provide a connection between quantum properties (spectrum) and classical properties (classical trajectories). Below we discuss two examples of exact trace formulae that have been derived for graphs and their relation to spectral determinants.

Roth’s trace formula

It expresses the trace of the heat kernel (partition function \(Z(t) = \text{Tr} \{ e^{t\Delta} \} \)) as an infinite series of contributions of periodic orbits on the graph. This remarkable formula, due to Roth [186, 185], applies to graphs with continuous boundary conditions with \(\lambda_\alpha = 0\). It is easy to include magnetic fluxes additionally:

\[
Z(t) = \frac{\mathcal{L}}{2\sqrt{\pi t}} + \frac{V - B}{2} + \frac{1}{2\sqrt{\pi t}} \sum_C l(\tilde{C}) \alpha(C) e^{-\frac{|\tilde{C}|^2}{4t} + i\theta(C)}. \tag{55}
\]

\(\mathcal{L}\) is the “volume” of the graph, i.e. the total length \(\mathcal{L} = \sum_{(\alpha\beta)} l_{\alpha\beta}\). The sum runs over all orbits \(C = (i_1, i_2, \ldots, i_n)\) constructed in the graph. \(l(C) = l_{i_1} + \cdots + l_{i_n}\) is the total length of the orbit, and \(\theta(C)\) the magnetic flux enclosed by it. \(\tilde{C}\) designates the primitive orbit associated with a given orbit \(C\). The weight \(\alpha(C)\) depends on the connectivity of the vertices visited by the orbit:

- if \(i\) ends at vertex \(\alpha\) and \(j\) starts from it, we have \(\epsilon_{ij} = 2/m_\alpha\), where \(m_\alpha\) is the connectivities of the vertex.
- If moreover \(i\) and \(j = \tilde{i}\) are the reversed arcs \(\epsilon_{ij} = 2/m_\alpha -1\).
- Otherwise \(\epsilon_{ij} = 0\).

It is worth mentioning that the Roth trace formula has found recently some practical applications to analyze magnetoconductance measurements on large square networks [31].

Ihara-Bass trace formula

Instead of considering metric graphs we now turn to graphs viewed as purely combinatorial structures consisting of vertices connected by bonds of equal lengths \((l_{\alpha\beta} = 1)\). All the information is therefore encoded in the adjacency matrix \(A\). In this setting, the Ihara \(\zeta\)-function is defined as

\[
\zeta(u)^{-1} = \prod_{\tilde{C}_B} \left(1 - u^{l(\tilde{C}_B)} \right), \tag{56}
\]

where the infinite product extends over all primitive backtrackless orbits \(\tilde{C}_B\). The Ihara-Bass trace formula relates this infinite product to the determinant of a finite size matrix [28, 197]:

\[
\zeta(u)^{-1} = (1 - u^2)^{B-V} \det((1 - u^2)1 - uA + u^2Y) \tag{57}
\]

\[\text{Note that the parameter } \epsilon_{ij} \text{ has a simple interpretation in the scattering formulation [209]; it is the probability amplitude to be transmitted from arc } i \text{ to arc } j. \text{ The arc matrices } \epsilon \text{ and } Q \text{ are related by } \epsilon_{ij} = Q_{ij} \text{ where } \tilde{j} \text{ denotes the reversed arc.}\]

\[\text{More precisely, the expansion given below by eq. [92] for the Laplace transform of the partition function is relevant in this case.}\]
where $\mathbf{1}$ is the identity matrix, A is the adjacency matrix ($A_{\alpha \beta} \equiv a_{\alpha \beta}$) and Y is the diagonal matrix encoding all connectivities : $Y_{\alpha \beta} = \delta_{\alpha \beta} m_{\alpha}$. This relation was derived by Ihara [129] for regular graphs (all vertices with same connectivity) and later generalized to arbitrary graphs by Bass [28]. The formalism that we have developed for metric graphs is flexible enough to describe these combinatorial structures in the same setting. We will see below that the ζ-function is in fact directly related to the spectral determinant. Moreover the Ihara-Bass trace formula can be further generalized to include backtrackings.

5.4 Spectral determinant

In the physics literature spectral determinants arise in evaluating path integrals which are quadratic in the fluctuation around a given background field. A well known technique for regularizing such quadratic path integrals is the ζ-function regularization. Given a certain operator \mathcal{O} whose eigenvalues E_n are known, one defines the following ζ-function :

$$\zeta(s) = \sum n E_n^{-s}.$$

This expression, which converges for s sufficiently large, can be analytically extended to a meromorphic function regular at the origin. The corresponding regularized determinant is then

$$\det \mathcal{O} = \exp(-\zeta'(0)) (\equiv \prod E_n \text{ formally}).$$

One can find a general discussion on functional determinants in ref. [96].

In the context of graphs another regularization of the determinant of the Laplace operator has been used and has proved to be directly related to several physical quantities. If we introduce the trace of the resolvent $g(\gamma) = \sum_n (\gamma + E_n)^{-1}$, the spectral determinant is defined as

$$S(\gamma) = \exp\left(\int \gamma d\gamma' g(\gamma')\right)$$

(it can be formally written as $S(\gamma) = \prod_n (\gamma + E_n)$). Moreover, the spectral parameter γ has in some cases a physical meaning (see section 5.6).

Laplace operator Δ with continuous boundary conditions

Pascaud & Montambaux have shown in refs. [177, 178] that $S(\gamma) = \det(\gamma - \Delta)$ can be related to the determinant of a $V \times V$-matrix :

$$S(\gamma) = \gamma^{\frac{V - B}{2}} \prod_{(\alpha \beta)} \sinh(\sqrt{\gamma} l_{\alpha \beta}) \det M,$$

where the product runs over all bonds of the network. The $V \times V$-matrix M is defined as :

$$M_{\alpha \beta} = \delta_{\alpha \beta} \left(\frac{\lambda_{\alpha}}{\sqrt{\gamma}} + \sum_{\mu} a_{\alpha \mu} \coth(\sqrt{\gamma} l_{\alpha \mu}) \right) - a_{\alpha \beta} e^{-i \theta_{\alpha \beta}} \frac{\sinh(\sqrt{\gamma} l_{\alpha \beta})}{\sinh(\sqrt{\gamma} l_{\alpha \beta})},$$

where the adjacency matrix constrains the sum to run over all vertices μ connected to α. The matrix M encodes all information about the network : topology (matrix $a_{\alpha \beta}$), lengths of the wires ($l_{\alpha \beta}$), magnetic fluxes ($\theta_{\alpha \beta}$), boundary conditions (λ_{α}). Below, we give several examples which show how $S(\gamma)$ is related to the characteristic function of various interesting functionals of Brownian curves on a graph.

The expression [58] was originally derived in ref. [178] by constructing the Green’s function in the graph and eventually integrating it :

$$\int dx \left(x \frac{1}{\gamma - \Delta} x \right) = \frac{\partial}{\partial \gamma} \ln S(\gamma).$$

A more direct derivation using path integral was later obtained in ref. [8].

The relation between the Roth trace formula and the result [58] was addressed in ref. [8]. The main difficulty to establish this connection is to go from vertex variables to the arc language of eq. [55]. A first step is to relate the determinant of the vertex-matrix, eq. [58], to the determinant of an arc-matrix :

$$S(\gamma) = \gamma^{\frac{V - B}{2}} e^{\sqrt{\gamma} \mathcal{E}} \det(\mathbf{1} - QR).$$

32 The limit $\gamma \to 0$ of $S(\gamma)$ has been discussed in ref. [8].
R is the $2B \times 2B$ matrix $R_{ij} = \delta_{ij} e^{-\sqrt{\bar{\gamma} t_i}i\bar{\beta}}$, where \bar{j} denotes the reversed arc. The matrix Q was introduced above (eq. (34)) and is related to ϵ by $Q_{ij} = \epsilon_{ij}$. For the continuous boundary conditions with $\lambda_\alpha = 0$ it is given by $Q_{ii} = 2/m_\alpha - 1$, $Q_{ij} = 2/m_\alpha$ if i and j both issue from the vertex α. $Q_{ij} = 0$ in other cases. Eq. (30) holds for the most simple boundary conditions: continuous with $\lambda_\alpha = 0$. The general case is discussed below. Expanding the determinant by using $\ln \det(1 - QR) = -\sum_{n=1}^\infty \frac{1}{n} \text{Tr}\{(QR)^n\}$, we eventually express the spectral determinant as an infinite product over the primitive orbits:

$$S(\gamma) = \gamma \frac{V-B}{2\sqrt{\gamma}} \prod_{\bar{c}} \left(1 - \alpha(\bar{c}) e^{-\sqrt{\bar{\gamma} t(\bar{c})}i\bar{\beta}(\bar{c})}\right).$$

This shows that the spectral determinant is a zeta function (references on zeta functions on graphs are refs. [197, 57]). The last step to connect this formula to Roth’s trace formula is to notice that

$$\frac{\partial}{\partial \gamma} \ln S(\gamma) = \frac{L}{2\sqrt{\gamma}} + \frac{V-B}{2\sqrt{\gamma}} + \frac{1}{2\sqrt{\gamma}} \sum_{\bar{c}} l(\bar{c}) \alpha(\bar{c}) e^{-\sqrt{\bar{\gamma} t(\bar{c})}i\bar{\beta}(\bar{c})},$$

where the sum now runs over all orbits (if \bar{c} is not primitive, \bar{c} designates the related primitive orbit). Finally we perform an inverse Laplace transform of this expression, $\int_0^\infty dt Z(t) e^{-\gamma t} = \frac{\partial}{\partial \gamma} \ln S(\gamma)$ and eventually recover eq. (55). Examples of applications are studied in ref. [3].

Schrödinger operator $-\Delta + V(x)$ with general boundary conditions

The result [58] of Pascaud & Montambaux has been generalized by one of us. In refs. [72, 73] a similar formula was obtained for the spectral determinant of the Schrödinger operator $-\Delta + V(x)$ (the Hill operator), where $V(x)$ is a scalar potential defined on the graph. In ref. [74] the formula was further extended to describe general boundary conditions as well. As an illustration we construct the generating function of the number of closed orbits with a given number of backtracks [129, 226].

The starting point is to introduce two linearly independent solutions of the differential equation $(-d_x^2 + V_{\alpha\beta}(x) + \gamma) f(x) = 0$ on $[0, l_{\alpha\beta}]$. We associate each solution with an arc. Let us denote $f_{\alpha\beta}(x_{\alpha\beta})$ the function satisfying

$$f_{\alpha\beta}(0) = 1 \quad \text{and} \quad f_{\alpha\beta}(l_{\alpha\beta}) = 0.$$

Therefore a second solution of the differential equation is naturally denoted $f_{\beta\alpha}(x_{\beta\alpha}) = f_{\beta\alpha}(l_{\beta\alpha} - x_{\alpha\beta})$. The Wronskian of these two solutions, defined as $W_{\alpha\beta} = f_{\alpha\beta}(x_{\alpha\beta}) \frac{df_{\beta\alpha}(x_{\beta\alpha})}{dx_{\alpha\beta}} - \frac{df_{\beta\alpha}(x_{\beta\alpha})}{dx_{\alpha\beta}} f_{\beta\alpha}(x_{\beta\alpha})$, is constant along the bond: $W_{\alpha\beta} = W_{\beta\alpha} = -f'_{\alpha\beta}(l_{\alpha\beta}) = -f'_{\beta\alpha}(l_{\alpha\beta})$. If we consider the case $V(x) = 0$, the solution is simply $f_{\alpha\beta}(x_{\alpha\beta}) = \frac{\sinh \sqrt{\bar{\gamma} t_{\beta\alpha}}}{\sinh \sqrt{\bar{\gamma} t_{\alpha\beta}}} = \frac{\sinh \sqrt{\gamma t_{\beta\alpha}}}{\sinh \sqrt{\gamma t_{\alpha\beta}}}$. All the required information about the potential is contained in the $2B \times 2B$ arc-matrix N, defined as

$$N_{\alpha\beta, \mu\eta} = \delta_{\alpha\mu} \delta_{\beta\eta} f'_{\alpha\beta}(0) - \delta_{\alpha\eta} \delta_{\beta\mu} f'_{\alpha\beta}(l_{\alpha\beta}).$$

This matrix couples a given arc to itself and to its reversed arc, only. If we assume that the matrices C and D are independent on the spectral parameter γ, it was shown in ref. [74] that:

$$S(\gamma) = \det(\gamma - \Delta + V(x)) = \prod_{(\alpha\beta)} \frac{1}{W_{\alpha\beta}} \det(C + DN).$$

where the product runs over all bonds. Functional determinants on a segment of \mathbb{R} with general boundary conditions at the boundaries have been studied by McKane & Tarlie [164] using the formalism developed by Forman [96].
It is also interesting to encode the information on the potential \(V(x) \) in the matrix \(R \) defined as\(^{33} \):
\[
R \equiv (\sqrt{\gamma}1 + N)(\sqrt{\gamma}1 - N)^{-1}.
\]

Then
\[
S(\gamma) = \prod_{(\alpha\beta)} \frac{1}{W_{\alpha\beta}} \frac{1}{\det(1 + R)} \det(C - \sqrt{\gamma}D) \det(1 - QR)
\]
(67)

where the matrix \(Q = (\sqrt{\gamma}D - C)^{-1}(\sqrt{\gamma}D + C) \) was defined above by eq. (54). Let us explain the structure of eq. (67): the term \(\det(1 + R) \prod_{(\alpha\beta)} W_{\alpha\beta} \) contains informations on the potential only\(^{34} \). The factor \(\det(C - \sqrt{\gamma}D) \) contains only information on the topology of the graph. The most interesting part is the last term \(\det(1 - QR) \) combining both informations. In particular this last part generates the infinite contributions of primitive orbits in (61).

Permutation-invariant boundary conditions.

In the previous section the matrices describing the graph are \(2B \times 2B \) arc matrices. A simplification can be brought by passing to vertex variables. In the arc formulation, \(C \) and \(D \) define the topology of the graph: two arcs coupled by \(C \) and/or \(D \) issue from the same vertex. Therefore it is possible to organize the basis of arcs in such a way that the matrices \(C \) and \(D \) have similar block diagonal structures. The matrices are made of \(V \) square blocks, each corresponding to a vertex. A given block, of dimension \(m_\alpha \times m_\alpha \) and denoted \(C_\alpha \) (and \(D_\alpha \)), corresponds to the \(m_\alpha \) arcs issuing from the vertex \(\alpha \). If we assume that the boundary conditions are invariant under any permutation of the nearest neighbours of \(\alpha \), then it is possible to introduce vertex variables. In this case we can write:
\[
\begin{align*}
C_\alpha &= c_\alpha 1 + t_\alpha F_\alpha \\
D_\alpha &= d_\alpha 1 + w_\alpha F_\alpha
\end{align*}
\]
(68)

where \(F_\alpha \) is a matrix with all its elements equal to 1. The boundary conditions at the vertex \(\alpha \) are characterized by the four parameters \(c_\alpha \), \(d_\alpha \), \(t_\alpha \) and \(w_\alpha \) (note however that this choice is not unique).

Now, let us show that, for boundary conditions given by eqs. (68) and \(V(x) \neq 0 \), the spectral determinant can be expressed in terms of the vertex \(V \times V \)-matrix.

We proceed as before but, this time, we consider, for each bond, two other independent solutions, \(\chi_{\alpha\beta}(x_{\alpha\beta}) \) and \(\chi_{\beta\alpha}(l_{\alpha\beta} - x_{\alpha\beta}) = \chi_{\beta\alpha}(x_{\beta\alpha}) \), of the equation \((-d_{x_{\alpha\beta}}^2 + V_{\alpha\beta}(x_{\alpha\beta}) + \gamma) \chi(x_{\alpha\beta}) = 0\) that satisfy the following conditions:
\[
\begin{align*}
c_\alpha \chi_{\alpha\beta}(0) + d_\alpha \chi'_{\alpha\beta}(0) &= 1 \\
c_\beta \chi_{\beta\alpha}(l_{\alpha\beta}) - d_\beta \chi'_{\beta\alpha}(l_{\alpha\beta}) &= 0
\end{align*}
\]
(70)

We denote by \(\Xi_{\alpha\beta} \) the Wronskian of \(\chi_{\alpha\beta} \) and \(\chi_{\beta\alpha} \). Following the same steps as before, we get the spectral determinant (up to a multiplicative constant):
\[
S(\gamma) = \prod_{(\alpha\beta)} \frac{1}{\Xi_{\alpha\beta}} \det M
\]
(72)

\(^{33}\)Let us remark that, for the free case \((V(x) \equiv 0) \), we recover the expression of the matrix \(R \) given above, coupling the arc \(\alpha\beta \) to the reversed arc \(\beta\alpha \) only: \(R_{\alpha\beta,\rho\delta} = \delta_{\alpha\rho} \delta_{\beta\delta} e^{-\sqrt{\gamma}l_{\alpha\beta}} \).

\(^{34}\)The matrix \(N \) encodes the information about the potential on the bonds through \(f'_{\alpha\beta}(0) \) and \(f'_{\beta\alpha}(l_{\alpha\beta}) \). This information can also be introduced through transmission \(t_{\alpha\beta} \) and reflection \(r_{\alpha\beta} \) amplitudes by the potential \(V_{\alpha\beta}(x) \). This relation is developed in ref. [209]. It is interesting to point out that \(\det(1 + R) \prod_{(\alpha\beta)} W_{\alpha\beta} = 2^B \gamma^{B^2/2} \prod_{(\alpha\beta)} t_{\alpha\beta} = 2^B \gamma^{B^2/2} \prod_{(\alpha\beta)} R_{\alpha\beta,\beta\alpha} \).
where M is the $V \times V$-matrix:

$$M_{\alpha\beta} = \delta_{\alpha\beta} \left(1 + \sum_{\mu} a_{\alpha\mu} \left[t_\alpha \chi_{\alpha\mu}(0) + w_\alpha \chi'_{\alpha\mu}(0) \right] + a_{\alpha\beta} \left[c_\alpha w_\alpha - t_\alpha d_\alpha \right] \Xi_{\alpha\beta} \right).$$ \hspace{1cm} (73)

The eq. (65), expressing the determinant in terms of arc matrices, and the eq. (72), expressing it in terms of vertex matrix, have been derived up to multiplicative constants independent on γ. We can establish a precise relation by comparing their behaviour for $\gamma \to \infty$. We end up with:

$$\prod_{(\alpha\beta)} \frac{1}{W_{\alpha\beta}} \det(C + DN) = \prod_{(\alpha\beta)} \frac{1}{\Xi_{\alpha\beta}} \det M.$$

\hspace{1cm} (74)

Free case ($V(x) = 0$). Applications : counting backtrackings

In this subsection we show an application of generalized boundary conditions to count backtrackings (the figure 5 shows an orbit with one backtracking).

We now consider the case $V(x) \equiv 0$ still with permutation-invariant boundary conditions. With the notations

$$\eta_\alpha = c_\alpha + \sqrt{\gamma} d_\alpha, \quad \rho_\alpha = \frac{\mu_\alpha - \mu_{\bar{\alpha}}}{1 + m_\alpha \mu_\alpha} \quad \text{and} \quad \mu_{\bar{\alpha}} = \frac{t_\alpha \pm \sqrt{\gamma} w_\alpha}{c_\alpha \pm \sqrt{\gamma} d_\alpha},$$

eqs. (74, 66, 54) lead to:

$$\det(1 - QR) = 2^{-V} \prod_\alpha (\rho_\alpha \eta_\alpha) \prod_{(\alpha\beta)} \left(1 - \eta_\alpha \eta_\beta e^{-2\sqrt{\gamma} l_{\alpha\beta}} \right) \det M$$

\hspace{1cm} (75)

and the $V \times V$-matrix M takes the form:

$$M_{\alpha\beta} = \delta_{\alpha\beta} \left(\frac{2}{\rho_\alpha \eta_\alpha} - \frac{m_\alpha}{\eta_\alpha} + \frac{1}{\eta_\alpha} \sum_{\mu} a_{\alpha\mu} \left[\frac{1 + \eta_\alpha \eta_\mu e^{-2\sqrt{\gamma} l_{\alpha\mu}}}{1 - \eta_\alpha \eta_\mu e^{-2\sqrt{\gamma} l_{\alpha\mu}}} \right] - a_{\alpha\beta} \frac{2 e^{-\sqrt{\gamma} l_{\alpha\beta}}}{1 - \eta_\alpha \eta_\beta e^{-2\sqrt{\gamma} l_{\alpha\beta}}} \right).$$ \hspace{1cm} (76)

Note that the expression (59) is recovered for $\eta_\alpha = 1$ and $\rho_\alpha = 2/(m_\alpha + \lambda_\alpha/\sqrt{\gamma})$.

For permutation-invariant boundary conditions, the matrices C, D and Q (eq. 54) are block-diagonal. The block Q_α takes the simple form:

$$Q_\alpha = \eta_\alpha \left(-1 + \rho_\alpha F_\alpha \right)$$

\hspace{1cm} (77)

The only non-vanishing elements of the matrix QR are:

$$(QR)_{\alpha\beta,\mu\alpha} = (\rho_\alpha \eta_\alpha - \eta_\alpha \delta_{\beta\mu}) e^{-\sqrt{\gamma} l_{\alpha\mu}}$$

\hspace{1cm} (78)

We call $\rho_\alpha \eta_\alpha$ the transmission factor at vertex α and $\rho_\alpha \eta_\alpha - \eta_\alpha$ the reflection factor. By using the same expansion as above we write

$$\det(1 - QR) = \prod_{\tilde{C}} \left(1 - \mu(\tilde{C}) e^{-\sqrt{\gamma} l(\tilde{C})} \right),$$

\hspace{1cm} (79)

where the product is taken over all primitive orbits \tilde{C} whose lengths are denoted by $l(\tilde{C})$. An orbit being a succession of arcs $\ldots, \tau \alpha, \alpha \beta, \ldots$ with, in α, a reflection (if $\tau = \beta$) or a transmission (if $\tau \neq \beta$), the weight $\mu(\tilde{C})$, in eq. 79, will be the product of all the reflection – or transmission – factors along \tilde{C}.
Graphs with wires of equal lengths. — We consider the case of equal lengths \(l_{\alpha\beta} = l \); then we can choose \(\gamma = 1 \) without loss of generality and introduce the notation \(u \equiv e^{-l} \). It is clear from eq. (77) that a backtracking at vertex \(\alpha \) brings a factor \(\eta_\alpha \) in the weight \(\mu(\tilde{C}) \). In order to count backtrackings one has to choose the boundary conditions \(\rho_\alpha \eta_\alpha = 1 \) and \(\eta_\alpha = \eta \). Eq. (75) takes the simple form:

\[
\prod_{\tilde{C}_m} \left(1 - (1 - \eta)^{n_R(\tilde{C}_m)} u^m \right) = (1 - \eta^2 u^2)^{B-V} \det \left((1 - \eta^2 u^2)I + \eta u^2 Y - u A\right) \equiv Z^{-1}
\]

(80)

\(m \) is the number of arcs of the primitive orbit \(\tilde{C}_m \) and \(n_R(\tilde{C}_m) \) is the number of reflections (backtrackings) occurring along \(\tilde{C}_m \). \(Y \) is the \(V \times V \)-matrix \(Y_{\alpha\beta} = \delta_{\alpha\beta} \) and \(A \) is the adjacency matrix.

Setting \(\eta = 1 \) implies \(n_R(\tilde{C}_m) = 0 \) in the left-hand side of eq. (80); we recover Ihara-Bass formula [129, 28, 197] where only primitive orbits without tails and backtrackings are kept. (Ihara [129] established this formula for a regular graph; the proof for a general graph is given in refs. [28, 197] using a direct counting technique).

Now, let us consider closed random walks with a given number of backtrackings.

Eq. (80) provides a non-trivial generalization of the Ihara-Bass formula (an independent derivation is also given in ref. [26]). As an application let us consider the problem of enumerating \(m \)-steps random walks with \(p \)-backtracking steps [226]. Taking \(Z \) in (80), we get:

\[
u \frac{d \ln Z}{du} = \sum_{m=2}^{\infty} \sum_{p=0}^{m} \sum_{\alpha=1}^{V} N^0_m(\alpha) (1 - \eta)^p u^m
\]

(81)

where \(N^0_m(\alpha) \) is the number of \(m \)-steps closed random walks on the graph starting at \(\alpha \), with \(p \) backtrackings.

Example: The complete graph. — For the complete graph\(^{35} \) \(K_V \), we get the results:

\[
N^0_2(\alpha) = 0 \\
N^0_3(\alpha) = (V - 1)(V - 2) \\
N^0_4(\alpha) = (V - 1)(V - 2)(V - 3) \\
N^0_5(\alpha) = (V - 1)(V - 2)(V - 3)(V - 4) \\
N^0_6(\alpha) = (V - 1)(V - 2)(V^3 - 9V^2 + 29V - 32)
\]

(82)

and also:

\[
N^1_2(\alpha) = N^1_3(\alpha) = N^1_4(\alpha) = 0 \\
N^1_5(\alpha) = 5(V - 1)(V - 2)(V - 3) \\
N^1_6(\alpha) = 6(V - 1)(V - 2)(V - 3)^2
\]

(83)

Note that these expressions have been obtained when vertices are all characterized by the same parameter \(\eta \). Introducing different parameters \(\eta_\alpha \) allows counting the backtrackings at a given vertex.

\(^{35}\)The complete graph \(K_V \) with \(V \) vertices is the \(V - 1 \)-simplex: each vertex is connected to all other vertices (see figure 6).
5.5 Quantum chaos on metric graphs

It has been recently realized that metric graphs are interesting models for quantum chaos. The paper of Kottos & Smilansky [140] has stimulated several works on spectral statistics and level correlations [141, 24, 201], and renewed the interest in the Roth trace formula [186]. Progress in the understanding of universality of spectral statistics for generic quantum graphs has been achieved by Gnutzmann & Altland [110]. One of the input of this work is the observation that the spectral average for a given graph with incommensurate bond lengths is equivalent to an average over a certain ensemble of unitarity matrices. Star graphs [36, 136] have provided simple examples of systems with intermediate level statistics similar to the one observed in Šeba billiards and a precise connection has been established in ref. [35]. There is however an interesting class of graphs which do not enter in this category [202]. Chaotic scattering and transport properties in open graphs (with some infinitely long wires) have also been studied in refs. [142, 25, 143]. Since quantum chaos is not the central subject of our review, this list of papers is not exhaustive: we refer the reader interested in this topic to the review papers [141, 143, 202] and the PhD thesis [225].

5.6 Weak localization and Brownian motion on graphs

Our initial physical motivation for the study of the spectral determinant on graphs was based on the observation that the weak localization correction to the conductivity is directly expressed in terms of the spectral determinant. We see from eq. (2) that

$$\langle \Delta \sigma \rangle = -\frac{2e^2}{\pi \text{Volume}} \frac{\partial}{\partial \gamma} \ln S(\gamma),$$

(84)

where the spectral parameter is related to the phase coherence length $\gamma = 1/L^2$. The expressions [81, 82], due to Pascaud & Montambaux [177, 178], improve the approach initiated by Douçot & Rammal [81, 82].

Nonlocality of the quantum transport in arbitrary networks

We must stress that the formula [84] corresponds to a uniform integration of the cooperon, defined as $P_c(x, x) = \langle x | \gamma^{-\Delta} | x \rangle$, on the graph $\langle \Delta \sigma \rangle \propto -\int dx P_c(x, x)$. This approach is limited to the case of regular graphs, where all wires play the same role. In other terms, for a nonregular network, the quantity [84] does not correspond to a quantity measured in a transport experiment. For arbitrary networks, the cooperon must be integrated over the network with appropriate nontrivial weights that depend on the topology of the whole network and the way it is connected to external contacts. Such a generalization was provided in ref. [210].
Windings in a loop connected to a network

As we have mentioned in the section 2.2, magnetoconductance oscillations due to a magnetic flux and winding properties are closely related. For example, if we consider an isolated ring of perimeter L pierced by a magnetic flux ϕ, the well-known behaviour of the harmonics

$$\langle \Delta \sigma_n \rangle = \int_0^{2\pi} \frac{d\theta}{2\pi} \langle \Delta \sigma(\theta) \rangle e^{-in\theta} \propto e^{-|n|L/L_\phi}$$

is a direct consequence of the fact that the winding around the ring scales with time as $n_t \propto t^{1/2}$ (normal diffusion). $\theta = 4\pi\phi/\phi_0$ is the reduced flux and $\gamma = 1/L_\phi^2$. This effect was predicted by Al'tshuler, Aronov & Spivak (AAS) in ref. [10] and observed in experiments on cylinder films [193, 11].

Recently it has been noticed that the fact that the ring is connected to arms, which is necessary to perform a transport experiment, can strongly affect the harmonics. If we consider a ring connected to N_a long arms, in the limit $L_\phi \ll L$, the harmonics are still given by the AAS behaviour (85), however when the perimeter is smaller than L_ϕ, the harmonics behave as $\langle \Delta \sigma_n \rangle \propto e^{-|n|\sqrt{N_aL/L_\phi}}$. To clarify the origin of this behaviour, the winding of Brownian trajectories around a ring connected to another network has been recently examined in ref. [212]. This analysis is based on the fact that the winding number distribution can be expressed in terms of the spectral determinant. Let us briefly describe this approach.

![Figure 7: A diffusive ring attached to a long arm. The parameter λ_1 describes the boundary condition at vertex 1: $\lambda_1 = \infty$ for the Dirichlet boundary and $\lambda_1 = 0$ for the Neumann boundary condition.](image)

![Figure 8: A diffusive ring attached to (a): an infinite square lattice, (b): an infinite Bethe lattice of connectivity $z = 3$. To ensure that the Bethe lattice is regular, it must be embedded in a constant negative curvature surface.](image)

We consider a ring to which is attached an arbitrary network at vertex 0 (the figures give examples of such a situation). Our aim is to understand how the winding around the ring is affected by the presence of the network. To answer this question we introduce the probability to start from a point x on the graph and come back to it after a time t, conditioned to wind n
times around the loop:

$$P_n(x,t|x,0) = \int_{x(0)=x}^{x(t)=x} Dx(\tau) e^{\frac{1}{4} \int_0^t d\tau \dot{x}(\tau)^2} \delta_{n,N[x(\tau)]}$$

(86)

where $N[x(\tau)]$ is the winding number of the path $x(\tau)$ around the loop. For simplicity, we consider the case where the initial point is the vertex 0. The computation of $P_n(0,t|0,0)$ requires some local information (the eigenfunctions of the Laplace operator at point $x = 0$). On the other hand the spectral determinant encodes a global information since it results from a spatial integration of the Green’s function of the Laplace operator over the network. However we have shown in ref. [51] that if we consider mixed boundary conditions at vertex 0 described by a parameter λ_0 (see the definition of the boundary conditions given above), we can extract the probability of interest as follows:

$$\int_0^\infty dt P_n(0,t|0,0) e^{-\gamma t} = \int_0^{2\pi} d\theta \frac{e^{-i\theta}}{2\pi} e^{i\lambda_0} \ln S^{(\lambda_0)}(\gamma)\bigg|_{\lambda_0=0},$$

(87)

where $S^{(\lambda_0)}(\gamma)$ is the spectral determinant for mixed boundary condition at vertex 0 and with a magnetic flux θ piercing the ring. This formula allows us to express the probability as

$$\int_0^\infty dt P_n(0,t|0,0) e^{-\gamma t} = \frac{1}{2\sqrt{\gamma}} \frac{\sinh \sqrt{\gamma L}}{\sinh \sqrt{\gamma L_{\text{eff}}(\gamma)}} e^{-|n|\sqrt{\gamma L_{\text{eff}}(\gamma)}},$$

(88)

where all the information about the nature of the network attached to the ring is contained in the effective perimeter $L_{\text{eff}}(\gamma)$, defined as:

$$\cosh \sqrt{\gamma L_{\text{eff}}(\gamma)} = \cosh \sqrt{\gamma L} + \frac{\sinh \sqrt{\gamma L}}{2(M_{\text{net}}^{-1})_{00}}.$$

(89)

The matrix M_{net} describes the network in the absence of the loop (it is given by eq. [59]; for the network of figure 5, M_{net} describes the infinite square network without the ring). The matrix element $(M_{\text{net}}^{-1})_{00}$ has a clear meaning: it is the Green function of the Laplace operator in the network (without the loop) computed at the position where the ring is attached: $\sqrt{\gamma}(M_{\text{net}}^{-1})_{00} = \langle 0 | \frac{1}{\sqrt{\gamma}} | 0 \rangle$.

The effective perimeter $L_{\text{eff}}(\gamma)$ probes the winding at time scale $t \sim 1/\gamma$: precisely, the winding number scales with time as $n_t \sim \sqrt{t}/L_{\text{eff}}(1/t)$.

Two interesting examples are

- **Ring attached to an infinite wire (figure 7).** When a wire of length b with the Dirichlet boundary at one end is attached to the ring, it is easy to see that eq. (59) gives $(M_{\text{net}}^{-1})_{00} = \tanh \sqrt{\gamma b} \to 1$. At large time $t \gg L^2$, the effective perimeter behaves as $L_{\text{eff}} \simeq \sqrt{\gamma} L^{-1/4}$. This behaviour is related to a scaling of the winding number with time

$$n_t \propto t^{1/4}.$$

(90)

The full distribution for the winding number n is given in ref. [212]. The exponent 1/4 that characterizes anomalously slow winding around the loop originates from the fact that the diffusive trajectory spends a long time in the infinite wire, which increases the effective perimeter

36The fact that some “local” information, such as $P_n(0,t|0,0)$, can be extracted from a more “global” object, like the spectral determinant, by introducing the mixed boundary conditions with parameter λ_0 has been also used in the context of scattering theory in graphs in refs. [200, 203]. The derivative in eq. (87) can be understood as a functional derivative since λ_0 plays a role similar to the weight of a δ-potential at x_0. The use of functional derivatives in scattering theory for mesoscopic systems has been fruitfully used by Büttiker and co-workers (see ref. [51] and references therein).
at such time scales. This problem is also related to the anomalous diffusion along the skeleton of a comb, studied in refs. 222, 223 by different methods. It is interesting to use this picture. Let us consider a random walk along the sites of a line where the diffusive particle is trapped during a time τ on each site. The trapping time is distributed according to a broad distribution $P_1(\tau) \propto \tau^{-1-\mu}$ with $0 < \mu < 1$. It follows that the distance scales with time as $n_t \sim t^{\mu/2}$ [23]. If we go back to the problem of diffusion along the skeleton of a comb (or the winding in the ring connected to the long arm), the arm plays the role of the trap. The distribution of the trapping time is given by the first return probability of the one-dimensional diffusion: $P_1(\tau) \propto \tau^{-3/2}$ and we recover eq. (90).

- **Ring attached to a square network (figure 5a).**– When studying the winding around the loop, it is important to know whether the Brownian motion inside the network attached to the ring is recurrent or not. Let us consider the case where the network attached is a d-dimensional hypercubic network. For $d > 2$ the Brownian motion is known to be transient where as, for $d = 2$ it is neighbourhood recurrent (in $d = 1$ the Brownian motion is pointwise recurrent). Therefore we expect the dimension 2 to play a special role. In the large time limit, when $t \gg L^2$ and $t \gg a^2$ (a is the lattice spacing), we find an effective length $\sqrt{t} \left(\frac{2\pi n}{\ln(t/\sqrt{a})} \right)$, that corresponds to a scaling of the winding around the loop

\[n_t \propto (\ln t)^{1/2}. \]

This result can be obtained in the same way as for the ring connected to the arm. This time the plane acts as a trap. The distribution of the trapping time is given by the first return probability on a square lattice, which is known to behave at large times like $P_1(\tau) \propto 1/(\tau \ln^2 \tau)$ [27], from which we can recover eq. (91).

Occupation time and local time distribution on a graph

Another set of problems concern occupation times: i.e. time spent by a Brownian particle in a given region. An example of such a problem is provided by the famous arc-sine law for the 1d Brownian motion that gives the distribution of the time spent by a Brownian motion ($x(\tau), 0 \leq \tau \leq \bar{t}$) on the half line \mathbb{R}^+. This result was derived long ago by P. Lévy [155]. It has been extended by Barlow, Pitman & Yor [28] for a particular graph (star graph with arms of infinite lengths): instead of an infinite line, these authors consider n semi-infinite lines originating from the same point and study the joint distribution of the times spent on each branch. More recently, this problem has been reconsidered in the case of arbitrary graphs [29]. It may be stated as follows: consider a Brownian motion $x(\tau)$ on a graph, starting from a point x_0 at time 0 and arriving at a point x_1 at time t. Let $T_{\alpha\beta}$ denotes the time spent on the wire $(\alpha\beta)$. This functional is defined as $T_{\alpha\beta}[x(\tau)] = \int_0^\mu d\tau Y_{\alpha\beta}(x(\tau))$ where the function $Y_{\alpha\beta}(x)$ is 1 for $x \in (\alpha\beta)$ and 0 otherwise. Our aim is to compute the Laplace transforms of the joint distribution

\[\langle e^{-\sum_{(\alpha\beta)} \xi_{\alpha\beta} T_{\alpha\beta}} \rangle = \int dx_1 F(x_1, x_0; \{\xi_{\alpha\beta}\}) \]

with

\[F(x_1, x_0; \{\xi_{\alpha\beta}\}) = \int_{x_0}^{x(t)=x_1} Dx(\tau) e^{-\frac{1}{2} \int_0^\tau dx^2 - \sum_{(\alpha\beta)} \xi_{\alpha\beta} T_{\alpha\beta}[x(\tau)]}. \]

The definition [22] takes into account averaging over the final point x_1. A conjugate parameter $\xi_{\alpha\beta}$ is introduced for each variable $T_{\alpha\beta}$, i.e. each bond. A closed expression of the Laplace transform of the joint distribution [22] has been derived in ref. [75]. The result is given as a ratio of two determinants, an expression reminiscent of the one of Leuridan [154], although the connection is not completely clear.
Similar methods have also been applied in ref. [50] to study the distribution of the local time
\[T_{x_0}[x(\tau)] = \int_0^\tau d\tau \delta(x(\tau) - x_0). \]

A simplification occurs when the final point coincides with the initial point. Then it is possible to relate the characteristic function to a single spectral determinant. We do not develop the general theory here but instead consider an example close to the one studied in the previous subsection. Let us consider the graph in figure 7 and ask the following question: for a Brownian motion starting from \(x_0 \) at time 0 and coming back to it at time \(t \), what is the distribution of the time \(T_{\text{arm}}[x(\tau)] \) spent in the arm if in addition the Brownian motion is constrained to turn \(n \) times around the ring? It is natural to introduce the following function:

\[
\mathcal{F}_n(x_0, x_0; t, \xi) = \int_{x(0)=x_0}^{x(t)=x_0} D(x(\tau)) e^{-\int_0^\tau d\tau \delta(x(\tau) - x_0)} \delta_n \mathcal{N}[x(\tau)]
\]

where \(\mathcal{N}[x(\tau)] \) is the winding number around the ring. This function is related to the Laplace transform of the distribution of the functional \(T_{\text{arm}}[x(\tau)] \)

\[
\left\langle e^{-\xi T_{\text{arm}}[x]} \right\rangle_{\mathcal{C}_n} = \frac{\mathcal{F}_n(x_0, x_0; t, \xi)}{\mathcal{F}_n(x_0, x_0; t, 0)},
\]

where \(\left\langle \cdots \right\rangle_{\mathcal{C}_n} \) denotes averaging over curves of winding \(n \). The denominator ensures normalization. The Laplace transform of \(\mathcal{F}_n(x_0, x_0; t, \xi) \) is given by a relation similar to eq. (57)

\[
\int_0^\infty dt \mathcal{F}_n(x_0, x_0; t, \xi) e^{-\gamma t} = \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-i\theta} \frac{d}{d\lambda_0} \ln S^{(\lambda_0)}(\gamma) \bigg|_{\lambda_0=0}
\]

where the appropriate spectral determinant is built as follows: (i) since the starting point is fixed at 0, we introduce mixed boundary conditions at this point, with a parameter \(\lambda_0 \) that will be used to extract the “local information”. (ii) A magnetic flux \(\theta \) is introduced (conjugate to the winding number). (iii) The spectral parameter is shifted in the arm as \(\gamma \rightarrow \gamma + \xi \) to introduce the variable \(\xi \) conjugate to the time \(T_{\text{arm}} \).

We choose the vertex 0 as initial condition and impose the Dirichlet boundary condition (which is achieved by setting \(\lambda_1 = \infty \)) at the end of the arm of length \(b \). The spectral determinant is found straightforwardly (for an efficient calculation of \(S(\gamma) \) for a graph with loops, see ref. [172] or appendix C of ref. [3]):

\[
S^{(\lambda_0)}(\gamma) = \frac{\sinh \sqrt{\gamma}L \sinh \sqrt{\gamma+\xi}b}{\sqrt{\gamma} \gamma + \xi} \left[2\sqrt{\gamma} \frac{\cosh \sqrt{\gamma}L - \cos \theta}{\sinh \sqrt{\gamma}L} + \lambda_0 + \sqrt{\gamma + \xi} \coth \sqrt{\gamma + \xi} b \right]
\]

The terms in the brackets correspond to the matrix\[^{37} \mathcal{M} \] (since \(\lambda_1 = \infty \) we can consider only the element \(\mathcal{M}_{00} \)). The first term is the contribution of the loop, the second comes from the boundary condition and the last one comes from the arm. It immediately follows that

\[
\int_0^\infty dt \mathcal{F}_n(0, 0; t, \xi) e^{-\gamma t} = \frac{1}{2} \frac{\sinh \sqrt{\gamma}L}{\sqrt{\gamma} \sinh \sqrt{\gamma}L_{\text{eff}}} e^{-|n|\sqrt{\gamma}L_{\text{eff}}}
\]

with

\[
\cosh \sqrt{\gamma}L_{\text{eff}} = \cosh \sqrt{\gamma}L + \frac{1}{2} \sqrt{1 + \xi/\gamma} \sinh \sqrt{\gamma}L \coth \sqrt{\gamma + \xi} b.
\]

Let us consider an infinitely long arm \(b \to \infty \). If we are interested on time scales \(t \gg \tau_L \), where \(\tau_L = L^2 \) is the Thouless time over which the ring is explored, eq. (99) gives \(\sqrt{\gamma}L_{\text{eff}} \simeq (\gamma + \xi)^{1/4} \sqrt{L} \), therefore from eq. (98) we see that \(\mathcal{F}_n(0, 0; t, \xi) \simeq e^{-\xi t} \mathcal{F}_n(0, 0; t, 0) \). The inverse Laplace transform of eq. (95) leads to \(\left\langle \delta(T - T_{\text{arm}}[x]) \right\rangle_{\mathcal{C}_n} \simeq \delta(T - t) \), which means that the Brownian motion spends almost all the time in the arm (this simple result confirms the picture presented to explain the scaling of the winding around the ring of the form \(n \gamma t \sim t^{1/4} \)).

\[^{37}\]The introduction of the conjugate parameters \(\{\xi_{\alpha\beta}\} \) corresponds to shift the spectral parameter \(\gamma \) on each wire as \(\gamma \rightarrow \gamma + \xi_{\alpha\beta} \). The matrix to be generalized is not \(\mathcal{M} \), given by eq. (56), but \(\mathcal{M} = \sqrt{\gamma}M \).
6 Planar Brownian motion and charged particle in random magnetic field

A model of random magnetic field describing a charged particle moving in a plane and subjected to the random magnetic field $B(\vec{r}) = \vec{\nabla} \times \vec{A}(\vec{r})$ due to an ensemble of magnetic Aharonov-Bohm vortices is described by the following Hamiltonian $[77, 100]$:

$$H = \frac{1}{2} \left(\vec{p} - \vec{A}(\vec{r}) \right)^2 + \frac{1}{2} B(\vec{r}) = \frac{1}{2} \left(\vec{p} - \alpha \sum_i \frac{\vec{u}_z \times (\vec{r} - \vec{r}_i)}{(\vec{r} - \vec{r}_i)^2} \right)^2 + \pi \alpha \sum_i \delta(\vec{r} - \vec{r}_i)$$

(100)

where $0 \leq \alpha < 1$. We have set $\hbar = e = m = 1$. α is the magnetic flux per vortex, in unit of the quantum flux $\phi_0 = \hbar/e : \alpha = \phi / \phi_0 = \phi / (2\pi)$. The model is periodic in α with a period 1. \vec{u}_z is the unit vector perpendicular to the plane. \vec{r}_i are the positions of the vortices in the plane: they are uncorrelated random variables (Poisson distribution). The δ interactions (coupling to the magnetic field) are necessary in order to define properly the model $[131, 163, 175, 33, 63]$.

By comparison with scalar impurities discussed in the introduction, the magnetic nature of the scatterers gives rise to rather different properties$^{[38]}$: it was shown in ref. [77] that the spectrum is reminiscent of a Landau spectrum with Landau levels broadened by disorder, in the limit of vanishing magnetic flux $\alpha \to 0$ (see below). This analysis was performed using perturbative arguments supported by numerical simulations. The latter use a relation between the average DoS of this particular model and some winding properties of the Brownian motion.

Let $Z(t)$ denotes the partition function for a given distribution of vortices and $Z_0(t)$ the partition function without fluxes. The ratio of partition functions can be written as a ratio of two path integrals

$$\frac{Z(t)}{Z_0(t)} = \frac{\int d\bar{a} \int_{\bar{r}(0)=\bar{a}}^{\bar{r}(t)=\bar{a}} D\bar{r}(\tau) \; e^{\int_0^t (-\frac{1}{2} \vec{p}^2 + i \vec{A} \vec{r} d\tau)} \langle \langle \exp \sum_i \vec{A} \cdot d\bar{r}_i \rangle \rangle_c}{\int d\bar{a} \int_{\bar{r}(0)=\bar{a}}^{\bar{r}(t)=\bar{a}} D\bar{r}(\tau) \; e^{-\frac{1}{2} \vec{p}^2 d\tau}} = \left\langle \left\langle \exp \sum_i \vec{A} \cdot d\bar{r}_i \right\rangle \right\rangle_c,$$

(101)

where $Z_0(t) = V/(2\pi t)$ is the free partition function (V is the (infinite) area of the plane) and $\langle \langle \cdots \rangle \rangle_c$ stands for averaging over all closed Brownian curves of the plane.

In order to average $Z(t)$ over the Poissonian distribution of vortices, let us consider, for a while, our problem on a square lattice with lattice spacing a. Let N_i be the number of vortices in square i. the magnetic flux through any closed random walk C on this lattice can be written as:

$$\int_C \vec{A} \cdot d\bar{r} = \sum_i 2\pi \alpha N_i n_i$$

(102)

where n_i is the number of times the square i has been wound around by C.

Averaging $Z(t)$ with the Poissonian distribution (μ being the mean density of vortices)

$$P(N_i) = \frac{(\mu a^2)^{N_i}}{N_i!} e^{-\mu a^2}$$

(103)

gives

$$\langle Z(t) \rangle_{\{\vec{r}_i\}} = Z_0(t) \left\langle \exp \sum_i \vec{A} \cdot d\bar{r}_i \right\rangle_{C, \{\vec{r}_i\}} = Z_0(t) \left\langle \exp \sum_n S_n (e^{2i\pi \alpha n} - 1) \right\rangle_C, \quad (104)$$

38For scalar impurities, the presence of a magnetic field also strongly affects the spectral properties. The case of a Gaussian disorder projected in the lowest Landau level (LLL) of a strong magnetic field has been studied in ref. [220]. Other disordered potentials have been considered later. In particular it was shown in ref. [160] that for a weak density of impurities, the spectrum can display power law singularities. A physical interpretation of such power law singularities has been discussed by Furtlechner in ref. [100, 101]. The relation between the model of scalar impurities projected in the LLL of a strong magnetic field and the model of magnetic vortices was discussed in refs. [78, 100]. Finally we mention a recent work on Lifshitz tails in the presence of magnetic field [153].
where \(\langle \cdots \rangle_{\{ \vec{r}_i \}} \) denotes averaging over the positions \(\{ \vec{r}_i \} \) of the vortices.

The quantity \(S_n \) denotes the area of the locus of points around which the curve \(C \) has wound \(n \) times. This result was derived for a random walk on a lattice but is also obviously valid off lattice as well, for Brownian curves. The winding sectors of a closed curve are displayed in figure 9.

\[0 \quad 0 \quad 1 \quad 0 \quad 2 \quad 1 \quad -1 \]

![Figure 9: A closed curve with its n-winding sectors. The label \(n \) of a sector is the winding number of any point inside this sector.](image)

The random variable \(S_n \) scales like \(t \). In particular, we know its expectation \(\langle S_n \rangle = \frac{t}{2\pi n^2} \). Moreover, it has been shown in [223] that the variable \(n^2 S_n \) becomes more and more peaked when \(n \) grows: \(P(n^2 S_n = X) \xrightarrow{n \to \infty} \delta(X - \frac{t}{2\pi}) \) (the average area of the \(n = 0 \)-sector has been recently studied in ref. [104]).

Thus, extracting \(t \), eq. (104) rewrites as

\[
\langle Z(t) \rangle_{\{ \vec{r}_i \}} = Z_0(t) \int dSdA \ P(S, A) \ e^{-\mu t(S+iA)} \equiv Z_0(t) \left\langle e^{-\mu t(S+iA)} \right\rangle_C ,
\]

where \(P(S, A) \) is the joint distribution of the rescaled \(t \) independent variables \(S \) and \(A \) defined as

\[
S = \frac{2}{t} \sum_n S_n \sin^2(\pi \alpha n) \quad \text{(106)}
\]

\[
A = \frac{1}{t} \sum_n S_n \sin(2\pi \alpha n) . \quad \text{(107)}
\]

The averages of these two variables are given by:

\[
\langle S \rangle = \pi \alpha (1 - \alpha) , \quad \langle A \rangle = 0 .
\]

With eq. (105), we observe that \(\frac{1}{t} \langle Z(t) \rangle_{\{ \vec{r}_i \}} \) has the scaling form \(F(\mu t) / t \). Thus, its inverse Laplace transform, the average density of states per unit area, is a function of only \(E/\mu \) and \(\alpha \). Moreover, it is easy to realize that \(\langle Z(t) \rangle_{\{ \vec{r}_i \}} \) is even in \(\alpha \) (each Brownian curve in \(\{ C \} \) comes with its time reversed) and periodic in \(\alpha \) with period 1. Thus, one can restrict to \(0 \leq \alpha \leq \frac{1}{2} \).

Let us focus on the two limiting cases \(\alpha \to 0 \) and \(\alpha = 1/2 \).

Limit \(\alpha \to 0 \): Landau spectrum.

When \(\alpha \to 0 \), a careful analysis shows that

\[
\langle Z(t) \rangle_{\{ \vec{r}_i \}} \simeq Z_{\langle S \rangle} e^{-\frac{1}{2} \langle S \rangle t}
\]

\[33 \]
where $Z_{\langle B \rangle} = Z_0(t) \frac{\langle B \rangle t/2 \sinh \langle B \rangle t/2}{\sinh(\langle B \rangle t/2)}$ is the partition function of a charged particle in a uniform magnetic field $\langle B \rangle = 2\pi \mu \alpha$ (we recall that the impurity i carries a magnetic field $2\pi \alpha \delta(\vec{r} - \vec{r}_i)$). The system of random vortices is, thus, equivalent to the uniform average magnetic field, albeit with an additional positive shift in the Landau spectrum: the inverse Laplace transform of the partition function (110) gives the Landau spectrum made of equally spaced infinitely degenerated levels. This corresponds to the oscillating behaviour shown on figure 11. The origin of the shift can be traced back to the presence of the repulsive δ interactions that have been added to the Hamiltonian to define properly the model.

- **Half quantum flux vortices ($\alpha = 1/2$) – The spectral singularity at $E = 0$.**
 In this case the variable (107) vanishes, $A \equiv 0$, implying that $\langle Z(t) \rangle_{\{\vec{r}_i\}} = Z_0(t) \langle \exp (-\mu t S) \rangle_C$ where now
 \[
 S = \frac{2}{t} \sum_{n \text{ odd}} S_n. \tag{111}
 \]
 Performing the inverse Laplace transform, we get the average density of states per unit area:
 \[
 \langle \rho(E) \rangle = \rho_0(E) \int_0^{E/\mu} dS P(S) \tag{112}
 \]
 where $\rho_0(E) = \frac{1}{2\pi}$ is the free density of states per unit area and $P(S)$ is the probability distribution of S.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure10.png}
\caption{The average density of states at $\alpha = 0.5$ (the free density of states is constant $\rho_0 = 1/(2\pi)$). Circles are simulation results. The full line is the fit discussed in the text.}
\end{figure}

We may use this result to determine the nature of the singularity in the average DoS. As displayed in figure 11 (where we have taken $\mu = 1$), $\langle \rho(E) \rangle$ increases monotonically from 0 to $\rho_0(E)$ with a depletion of states at the bottom of the spectrum. Circles are the result of numerical simulations (on a 2D square lattice, we have generated 10000 closed random walks of 100000 steps each). The full line is a low-energy fit of the quantity $\langle \rho(E) \rangle/\rho_0$ by the function
 \[
 \frac{\rho_{\text{fit}}(E)}{\rho_0} = a e^{-b(\mu/E)^2} \tag{113}
 \]
 with $a = 2.8$ and $b = 1.4$ (see figure 11). It is worth stressing that this behaviour is quite different from the one expected for a disorder due to a scalar potential. The famous Lifshitz
argument, applicable to the low energy DoS for a low concentration of scalar impurity, leads instead to a behaviour
\[
\rho_{\text{Lif.}}(E) \sim e^{-c_2 \mu/E},
\]
where \(c_2\) is a constant. Our choice for this fit is motivated by a recent numerical work concerning the area \(A\) of the outer boundary of planar random loops. In this work, the author suggests that the limit distribution of \(A\) is the Airy distribution implying, for small \(A\) values, a behaviour of the type \(\exp(-\text{const.}/A^2)/A^2\). Remarking that \(A = \sum_{n\,\text{even}} S_n + \sum_{n\,\text{odd}} S_n\), it is natural to expect for the distribution of the random variable \(S\), eq. (111), a behaviour at small \(S\) that is roughly given by \(\exp(-\text{const.}/S^2)\). Thus, we deduce the form \(\rho_{\text{fit}}(E)\) for the low-energy fit of \(\langle \rho(E) \rangle\).

\textbf{Transition between }\alpha = 0.5\textbf{ and }\alpha \to 0.\textbf{ }

Finally, when \(\alpha\) grows from 0 to 0.5, the oscillations in the spectrum must disappear at some critical value \(\alpha_c\) (see figure 11). Numerical simulations, specific heat considerations and, also, diagrammatic expansions [77] give \(\alpha_c \sim 0.3\).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure11.png}
\caption{Average density of states of the Hamiltonian for different values of the flux per tube \(\phi = \alpha \phi_0\). The average magnetic field reads \(\langle B\rangle = 2\pi \mu \alpha\). We recall that the corresponding Landau spectrum is given by \(E_n = \langle B\rangle (n + 1)\), for \(n \geq 0\). From ref. [77].}
\end{figure}

\begin{footnotesize}
\footnote{The Lifshitz argument applies to the DoS for the random Hamiltonian \(H = -\Delta + \sum u(\vec{r} - \vec{r}_i)\) in dimension \(d\), where \(u(\vec{r})\) is a sharply peaked scalar potential. For a low density of impurities \(\mu\), the DoS behaves as \(\rho_{\text{Lif.}}(E) \sim \exp(-c_d \mu/E^{d/2})\) at low energy.}
\end{footnotesize}
7 Conclusion

A non experienced reader may have the feeling that the two topics which have been covered in this review, namely one-dimensional disordered systems and quantum graphs, are essentially disjoint. In fact there are many interesting links between these two topics, both at a methodological and a conceptual level. The use of metric graphs for modelling quantum phenomena observed in disordered metals goes back to the pioneering work of Shapiro [191] and Chalker & Coddington [56]. These systems have been used to study quantum localization and more recently as a model system for spectral statistics (for a recent review, see ref. [202]). Another set of similar questions is provided by the study of scattering properties of chaotic graphs [143] and disordered systems [103] (see also section 3.2 and ref. [174] for recent developments). We have also seen that apart from its interest to study the spectral properties of metric graphs, the spectral determinant also allows studying several properties of networks of quasi-one-dimensional weakly disordered wires [177, 178, 3].

As a conclusion we would like to mention several open problems:

- A study of spectral statistics in the case of graphs with a random Schrödinger operator [there is still a factorised structure but the matrix R is now given by eq. (66)].

- A probabilistic understanding of the star graphs using the tools of excursion theory developed by Barlow et al. [23] in the context of the Brownian spider. A first step would be to recover those probabilistic results (the joint law of the occupation time inside the branches) by a spectral approach. It is however not excluded that the probabilistic approach could provide a key to a deeper understanding of those quantum systems. In the context of classical systems such probabilistic approaches have been very useful, e.g. recent studies of the Stochastic Loewner Equation have made enormous progress in understanding the statistical physics of a class of two-dimensional systems. This calls for new probabilistic techniques for quantum systems as well.

- Several functionals of the Brownian motion [13, 16] appear when studying the important question of dephasing due to electron-electron interaction in networks of quasi-one-dimensional weakly disordered wires. The fact that such simple functionals appear relies on the translation invariance of the two particular problems studied (an infinite wire [9] and an isolated ring [212]). For a network with arbitrary topology, the relevant functional of the Brownian bridge $x(\tau)$ is given by $\int_0^t d\tau W(x(\tau), x(t-\tau))$ where $W(x, x') = \frac{1}{2}[P_d(x, x) + P_d(x', x')] - P_d(x, x')$ with $-\Delta P_d(x, x') = \delta(x - x')$. It now involves a nonlocal functional in time which is difficult to handle. Progress in this direction would allow clarifying the interplay between the electron-electron interaction and the geometrical effect and help in analyzing recent experimental results [29].

- The question of extreme value spectral statistics was addressed in the framework of random matrix theory [214] and these studies have found several applications in the context of out-of-equilibrium statistical physics (see the review [215]). However this question was first addressed in the context of one-dimensional disordered systems [117]. The study of supersymmetric random Hamiltonian, for which the bottom of the spectrum plays a special role, has emphasized the interest in extreme value spectral statistics [204] (in particular it indicates level correlations). It would be interesting to extend such studies to other models and find some physical situations where these results would be applicable.

- A beautiful heuristic argument was provided by Lifshitz to explain the spectral singularity for Hamiltonians with a weak concentration of localized scalar impurities (see for example the book [157]). Other mechanisms should be invoked to explain the nature of the quantum states responsible for the low energy power law behaviour in the case of a uniform strong magnetic field with δ-impurities [100, 101]. For the model of randomly distributed magnetic fluxes, the numerical simulations for $\alpha = 1/2$ have suggested the new type of singular behaviour [113].

36
would be interesting to provide heuristic arguments to understand more deeply the origin of this singularity.

Acknowledgments

The article gives an overview of several joint works involving: Éric Akkermans, Cyril Furtlehner, Satya Majumdar, Gilles Montambaux, Cécile Monthus, Stéphane Ouvry and Marc Yor. We thank them for fruitful collaborations. Meanwhile we have also benefited from stimulating discussions with Marc Bocquet, Eugène Bogomolny, Oriol Bohigas, Hélène Bouchiat, Markus Büttiker, David Dean, Richard Deblock, Meydi Ferrier, Sophie Guéron, Jean-Marc Luck, Gleb Oshanin, Leonid Pastur and Denis Ullmo. We are pleased to acknowledge Satya Majumdar for his careful reading and valuable remarks.
References

A. A. Gogolin, V. I. Mel’nikov and E. I. Rashba, Conductivity in a disordered one-dimensional system induced by electron-phonon interaction, Sov. Phys. JETP 42(1), 168 (1976).

L. P. Gor’kov, A. I. Larkin and D. E. Khmel’nitzki, Particle conductivity in a two-dimensional random potential, JETP Lett. 30(4), 228 (1979).

http://www-fourier.ujf-grenoble.fr/prepublications.html

