Physics-Biology interface seminar: Stephan Grill

Actomyosin Force Generation and Pattern Formation

Stephan Grill (MPI-CBG Dresden)

Morphogenesis is one of the great unknowns in Biology. Much is known about molecular mechanisms of regulation, but little is known about the physical mechanisms by which an unpatterned blob of cells develops into a fully structured and formed organism. The actomyosin cortex is a thin layer underneath the cellular membrane that can self contract, which drives many of the large-scale morphogenetic rearrangements that are observed during development. How this cortex reshapes and deforms, and how such morphogenetic processes couple to regulatory biochemical pathways is largely unclear. I will discuss two emergent physical activities of the actomyosin cytoskeleton, an active contractile tension and an active torque, both of which can serve to drive flows and large-scale chiral rotations of the actomyosin cytoskeleton. I will illustrate how active tension drive flows, how molecular constituents of the cortex affect flows, and how morphogenetic patterns can be formed by coupling regulatory biochemistry to active cortical mechanics. A particular focus will be the investigation of how compressive cortical flow drives the formation of an actin filament alignment pattern for generating a cleavage furrow for cytokinesis.


Date/Time : 04/05/2015 - 11:00 - 12:00

Location : Moyen Amphi, Building 510, Université Paris-Sud Orsay

Upcoming seminars