Séminaire du LPTMS: G. Montambaux

Quand

10/04/2012    
11:00

LPTMS, salle 201, 2ème étage, Bât 100, Campus d'Orsay
15 Rue Georges Clemenceau, Orsay, 91405

Type d’évènement

Chargement de la carte…

Manipulation de points de Dirac, du graphène aux atomes froids

Gilles Montambaux, LPS, Université Paris-Sud

Je considère plusieurs exemples de cristaux 2D où les propriétés électroniques de basse énergie peuvent être décrites par un hamiltonien 2 X 2 avec un spectre présentant plusieurs cônes de Dirac. Ces cônes sont caractérisés par une relation de dispersion linéaire et, tout aussi important, par une “charge” topologique reliée à une phase de Berry associée à la structure spinorielle de la fonction d’onde. Par exemple, le spectre du graphène présente une paire de cônes de Dirac avec des phases de Berry opposées. On étudie sous quelles conditions ces cônes peuvent être manipulés, créés ou supprimés par des modifications des paramètres de bande, sous la condition de conservation de la charge totale.

Nous avons trouvé deux scénarios: (1) La fusion de points de Dirac avec des “charges” opposées est une transition topologique entre une phase semi-métallique et un isolant, avec un spectre remarquable, “semi-Dirac” à la transition : il est linéaire dans une direction et massif dans l’autre ! (2) Une paire de points de Dirac avec la même charge peut aussi fusionner en un point unique avec une charge double, et un spectre quadratique sans gap. C’est le cas dans les bicouches de graphène. Pour les deux scénarios, on a obtenu un hamiltonien universel qui décrit continûment le couplage entre les vallées.

Récemment, une très belle expérience avec des atomes ultrafroids dans un réseau optique a permis la réalisation de « graphène artificiel », dans lequel il est possible de déplacer et fusionner les points de Dirac et d’étudier le scénario (1) prévu théoriquement. L’évolution du spectre et la transition topologique sont révélés par les oscillations de Bloch d’un gaz de Fermions (40K). On mesure la probabilité Landau-Zener de transition entre les deux bandes et on caractérise ainsi les points de Dirac qui relient les deux bandes. Nous avons calculé cette probabilité de transition en utilisant l’hamiltonien universel qui décrit la fusion des points de Dirac et j’expliquerai l’accord remarquable que nous avons obtenu avec les résultats expérimentaux.

Finalement je discuterai d’autres scénarios de fusion de points de Dirac, en particulier dans les bicouches de graphène sous contrainte ou dans des gaz ultrafroids en présence de champs de jauge artificiels.

Retour en haut