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Introduction

Superfluidity, the ability of a fluid to move without dissipation, is one of the most spectacular manifestations of the quantum nature of matter. It has been observed, for instance, in liquid Helium, in the
electrical transport of electrons in metals (superconductors) and in ultracold dilute atomic gases. It is at the basis of many actual and potential applications, with limitations coming mainly from the very
low temperatures required for its manifestation. Here we analyze a different system, the room-temperature propagation of light in a nonlinear medium. We show that there are regimes where the motion
is superfluid, e.g. the scattering from defects is suppressed. We explicitly describe an experimental realization of this new phenomenon based on the transverse motion of light through a photonic lattice.
Controlling the speed of light with respect to a defect, we demonstrate that above a critical velocity superfluidity is destroyed by the emission of discrete solitons. The results open new perspectives for
room-temperature superfluidity, with possible applications in transport optimization and, more generally, in controlling light propagation.
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Superfluidity: basic concepts

Superfluid Flow :

•No dissipation, No drag force

•Perfect transmission

Dissipative Flow :

•Dissipation, non-zero drag force

•Emission of excitations

Landau critical velocity vc = min(ǫ(p)/p)
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Experiments on nonlinear photonic crystal (PC)

Examples of recent experiments using photonic crystals (a) to highlight Anderson localization [1]
(b) , or Bloch oscillations [2] (c) .

(a)
Schematic view of a photonic

crystal.

(b)
Localization of a light beam
through a photonic crystal.

(c)
Bloch oscillations in a

photonic crystal.
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Formal analogy with Bose-Einstein Condensate (BEC)

All these experiments come from the formal analogy between the Gross-Pitaevskii equation (eq.
(1)) and the equation of propagation of light in a discrete nonlinear medium (eq. (2))[3]:

ih̄∂tψ(x, t) =

[

−
h̄2

2m
∂ 2
x + V (x) + g|ψ(x, t)|2 − µ

]

ψ(x, t) (1)

i
∂Ak

∂z
= −C (Ak+1 + Ak−1) + γ|Ak|

2Ak + ǫkAk (2)

It is clear that there is an exact correspondance between equations (1) and (2), except that space
is discrete in eq. (2) :

Eq. (1) Eq. (2)
Evolution of a BEC in 1d ⇐⇒ Transverse propagation of light
Mean field approximation ⇐⇒ Paraxial approximation

t ⇐⇒ z
x ⇐⇒ k

Ψ(x, t) ⇐⇒ Ak(z)
V (x) ⇐⇒ ǫk
g > 0 ⇐⇒ γ > 0
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Conclusion : As a BEC described by eq. (1) exhibits superfluidity [6, 7], eq.
(2) should also show a superfluid motion for light transverse dynamics.
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Dipole oscillations (DOs): Principle and expectations

We would like to be able to clearly single out the influence of a defect on light propagation, that
is why we decide to use dipole oscillations: By modulating the width of each waveguide, we build
a set of harmonic on-site “energies” ǫk =

1
2ω

2k2. If we shine a light packet located at an arbitrary
distance d from the bottom of the potential:

Without any defect : With a defect ǫk =
1
2ω

2k2 + U0δk,0 :
Maximum velocity v = ω · d Maximum velocity v = ω · d

Oscillations with frequency ω [4, 5] Similar if superfluid
Wavepacket oscillates with a frozen shape Similar if superfluid
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Experimental DOs in BECs

Examples of experiments including DOs of a BEC in a harmonic trap. In fig. (b), the experiment
aims to determine the critical velocity of a superfluid BEC. The oscillations of the condensate,
which are supposed to be perfect for a superfluid, are here damped because its velocity exceeds the
critical velocity [7].

(a): Dipole Oscillations of a BEC. (b): Damping of DOs due to the presence
of a defect in the trap.

W. Ketterle’s Group - MIT R. Hulet’s Group - Rice University
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Numerical Results [8]
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(a): DOs without any defect. (b): Superfluid
motion, for small oscillations, i.e. slow veloc-
ity. (c): Entering in a turbulent regime. (d):
Collectivity fully lost for high velocities.

The color diagram represents the amplitude of oscillations after a long time: when it goes to 1, the
oscillations are undamped, whereas if it goes to 0, they are fully damped. We show that for high
defect intensity, a critical velocity exists, below which the only impact of the presence of the defect
is a slight modification of the intensity profile (see red horizontal line on left panel). For too high
velocities, we enter a turbulent regime where the collectivity is affected by the emissions of solitons
(see black curve propagating inside the wavepacket, left panel).
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Conclusion and outlook

•We proposed an experimental set up, in order to highlight a superfluid motion of light, through
a waveguides array.

•We numerically showed that above a critical velocity, superfluidity is destroyed by the emission
of discrete solitons.

•We are now working in collaboration with an experimental group who are planning to do this
experiment.

•The results may be generalized also to any type of scattering potential. For instance, it has been
shown that a positive critical velocity exists for disordered potential [7].
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