Difference between revisions of "Python"
From LPTMS Wiki
(→Miscellaneous) |
(→Libraries and softwares) |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 18: | Line 18: | ||
* [http://www.pytables.org PyTables] | * [http://www.pytables.org PyTables] | ||
* [http://mdp-toolkit.sourceforge.net/ Modular toolkit for Data Processing] | * [http://mdp-toolkit.sourceforge.net/ Modular toolkit for Data Processing] | ||
+ | * [http://pypy.org/ PyPy], a just-in-time compiler/implementation of Python. | ||
+ | * [https://pandas.pydata.org/ Pandas, data science] | ||
== Miscellaneous == | == Miscellaneous == | ||
* [http://fperez.org/code/index.html Fernando Perez page on Python] | * [http://fperez.org/code/index.html Fernando Perez page on Python] | ||
− | * [[Interfacing C++ and Python]]. | + | * [[Interfacing C++ and Python]]. |
+ | * [http://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html Interfacing Python and C++] (the other way around). See also Cython, below. | ||
* [[Scientific Programming with Python (for the debug), and C(ython) for the speed]] | * [[Scientific Programming with Python (for the debug), and C(ython) for the speed]] | ||
* [[Fitting data with python]] | * [[Fitting data with python]] | ||
* [http://code.enthought.com/projects/mayavi/ 3D Scientific Data Visualization and Plotting] | * [http://code.enthought.com/projects/mayavi/ 3D Scientific Data Visualization and Plotting] | ||
* [[Quick integration of a known function]] | * [[Quick integration of a known function]] | ||
+ | * [[Reading a large data file (efficiently)]] | ||
== Tips == | == Tips == | ||
− | * | + | * with '''pylab''', removes the white borders: |
<source lang="py"> | <source lang="py"> | ||
− | (resfalse,restrue)[ | + | savefig('figure.eps',format='eps',bbox_inches="tight") |
+ | </source> | ||
+ | |||
+ | * equivalent of the C ternary operator ?: (''test'' ? ''restrue'' : 'resfalse''), use a tuple is possible but not transparent | ||
+ | <source lang="py"> | ||
+ | (resfalse,restrue)[test] | ||
+ | </source> | ||
+ | prefer the inline condition testing way | ||
+ | <source lang="py"> | ||
+ | res = restrue if test or resfalse | ||
+ | # example | ||
+ | min = lambda x,y: x if x<y else y | ||
+ | min(1,2) | ||
</source> | </source> | ||
Latest revision as of 15:16, 9 December 2020
Documentation
- Official website
- euroscipy (scientific python community)
- Getting started with scipy
- Python comme langage scientifique - Voir aussi Cython.
- Python et le C
Libraries and softwares
- iPython
- the iPython notebook (interface similar to Mathematica) use HTML to handle worksheets.
- Standard Library
- SciPy - NumPy
- Matplotlib
- SymPy
- Cython
- PyTables
- Modular toolkit for Data Processing
- PyPy, a just-in-time compiler/implementation of Python.
- Pandas, data science
Miscellaneous
- Fernando Perez page on Python
- Interfacing C++ and Python.
- Interfacing Python and C++ (the other way around). See also Cython, below.
- Scientific Programming with Python (for the debug), and C(ython) for the speed
- Fitting data with python
- 3D Scientific Data Visualization and Plotting
- Quick integration of a known function
- Reading a large data file (efficiently)
Tips
- with pylab, removes the white borders:
savefig('figure.eps',format='eps',bbox_inches="tight")
- equivalent of the C ternary operator ?: (test ? restrue : 'resfalse), use a tuple is possible but not transparent
(resfalse,restrue)[test]
prefer the inline condition testing way
res = restrue if test or resfalse # example min = lambda x,y: x if x<y else y min(1,2)
- adding a path to a directory containing your module files
import sys sys.path += [ "/home/username/bin/Python" ]
- test whether a string has only digits or letters
str = '1321' str.isdigit() # returns True/False str.isalpha() # returns True/False
- Nested for loops in a single line:
for n,m in [ (n,m) for n in range(10) for m in range(2) ]: print n,m