Cleaning correlation matrices, HCIZ integrals \& Instantons

J.P Bouchaud
with: M. Potters, L. Laloux, R. Allez, J. Bun, S. Majumdar

Thank you Alain for having taught me so much!

Empirical Correlation Matrices

- Empirical Equal-Time Correlation Matrix E

$$
E_{i j}=\frac{1}{T} \sum_{t} \frac{X_{i}^{t} X_{j}^{t}}{\sigma_{i} \sigma_{j}}
$$

Order N^{2} quantities estimated with $N T$ datapoints.
When $T<N$, E is not even invertible.
Typically: $N=500-2000 ; T=500-2500$ days (10 years) $\longrightarrow q:=N / T=O(1)$

- In many application (e.g. portfolio optimisation) one needs to invert the correlation matrix - dangerous!
- How should one estimate/clean correlation matrices?

Rotational invariance hypothesis (RIH)

- In the absence of any cogent prior on the eigenvectors, one can assume that \mathbf{C} is a member of a Rotationally Invariant Ensemble - "RIH"
- In finance: surely not true for the "market mode" $\vec{v}_{1} \approx(1,1, \ldots, 1) / \sqrt{N}$, with $\lambda_{1} \approx N \rho$, but OK in the bulk
- "Cleaning" E within RIH: keep the eigenvectors, play with eigenvalues
\rightarrow The simplest, classical scheme, shrinkage:

$$
\mathbf{C}=(1-\alpha) \mathbf{E}+\alpha \mathbf{I} \rightarrow \widehat{\lambda}_{C}=(1-\alpha) \lambda_{E}+\alpha, \quad \alpha \in[0,1]
$$

RMT: from $\rho_{C}(\lambda)$ to $\rho_{E}(\lambda)$

- Solution using different techniques (replicas, diagrams, free matrices) gives the resolvent $G_{E}(z)=N^{-1} \operatorname{Tr}(\mathbf{E}-z \mathbf{I})$ as:

$$
G_{E}(z)=\int d \lambda \rho_{C}(\lambda) \frac{1}{z-\lambda\left(1-q+q z G_{E}(z)\right)},
$$

- Example 1: $\mathrm{C}=\mathrm{I}$ (null hypothesis) \rightarrow Marcenko-Pastur [67]

$$
\rho_{E}(\lambda)=\frac{\sqrt{\left(\lambda_{+}-\lambda\right)\left(\lambda-\lambda_{-}\right)}}{2 \pi q \lambda}, \quad \lambda \in\left[(1-\sqrt{q})^{2},(1+\sqrt{q})^{2}\right]
$$

- Suggests a second cleaning scheme (Eigenvalue clipping, [Laloux et al. 1997]): any eigenvalue beyond the Marcenko-Pastur edge can be trusted, the rest is noise.

Eigenvalue clipping

$\lambda<\lambda_{+}$are replaced by a unique one, so as to preserve $\operatorname{TrC}=N$.

RMT: from $\rho_{C}(\lambda)$ to $\rho_{E}(\lambda)$

- Solution using different techniques (replicas, diagrams, free matrices) gives the resolvent $G_{E}(z)$ as:

$$
G_{E}(z)=\int d \lambda \rho_{C}(\lambda) \frac{1}{z-\lambda\left(1-q+q z G_{E}(z)\right)}
$$

- Example 2: Power-law spectrum (motivated by data)

$$
\rho_{C}(\lambda)=\frac{\mu A}{\left(\lambda-\lambda_{0}\right)^{1+\mu}} \Theta\left(\lambda-\lambda_{\min }\right)
$$

- Suggests a third cleaning scheme (Eigenvalue substitution, Potters et al. 2009, El Karoui 2010): λ_{E} is replaced by the theoretical λ_{C} with the same rank k

Empirical Correlation Matrix

MP and generalized MP fits of the spectrum

A RIH Bayesian approach

- All the above schemes lack a rigorous framework and are at best ad-hoc recipes
- A Bayesian framework: suppose \mathbf{C} belongs to a RIE, with $\mathcal{P}(\mathbf{C})$ and assume Gaussian returns. Then one needs:

$$
\left.\langle\mathbf{C}\rangle\right|_{X_{i}^{t}}=\int \mathcal{D C C} \mathcal{P}\left(\mathbf{C} \mid\left\{X_{i}^{t}\right\}\right)
$$

with

$$
\mathcal{P}\left(\mathbf{C} \mid\left\{X_{i}^{t}\right\}\right)=Z^{-1} \exp \left[-N \operatorname{Tr} V\left(\mathbf{C},\left\{X_{i}^{t}\right\}\right)\right]
$$

where (Bayes):

$$
V\left(\mathbf{C},\left\{X_{i}^{t}\right\}\right)=\frac{1}{2 q}\left[\log \mathbf{C}+\mathbf{E C}^{-1}\right]+V_{0}(\mathbf{C}) ; \quad V_{0}: \text { prior }
$$

A Bayesian approach: a fully soluble case

- $V_{0}(\mathbf{C})=(1+b) \ln \mathbf{C}+b \mathbf{C}^{-1}, b>0$: "Inverse Wishart"
- $\rho_{C}(\lambda) \propto \frac{\sqrt{\left(\lambda_{+}-\lambda\right)\left(\lambda-\lambda_{-}\right)}}{\lambda^{2}} ; \lambda_{ \pm}=\left(1+b \pm \sqrt{\left.(1+b)^{2}-b^{2} / 4\right)} / b\right.$
- In this case, the matrix integral can be done, leading exactly to the "Shrinkage" recipe, with $\alpha=f(b, q)$
- Note that b can be determined from the empirical spectrum of \mathbf{E}, using the generalized MP formula

The general case: HCIZ integrals

- A Coulomb gas approach: integrate over the orthogonal group $\mathrm{C}=\mathrm{O} \wedge \mathrm{O}^{\dagger}$, where \wedge is diagonal.

$$
\int \mathcal{D} \mathbf{O} \exp \left[-\frac{N}{2 q} \operatorname{Tr}\left[\log \wedge+\mathbf{E O}^{\dagger} \wedge^{-1} \mathbf{O}+2 q V_{0}(\wedge)\right]\right]
$$

- Can one obtain a large N estimate of the HCIZ integral

$$
F\left(\rho_{A}, \rho_{B}\right)=\lim _{N \rightarrow \infty} N^{-2} \ln \int \mathcal{D} \mathbf{O} \exp \left[\frac{N}{2 q} \operatorname{TrAO}^{\dagger} \mathbf{B O}\right]
$$

in terms of the spectrum of \mathbf{A} and \mathbf{B} ?

The general case: HCIZ integrals

- Can one obtain a large N estimate of the HCIZ integral

$$
F\left(\rho_{A}, \rho_{B}\right)=\lim _{N \rightarrow \infty} N^{-2} \ln \int \mathcal{D} \mathbf{O} \exp \left[\frac{N}{2 q} \operatorname{TrAO}^{\dagger} \mathbf{B O}\right]
$$

in terms of the spectrum of \mathbf{A} and \mathbf{B} ?

- When A (or B) is of finite rank, such a formula exists in terms of the " R-transform" of B (with a different scaling in $N)$ [Marinari, Parisi \& Ritort, 1995].
- When the rank of \mathbf{A}, \mathbf{B} are of order N, there is a formula due to Matytsin [94] (in the unitary case), later shown rigorously by Zeitouni \& Guionnet, but its derivation is quite obscure...

An instanton approach to large N HCIZ

- Consider Dyson's Brownian motion matrices. The eigenvalues obey:

$$
\mathrm{d} x_{i}=\sqrt{\frac{2}{\beta N}} \mathrm{~d} W+\frac{1}{N} \mathrm{~d} t \sum_{j \neq i} \frac{1}{x_{i}-x_{j}}
$$

- Constrain $x_{i}(t=0)=\lambda_{A i}$ and $x_{i}(t=1)=\lambda_{B i}$. The probability of such a path is given by a large deviation/instanton formula, with:

$$
\frac{d^{2} x_{i}}{d t^{2}}=-\frac{2}{N^{2}} \sum_{\ell \neq i} \frac{1}{\left(x_{i}-x_{\ell}\right)^{3}}
$$

An instanton approach to large N HCIZ

- Constrain $x_{i}(t=0)=\lambda_{A i}$ and $x_{i}(t=1)=\lambda_{B i}$. The probability of such a path is given by a large deviation/instanton formula, with:

$$
\frac{d^{2} x_{i}}{d t^{2}}=-\frac{2}{N^{2}} \sum_{\ell \neq i} \frac{1}{\left(x_{i}-x_{\ell}\right)^{3}}
$$

- This can be interpreted as the motion of massive particles interacting through an attractive two-body potential $\phi(r)=-(N r)^{-2}$. Using the virial formula, one gets in the hydrodynamic limit Matytsin's equations:

$$
\partial_{t} \rho+\partial_{x}[\rho v]=0, \quad \partial_{t} v+v \partial_{x} v=\pi^{2} \rho \partial_{x} \rho
$$

with $\rho(x, t=0)=\rho_{A}(x)$ and $\rho(x, t=1)=\rho_{B}(x)$

An instanton approach to large N HCIZ

- Finally, the "action" associated to these trajectories is:

$$
S \approx \frac{1}{2} \int \mathrm{~d} x \rho\left[v^{2}+\frac{\pi^{2}}{3} \rho^{2}\right]-\frac{1}{2}\left[\int \mathrm{~d} x \mathrm{~d} y \rho_{Z}(x) \rho_{Z}(y) \ln |x-y|\right]_{Z=A}^{Z=B}
$$

- Now, the link with HCIZ comes from noticing that the propagator of the Brownian motion in matrix space is:
$\mathcal{P}(\mathbf{B} \mid \mathbf{A}) \propto \exp -\left[\frac{N}{2} \operatorname{Tr}(\mathbf{A}-\mathbf{B})^{2}\right]=\exp -\frac{N}{2}\left[\operatorname{Tr} \mathbf{A}^{2}+\operatorname{Tr} \mathrm{B}^{2}-2 \operatorname{Tr} \mathrm{AOBO}^{\dagger}\right]$
Disregarding the eigenvectors of B (i.e. integrating over O) leads to another expression for $P\left(\lambda_{B i} \mid \lambda_{A j}\right)$ in terms of HCIZ that can be compared to the one using instantons
- The final result for $F\left(\rho_{A}, \rho_{B}\right)$ is exactly Matytsin's expression, up to small details (!)

An instanton approach to large N HCIZ

- An alternative path: use the Kawasaki-Dean equation describing the density of Dyson random walks:

$$
\partial_{t} \rho(x, t)+\partial_{x} J(x, t)=0
$$

with:
$J(x, t)=\frac{1}{N} \xi(x, t) \sqrt{\rho(x, t)}-\frac{1}{2 N} \partial_{x} \rho(x, t)-\rho(x, t) \int \mathrm{d} y \partial_{x} V(x-y) \rho(y, t)$, where $V(r)=-\ln r$ is the "true" two-body interaction potential $(\neq \phi(r)!), \xi(x, t)$ is a normalized Gaussian white noise.

An instanton approach to large N HCIZ

- One then writes the weights of histories of $\{\rho(x, t)\}$ using Martin-Siggia-Rose path integrals:

$$
\mathcal{P}(\{\rho(x, t)\}) \propto\left\langle\int \mathcal{D} \psi e^{\left[\int_{0}^{1} \mathrm{~d} t \int \mathrm{~d} x N^{2} i \psi(x, t)\left(\partial_{t} \rho+\partial_{x} J\right)\right]}\right\rangle_{\xi}
$$

- Performing the average over ξ :
$\mathcal{S}=N^{2} \int_{0}^{1} \mathrm{~d} t \int \mathrm{~d} x\left[\psi \partial_{t} \rho+F(x, t) \rho \partial_{x} \psi-\frac{\psi}{2 N} \partial_{x x}^{2} \rho+\frac{1}{2} \rho\left(\partial_{x} \psi\right)^{2}\right]$ with $F(x, t)=\int \mathrm{d} y \partial_{x} V(x-y) \rho(y, t)$.

An instanton approach to large N HCIZ

- Taking functional derivatives with respect to ρ and ψ then leads to:

$$
\partial_{t} \rho=\partial_{x}(\rho F)+\partial_{x}\left(\rho \partial_{x} \psi\right)+\frac{1}{2 N} \partial_{x x}^{2} \rho
$$

and
$\partial_{t} \psi-\frac{1}{2}\left(\partial_{x} \psi\right)^{2}=F \partial_{x} \psi-\frac{1}{2 N} \partial_{x x}^{2} \psi-\partial_{x} \int \mathrm{~d} y V(x-y) \rho(y, t) \partial_{y} \psi(y, t)$

- The Euler-Matystin equations are again recovered, after a little work, by setting $v(x, t)=-F(x, t)-\partial_{x} \psi(x, t)$.

Back to eigenvalue cleaning...

- Estimating HCIZ at large N is only the first step, but...
- ...one still needs to apply it to $\mathbf{B}=\mathbf{C}^{-1}, \mathbf{A}=\mathbf{E}=X^{\dagger} \mathbf{C} X$ and to compute also correlation functions such as

$$
\left\langle O_{i j}^{2}\right\rangle_{\mathbf{E} \rightarrow \mathbf{C}^{-1}}
$$

with the HCIZ weight - in progress

- As we were working on this we discovered the work of LedoitPéché that solves the problem exactly using tools from RMT...

The Ledoit-Péché "magic formula"

- The Ledoit-Péché [2011] formula is a non-linear shrinkage, given by:

$$
\hat{\lambda}_{C}=\frac{\lambda_{E}}{\left|1-q+q \lambda_{E} \lim _{\epsilon \rightarrow 0} G_{E}\left(\lambda_{E}-i \epsilon\right)\right|^{2}} .
$$

- Note 1: Independent of C: only G_{E} is needed (and is observable)!
- Note 2: When applied to the case where C is inverse Wishart, this gives again the linear shrinkage
- Note 3: Still to be done: reobtain these results using the HCIZ route (many interesting intermediate results to hope for!)

Eigenvalue cleaning: Ledoit-Péché

Fit of the empirical distribution with $V_{0}^{\prime}(z)=a / z+b / z^{2}+c / z^{3}$.

What about eigenvectors?

- Up to now, most results using RMT focus on eigenvalues
- What about eigenvectors? What natural null-hypothesis beyond RIH?
- Are eigen-values/eigen-directions stable in time? \rightarrow Romain Allez
- Important source of risk for market/sector neutral portfolios: a sudden/gradual rotation of the top eigenvectors!

Bibliography

- J.P. Bouchaud, M. Potters, Financial Applications of Random Matrix Theory: a short review, in "The Oxford Handbook of Random Matrix Theory" (2011)
- R. Allez and J.-P. Bouchaud, Eigenvectors dynamics: general theory \& some applications, arXiv 1108.4258
- P.-A. Reigneron, R. Allez and J.-P. Bouchaud, Principal regression analysis and the index leverage effect, Physica A, Volume 390 (2011) 3026-3035.
- J. Bun, J.-P. Bouchaud, S. Majumdar, M. Potters, An instanton approach to large N Harish-Chandra-Itzykson-Zuber integrals, Physical Review Letters, 113, 070201 (2014)

