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A Paradigm of non-equilibrium behaviour: ASEP

q p p pq

Asymmetric Exclusion Process. A Minimal Model for non-equilibrium
Statistical Mechanics.

• EXCLUSION: Hard core-interaction; at most 1 particle per site.

• ASYMMETRIC: External driving; breaks detailed-balance

• PROCESS: Stochastic Markovian dynamics; no Hamiltonian.

The ASEP appears as a building block in many realistic models of 1d
transport and is studied extensively in probability, combinatorics,
statistical physics...
Yet, it was invented in 1968 by molecular biologists.
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The central dogma of molecular biology
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An Elementary Model for Protein Synthesis

C. T. MacDonald, J. H. Gibbs and A.C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biopolymers (1968).
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Anomalous diffusion in SEP

Consider the Symmetric Exclusion Process on an infinite one-dimensional
line with a finite density ρ of particles.

Suppose that we tag and observe a particle that was initially located at
site 0 and monitor its position Xt with time.

On the average 〈Xt〉 = 0 but how large are its fluctuations?

• If the particles were non-interacting (no exclusion constraint), each
particle would diffuse normally 〈X 2

t 〉 = Dt .

• Because of the exclusion condition, a particle displays an anomalous
diffusive behaviour:

〈X 2
t 〉 = 2

1− ρ
ρ

√
Dt

π
(Arratia, 1983)

Single-File Diffusion is an important model in soft-condensed matter
(e.g., ion transport through cell membranes).
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Some open questions

The quantitative behaviour of the higher cumulants of Xt is not
known. Can we calculate the cumulant generating function
log[〈eλXT〉] or the full distribution of Xt?

What is the robustness of the t1/4? Can tagged particle statistics be
determined for more general systems, without having to use
integrability or rely on some combinatorial trick?

What is the influence of the initial setting?

Statistical properties of the tagged particle trajectory? Multiple-time
correlations?

Other important observables (current, total displacement...)?
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Macroscopic Fluctuation Theory

Study the system at a coarse-grained hydrodynamical level.
For a weakly-driven diffusive system, the probability to observe a current
j(x , t) and a density profile ρ(x , t) during a time T takes a large
deviation form:

Pr{j(x , t), ρ(x , t)} ∼ e−I(j,ρ)

The rate functional I(j , ρ) is the optimum of a variational problem (L.
Bertini, D. Gabrielli, A. De Sole, G. Jona-Lasinio and C. Landim)

I(j , ρ) = min
ρ,j

S(j , ρ) with S(j , ρ) =

∫ T

0

dt

∫ +∞

−∞

(j − νσ(ρ) + D(ρ)∇ρ)2 dx

2σ(ρ)

with the constraint: ∂tρ = −∇.j
The transport coefficients D(ρ) (Diffusivity) and σ(ρ) (Conductivity)
carry the relevant information from the microscopic level to the
macroscopic stage. They must be calculated using the microscopic
dynamical rules.
From I(j , ρ), the distribution of any functional of j and ρ can be derived,
in principle.
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The Hydrodynamic Limit: deterministic case

E = ν/2L

ρ ρ
21

L

Starting from the microscopic level, define local density ρ(x , t) and
current j(x , t) with macroscopic space-time variables x = i/L, t = s/L2

(diffusive scaling).
The average hydrodynamic evolution of the system is given by:

∂tρ(x , t) = −∇J(x , t) with J = −D(ρ)∇ρ+ νσ(ρ)

How can Fluctuations be taken into account?
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Fluctuating Hydrodynamics

Let Yt be the integrated current of particles transferred from the left
reservoir to the right reservoir during time t.

limt→∞
〈Yt〉
t = D(ρ)ρ1−ρ2

L + σ(ρ)νL for (ρ1 − ρ2) small

limt→∞
〈Y 2

t 〉
t =

σ(ρ)

L
for ρ1 = ρ2 = ρ and ν = 0.

Then, the equation of motion is obtained as:

∂tρ = −∂x j with j= −D(ρ)∇ρ+ νσ(ρ)+
√
σ(ρ)ξ(x , t)

where ξ(x , t) is a Gaussian white noise with variance

〈ξ(x ′, t ′)ξ(x , t)〉 =
1

L
δ(x − x ′)δ(t − t ′)

For the symmetric exclusion process, the ‘phenomenological’ coefficients
are given by

D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ)
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Values of Diffusivity and Conductivity

• Independent particles: D = 1, σ = 2ρ

• Simple Exclusion Process: DSEP = 1, σSEP = 2ρ(1− ρ)

• Kipnis-Marchioro-Presutti model: DKMP = 1, σKMP = 2ρ2

• Repulsion Process: Hops increasing the number of nearest neighbourg
pairs are forbidden:

DRP =

{
1

(1−ρ)2 if 0 < ρ < 1
2

1
ρ2 if 1

2 < ρ < 1
σRP =

{
2ρ(1−2ρ)

1−ρ if 0 < ρ < 1
2

2(1−ρ)(2ρ−1)
ρ if 1

2 < ρ < 1

• Exclusion Process with Avalanches:DEPA = 1
(1−2ρ)3 , σEPA = 2ρ(1−ρ)

(1−2ρ)3
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Katz-Lebowitz-Spohn model (Driven Ising Model)

The Katz-Lebowitz-Spohn model is a driven lattice gas where the
hopping rates depend on the neighbouring sites:

0100
1+δ
�
1+δ

0010 1101
1−δ
�

1−δ
1011 1100

1−ε
�
1+ε

1010 0101
1+ε
�
1−ε

0011

σKLS = 2
λ(ρ)[1+δ(1−2ρ)]−2ε

√
ρ(1−ρ)

λ(ρ)3 with λ(ρ) =
1+
√

1−8ερ(1−ρ)/(1+ε)

2
√
ρ(1−ρ)

The diffusivity is given by DKLS(ρ) = 1
2χ(ρ)σKLS(ρ), where χ(ρ) is

obtained by eliminating the parameter h between the two equations:

χ =
1

4

1 + ε

1− ε
cosh h(

sinh2 h + 1+ε
1−ε

)3/2

ρ =
1

2

1 +
sinh h√

sinh2 h + 1+ε
1−ε


(Y. Kafri et al., 2013)
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Tagged particle as a macroscopic observable

How to write the position XT of the Tagged Particle macroscopically? In
Single-File Diffusion, particles can not overtake, i.e. the ordering of the
particle is conserved: ∫ +∞

XT

ρ(x , t) =

∫ +∞

0

ρ(x , 0)

This defined the functional XT [ρ], whose statistics we can study by MFT.

〈eλXT〉 =

∫
Dρ0(x)P[ρ0]

∫
Dρ(x , t)Dj(x , t)eλXT[ρ]−SMFT[j,ρ]δ(∂tρ+∇.j)

The initial profile ρ0, distributed according to P[ρ0] can be fixed
(quenched) or fluctuate w.r.t. some chosen measure (annealed).

Scaling shows that the effective action grows as
√

T → Saddle-Point.

The calculation becomes an optimization problem: Find the optimal path
(j∗, ρ∗) that generates a given fluctuation of XT .
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M. F. T. Equations

Evaluating the effective action at the saddle-point (j∗, ρ∗) gives

〈eλXT〉 ' e
√
4Tµ(λ)

√
4Tµ(λ) being the cumulant generating function: µ(λ) =

∑
n
λn

n!
〈X n

T 〉c√
4T

The optimization is performed by solving Euler-Lagrange equations,
better reformulated as a Hamiltonian structure in terms of two conjugate
variables (p, q) that satisfy coupled PDE’s (setting ν = 0):

∂tq = ∂x [D(q)∂xq]− ∂x [σ(q)∂xp]

∂tp = −D(q)∂xxp − 1

2
σ′(q)(∂xp)2

where q(x , t) is the optimal density-field and p(x , t) is the conjugate field

with Hamiltonian: H[p, q] = −D(q)∂xq∂xp + σ(q)
2 (∂xp)2

The parameter λ appears through the boundary conditions at t = 0 and
t = T .
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A Formula for the variance

In the general case, the MFT equations can not be solved analytically but
a perturbative approach w.r.t. λ is possible, providing us with the first
few cumulants of XT .
• Quenched case:

〈X 2
T 〉 =

σ(ρ)

ρ2

√
T

πD(ρ)

• Annealed case:

〈X 2
T 〉 =

σ(ρ)

ρ2

√
2T

πD(ρ)

Note the everlasting effect of the initial conditions.
For SEP, we also obtain a formula for the 4th cumulant:

〈X 4
T 〉c =

[1− ρ][1−
(
4− (8− 3

√
2)ρ
)

(1− ρ) + 12
π (1− ρ)2]

ρ3

√
4T

π
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Interacting Brownian Motions

A special case of Single-File diffusion is a system of Interacting Brownian
Motions with hard-core reflection. It can be obtained as the limit of SEP
in a continuous space with point-particles.

0.0 0.5 1.0 1.5 2.0
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Time

F. Spitzer, Adv. Math. (1970).
In this case: D = 1, σ = 2ρ. The MFT equations can be solved.
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A Tracer Statistics: annealed case

For Interacting Brownian Motions, the full statistics of the tracer
position, Xt , can be determined. The function µ(λ) is known through a
parametric representation:

µ(λ) =

[
λ+ ρ

1− eB

1 + eB

]
η

λ = ρ
(
1− e−B

) [
1 + 1

2

(
eB − 1

)
erfc(η)

]
e2B = 1 +

2η

π−1/2e−η2 − η erfc(η)

The first few moments are given by

〈X 2
T 〉c =

2

ρ
√
π

√
T ,

〈X 4
T 〉c =

6 (4− π)

(ρ
√
π)

3

√
T

〈X 6
T 〉c =

30
(
68− 30π + 3π2

)
(ρ
√
π)

5

√
T

K. Mallick Macroscopic Fluctuations of Interacting Particles



A Tracer Statistics: quenched case

The function µ(λ) is even simpler in the quenched case

µ(λ)=
√

Tρ

∫ +∞

−∞
dx log

{
1 + 2 erfc(x)erfc(−x) sinh2

(
λ

2ρ

)}

In both cases (annealed and quenched), the large deviation function of
the tracer, defined, for T →∞, via

Prob

(
XT√

T
= ξ

)
∼ exp

[
−
√

Tφ(ξ)
]

is obtained by taking the Legendre transform of µ(λ).

K. Mallick Macroscopic Fluctuations of Interacting Particles



Shape of the optimal profiles

MFT provides you with the statistical properties but also with an
understanding of the dynamical process leading to a given atypical
fluctuation.
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Another observable: Surface swept by an interface

The height of an interface h(x , t) satisfies the generic KPZ equation

∂h

∂t
= ν

∂2h

∂x2
+
λ

2

(
∂h

∂x

)2

+ ξ(x , t)

The ASEP is a discrete version of the KPZ equation in one-dimension.

Using MFT, the first few moments of the Area swept by the interface have

been calculated.
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Conclusions

The asymmetric exclusion process is a paradigm for the behaviour of
systems far from equilibrium in low dimensions. The ASEP is important
for theory but also for its multiple applications.

A tagged particle plays the role of a probe for the dynamics. Single-file in
1d is one of the simplest example of anomalous diffusion.

The Macroscopic Fluctuation Theory is a versatile tool to understand
non-equilibrium properties of interacting particle systems. It generalizes
the Onsager-Machlup theory of fluctuations close to equilibrium. In
particular, it provides us with a physical picture of how a non-reversible
fluctuation can be generated. Often, combinatorial approaches miss this
picture.

The calculation of the statistics of a tracer in SEP is an important and
difficult open problem.
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