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Prologue : Merci a Alain Comtet !

Professeur au DEA de Physique Théorique

e J'aj fait la connaissance d'Alain Comtet en Septembre 1991
e Stage de D.E.A. en Janvier 1992

These (1992 - 1995) : “Etude de quelques fonctionnelles du mouvement Brownien

et de certaines propriétés de la diffusion unidimensionnelle en milieu aléatoire”

@ Propriétés d'enroulement du mouvement Brownien plan,
par le formalisme de I'intégrale de chemin (Feynman-Kac)

@ Diffusion anormale en milieu aléatoire
par I'étude de fonctionnelles exponentielles du mouvement Brownien

© Propriétés de localisation pour un Hamiltonien quantique désordonné 1D

— Ces travaux m'ont permis d'apprendre les 'bases’ sur :
e les probabilités, le mouvement Brownien et les processus stochastiques
e les systemes désordonnés, a la fois classiques et quantiques
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Disorder — spatial heterogeneities

First example where disorder changes the physics : Anderson localization (1958) |

e Perfect cristal with translation invariance — delocalized wave functions

e Disorder breaking translation invariance

— localized wavefunction in d < 2 and localization transition in d > 2 )

Some famous probabilistic arguments based on disorder fluctuations

© concerning “Rare events” :
o Lifshitz argument (1964)
— essential singularity for the density of states near the spectrum edge

o Griffiths phases (1969)
— influence of rare ordered regions in the disordered phase.

@ concerning “Typical events'’

o Harris criterium (1974)
— relevance of disorder at a pure critical point.
o Imry-Ma argument (1975)
— lower critical dimension for random field systems.

A\

— Real Space RG better to describe these disorder, spatial heterogeneities
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Renormalization in disordered systems

Renormalization — emergence of universal large scale properties

Renormalization in pure systems (without disorder)

@ small number of relevant couplings
@ focus on critical points ( the ordered and disordered phases are 'clear’ )

@ translation invariance : many RG procedures defined in Fourier space

Renormalization in the presence of quenched disorder

@ one needs to renormalize probability distributions (space of co dimensions)
— much more difficult to determine the fixed points

o before the phase transition towards the high-T disordered phase,
one needs to understand the properties of the low-T frozen-phase,
governed by the non-trivial zero-temperature fixed point
Ex : spin-glass — what are the properties of the 'spin-glass phase’ ?

@ translation invariance is broken

: real space RG procedures are more suited
v

«AO0>» «4F» «=» 4>



Prologue Introduction Long-ranged Spin-Glass RG for the ground-state RG for the dynamics Conclusion

From the point of view of probability theory :
Renormalization on random variables

— Fixed point for an appropriate rescaled variable

First simple example : sum of independent random variables !

— Central Limit Theorem : exponents, stable laws, attraction bassins...

Droplet scaling theory of the spin-glass phase

Mc Millan (1984); Bray and Moore (1986) ; Fisher and Huse (1986) ...

RG flow for the distribution of the renormalized couplings J; at scale L :

1 ([
P = 7 7 ()
Physical meaning : free-energy cost of an interface (Ferromagnets 6 = d — 1)

e d =2 : Exponent § < 0 — disorder becomes weaker and weaker
— no spin-glass phase at finite temperature

o d =3 : Exponent 6 > 0 — disorder becomes stronger and stronger
— spin-glass phase in a finite region [0, T,[ of temperature
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Long-ranged Spin-Glass with power-law interaction

Real spin-glasses with RKKY interactions JRKKY (r) ~ +1

Long-ranged Spin-Glass with power-law interaction of exponent o

E(S1,nS) == Y. JiSiS
1<i<j<L
Random Couplings Jj; = ﬁ where the ¢j; are independent identical O(1)

random variables of zero mean.
e Gaussian distribution

1 c
Lo(e) = ———e~ %

e Lévy symmetric stable law L, (€) of index 1 < 1 <2
T dk . s
L — YR —ike—|k|*

W= [ gre

- 1
Extensivity of the ground state energy for o > m
(in particular o > 3 for the Gaussian case 1 = 2)
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Explicit expression for the droplet exponent -

For Short-Ranged Spin-Glasses : except in one dimension 6°f(d = 1) = —1,
the droplet exponent is only known numerically in d > 1.

Scaling argument for the Gaussian LR case

(Bray, Moore, Young 1986, Fisher, Huse 1988)

1
eé’;uss(a) =1l-o0 for 5 <o<2
eéguss(o) = QSR(d = 1) =—-1 for 2<o0o

| \

Scaling argument for the Lévy LR case

2 1 2
9/’;R(0) =——0 for —<o<—+1
[ [ [
2
LR _SR(4 — 1) —
0, (o) =6"(d=1)=-1 for 0 >—+1

1




RG for the ground-state

Renormalization at zero temperature

C. Monthus, J. Stat. Mech. P06015 (2014)

Minimization of the internal energy of each block Ez"’,’,il’zn = —on—12nS2n-152n

Son—1 = 52n518‘11(-/2n71.2n)

1
Energy E=- Zn |J2”*1>2”| - Zfoogn<m§+oo Jé,,?QmSZnSZn
with the renormalized couplings between the remaining even spins

Jg(i?zm = Jon2m + 580(J2n—1,2n)580(om—1,2m) F2n—1,2m—1
+sgn(Jon—1,2n)2n—1,2m + 580(Jom—1,2m) J2n,2m—1
— same Lévy stable law L,,, with the renormalized characteristic scale
AD(2r) = [2A"(2r) + AM(2r + 1) + A*(2r — 1)]#

Iteration — correct droplet exponent §;%(c) = 2 — o only if positive.
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Renormalization at zero temperature

Improved procedure : Strong Disorder Decimation

The odd spin Sy,_1 is associated to its left S,,_» or to its right neighbor S,,,
depending on the biggest absolute coupling between J,_2 2,1 and Jo,_1 25.

Son—1 = 0(]J2n—1,2n| — |[J2n—2,20—1])580(J2n—1,2n) S2n

Jre(\-/2r1—2,2n—1| - \Jzn—l,zn\)Sgn(Jzn—z,zn—1)52n—2

e Exactness for the nearest-neighbor spin-glass chain (o = +00) :
05R (0 = +o0) = -1

o Exactness for the Migdal-Kadanoff approximation (diamond fractal
hierarchical lattice)

Conclusion for Short-Ranged SG :

the block decimation gives a too large upper bound 63, (d) = 451

— necessary to introduce an appropriate generalization of the Strong Disorder
decimation in d > 1



RG for the ground-state

Statistics over samples of the ground state energy of the

LR Spin-Glass obtained by the RG procedure

Averaged value

EGS(L) ~ Ley + L%fiey + ...

The first term L% is the extensive contribution
The second term L% e representing the leading correction to extensivity is
governed by the droplet exponent O¢,x = 0 (as in Short-Ranged SG) .

Fluctuations around the averaged value
ECS(L) — EGS(L) ~ L8u + ...
where v is an O(1) random variable of zero mean T = 0 distributed with some
distribution G(u).
e Gaussian couplings : g = 3 and G(u) is Gaussian

(as in Short-Ranged Spin-Glasses : g = % in any finite d: Wehr-Aizenman 1990)

o Lévy couplings : g = %1 and power-law tail in G(u — —00) oc 1/(—u)t+*
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Barrier Exponent 1) for the dynamics

Low-temperature dynamics starting from a random initial condition

e Interpretation in terms of a growing 'coherence length’ /(t) :

the smaller lengths / < /(t) are quasi-equilibrated

the bigger lengths / > /(t) are completely out of equilibrium

Equilibrium is reached only when /(teq) = L = the system size.

e Dynamics is extremely slow because equilibration on larger length scales

requires to overcome larger and larger barriers.

The barriers grow as a power of the length / with some barrier exponent ¢ > 0
B(I) = In ty,(1) ~ 1Y

ACTIVATED SCALING with a universal exponent ¢ : /(t) ~ (In t)%

Example of the diffusion in a Brownian random potential (Sinai model) :

¥ = 1/2 leading to logarithmically-slow motion /(t) ~ (In t)?

completely different from the pure diffusion /(t) ~ t2

SPIN-GLASSES : the activated dynamics is also completely different from the
dynamics in pure ferromagnets /(t) o t*/? with the dynamical exponent z = 2
for non-conserved dynamics (domain walls diffuse and annihilate)

< > < > 4AE>» =
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Relaxation towards thermal equilibrium

Classical system where each configuration C has some energy U(C)

Stochastic dynamics described by a Master Equation
Evolution of the probability P;(C) to be in configuration C at time t :

i = L REIWE =0~ PO War ()

W (C" — C) represents the transition rate per unit time from C’ to C
Wout (C) = >0 W (C — C’) represents the total exit rate out of C.

The Detailed Balance property e #UCOW (C — C') = e PUCIW (¢! — C)

—_ —BU(C)
ensures the convergence towards Boltzmann equilibrium Pey(C) = ¢

Example : Metropolis single-spin-flip dynamics Sy — —Si

1
W (C — Ck) = T—Omin {1, e*ﬁ[u(ck)*u(c)]}




Prologue Introduction Long-ranged Spin-Glass RG for the ground-state RG for the dynamics Conclusion

Renormalization for the dynamics of the LR Spin-Glass
C. Monthus, J. Stat. Mech. P08009 (2014)

Renormalization of the transition rates : Full hierarchy of relaxation times

Closed RG for the generalized Metropolis dynamics, where each spin Sy has its
own characteristic time 7, to attempt a spin-flip

W (€ — ) = —min [1, e~V
Tk

o First RG step 7gm = roe®?10(2=1,27)]

, v TRl +TeR1
e Second RG step g = ezﬁ‘J§R1)(4'*2,4l))|M

= 1) +7T RN=1)
e Last RG step Tom = e 28] JFN=D) (2N-1 ohy)) 5 e

Result for the dynamical exponent ¢/

e The last renormalized coupling |J(R (N-— 1))| yields the usual bound v > 6
e Gaussian couplings u =2 : 1p(0) = 92(0) =1l-o¢
e Lévy couplings 1 < < 2:4,(0) = % > 0u(0) = % -0
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Conclusion : the Long-Ranged Spin-Glass Chain

as a simple example of the droplet scaling theory

Statics at zero temperature — droplet exponent 6 |

e Explicit renormalization of the couplings at zero-temperature

e Explicit expression for the droplet exponent

e Consequences for the statistics over samples of the ground state energy
( 6 governs the leading correction to extensivity of the averaged value).

Dynamics near zero-temperature — barrier exponent

e Explicit renormalization of the transition rates near zero-temperature.

e The convergence towards local equilibrium on larger and larger scales is
governed by a strong hierarchy of activated dynamical processes, with valleys
within valleys

Perspectives

e Extend the RG to finite-T to study the Spin-Glass/Paramagnet transition.
e Define an appropriate RG procedure for the Short-Ranged Spin-Glass in d > 1




