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Prologue : Merci à Alain Comtet !

Professeur au DEA de Physique Théorique

• J’ai fait la connaissance d’Alain Comtet en Septembre 1991
• Stage de D.E.A. en Janvier 1992

Thèse (1992 - 1995) : “Etude de quelques fonctionnelles du mouvement Brownien
et de certaines propriétés de la diffusion unidimensionnelle en milieu aléatoire”

1 Propriétés d’enroulement du mouvement Brownien plan,
par le formalisme de l’intégrale de chemin (Feynman-Kac)

2 Diffusion anormale en milieu aléatoire
par l’étude de fonctionnelles exponentielles du mouvement Brownien

3 Propriétés de localisation pour un Hamiltonien quantique désordonné 1D

→ Ces travaux m’ont permis d’apprendre les ’bases’ sur :
• les probabilités, le mouvement Brownien et les processus stochastiques
• les systèmes désordonnés, à la fois classiques et quantiques
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Disorder → spatial heterogeneities

First example where disorder changes the physics : Anderson localization (1958)

• Perfect cristal with translation invariance → delocalized wave functions
• Disorder breaking translation invariance
→ localized wavefunction in d ≤ 2 and localization transition in d > 2

Some famous probabilistic arguments based on disorder fluctuations

1 concerning “Rare events” :

Lifshitz argument (1964)
→ essential singularity for the density of states near the spectrum edge
Griffiths phases (1969)
→ influence of rare ordered regions in the disordered phase.

2 concerning “Typical events ” :

Harris criterium (1974)
→ relevance of disorder at a pure critical point.
Imry-Ma argument (1975)
→ lower critical dimension for random field systems.

→ Real Space RG better to describe these disorder spatial heterogeneities
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Renormalization in disordered systems

Renormalization → emergence of universal large scale properties

Renormalization in pure systems (without disorder)

small number of relevant couplings

focus on critical points ( the ordered and disordered phases are ’clear’ )

translation invariance : many RG procedures defined in Fourier space

Renormalization in the presence of quenched disorder

one needs to renormalize probability distributions (space of ∞ dimensions)
→ much more difficult to determine the fixed points

before the phase transition towards the high-T disordered phase,
one needs to understand the properties of the low-T frozen-phase,
governed by the non-trivial zero-temperature fixed point
Ex : spin-glass → what are the properties of the ’spin-glass phase’ ?

translation invariance is broken : real space RG procedures are more suited
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From the point of view of probability theory :
Renormalization on random variables
→ Fixed point for an appropriate rescaled variable

First simple example : sum of independent random variables !

→ Central Limit Theorem : exponents, stable laws, attraction bassins...

Droplet scaling theory of the spin-glass phase
Mc Millan (1984) ; Bray and Moore (1986) ; Fisher and Huse (1986) ...

RG flow for the distribution of the renormalized couplings JL at scale L :

PL(JL) '
L→∞

1

Lθ
P∗

(
JL

Lθ

)
Physical meaning : free-energy cost of an interface (Ferromagnets θ = d − 1)

d = 2 : Exponent θ < 0 → disorder becomes weaker and weaker
→ no spin-glass phase at finite temperature

d = 3 : Exponent θ > 0 → disorder becomes stronger and stronger
→ spin-glass phase in a finite region [0,Tc [ of temperature
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Long-ranged Spin-Glass with power-law interaction

Real spin-glasses with RKKY interactions JRKKY (r) ' ± 1
r3

Long-ranged Spin-Glass with power-law interaction of exponent σ

E (S1, ...,SL) = −
∑

1≤i<j≤L

JijSiSj

Random Couplings Jij =
εij

|j−i|σ where the εij are independent identical O(1)

random variables of zero mean.
• Gaussian distribution

L2(ε) =
1√
4π

e−
ε2

4

• Lévy symmetric stable law Lµ(ε) of index 1 < µ ≤ 2

Lµ(ε) =

∫ +∞

−∞

dk

2π
e−ikε−|k|µ

Extensivity of the ground state energy for σ > 1
µ

(in particular σ > 1
2 for the Gaussian case µ = 2)
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Explicit expression for the droplet exponent θLR

For Short-Ranged Spin-Glasses : except in one dimension θSR(d = 1) = −1,
the droplet exponent is only known numerically in d > 1.

Scaling argument for the Gaussian LR case
(Bray, Moore, Young 1986, Fisher, Huse 1988)

θLR
Gauss(σ) = 1− σ for

1

2
< σ < 2

θLR
Gauss(σ) = θSR(d = 1) = −1 for 2 ≤ σ

Scaling argument for the Lévy LR case

θLR
µ (σ) =

2

µ
− σ for

1

µ
< σ <

2

µ
+ 1

θLR
µ (σ) = θSR(d = 1) = −1 for σ >

2

µ
+ 1



Prologue Introduction Long-ranged Spin-Glass RG for the ground-state RG for the dynamics Conclusion

Renormalization at zero temperature
C. Monthus, J. Stat. Mech. P06015 (2014)

Simplest decimation using blocks of size b = 2

Minimization of the internal energy of each block E int
2n−1,2n = −J2n−1,2nS2n−1S2n

S2n−1 = S2nsign(J2n−1,2n)

Energy E = −
∑

n |J2n−1,2n| −
∑

−∞≤n<m≤+∞ J
(1)
2n,2mS2nS2n

with the renormalized couplings between the remaining even spins

J
(1)
2n,2m = J2n,2m + sgn(J2n−1,2n)sgn(J2m−1,2m)J2n−1,2m−1

+sgn(J2n−1,2n)J2n−1,2m + sgn(J2m−1,2m)J2n,2m−1

→ same Lévy stable law Lµ, with the renormalized characteristic scale

∆(1)(2r) = [2∆µ(2r) + ∆µ(2r + 1) + ∆µ(2r − 1)]
1
µ

Iteration → correct droplet exponent θLR
µ (σ) = 2

µ − σ only if positive.
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Renormalization at zero temperature

Improved procedure : Strong Disorder Decimation

The odd spin S2n−1 is associated to its left S2n−2 or to its right neighbor S2n

depending on the biggest absolute coupling between J2n−2,2n−1 and J2n−1,2n.

S2n−1 = θ(|J2n−1,2n| − |J2n−2,2n−1|)sgn(J2n−1,2n)S2n

+θ(|J2n−2,2n−1| − |J2n−1,2n|)sgn(J2n−2,2n−1)S2n−2

• Exactness for the nearest-neighbor spin-glass chain (σ = +∞) :
θSR
µ (σ = +∞) = −1
• Exactness for the Migdal-Kadanoff approximation (diamond fractal
hierarchical lattice)

Conclusion for Short-Ranged SG :
the block decimation gives a too large upper bound θSR

block(d) = d−1
2

→ necessary to introduce an appropriate generalization of the Strong Disorder
decimation in d > 1
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Statistics over samples of the ground state energy of the
LR Spin-Glass obtained by the RG procedure

Averaged value

EGS(L) ' Le0 + Lθshift e1 + ...

The first term Lde0 is the extensive contribution
The second term Lθshift e1 representing the leading correction to extensivity is
governed by the droplet exponent θshift = θ (as in Short-Ranged SG) .

Fluctuations around the averaged value

EGS(L)− EGS(L) ' Lgu + ...

where u is an O(1) random variable of zero mean u = 0 distributed with some
distribution G (u).
• Gaussian couplings : g = 1

2 and G (u) is Gaussian

(as in Short-Ranged Spin-Glasses : g = d
2 in any finite d : Wehr-Aizenman 1990)

• Lévy couplings : g = 1
µ and power-law tail in G (u → −∞) ∝ 1/(−u)1+µ
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Barrier Exponent ψ for the dynamics

Low-temperature dynamics starting from a random initial condition

• Interpretation in terms of a growing ’coherence length’ l(t) :
the smaller lengths l < l(t) are quasi-equilibrated
the bigger lengths l > l(t) are completely out of equilibrium
Equilibrium is reached only when l(teq) = L = the system size.
• Dynamics is extremely slow because equilibration on larger length scales
requires to overcome larger and larger barriers.
The barriers grow as a power of the length l with some barrier exponent ψ > 0

B(l) ≡ ln ttyp(l) ∼ lψ

ACTIVATED SCALING with a universal exponent ψ : l(t) ∼ (ln t)
1
ψ

Example of the diffusion in a Brownian random potential (Sinai model) :

ψ = 1/2 leading to logarithmically-slow motion l(t) ∼ (ln t)2

completely different from the pure diffusion l(t) ∼ t
1
2

SPIN-GLASSES : the activated dynamics is also completely different from the
dynamics in pure ferromagnets l(t) ∝ t1/z with the dynamical exponent z = 2
for non-conserved dynamics (domain walls diffuse and annihilate)
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Relaxation towards thermal equilibrium

Classical system where each configuration C has some energy U(C )

Stochastic dynamics described by a Master Equation

Evolution of the probability Pt(C) to be in configuration C at time t :

dPt (C)
dt

=
∑
C′

Pt (C′)W (C′ → C)− Pt (C)Wout (C)

• W (C′ → C) represents the transition rate per unit time from C′ to C
• Wout (C) ≡

∑
C′ W (C → C′) represents the total exit rate out of C.

The Detailed Balance property e−βU(C)W (C → C′) = e−βU(C′)W (C′ → C)

ensures the convergence towards Boltzmann equilibrium Peq(C) = e−βU(C)

Z
Example : Metropolis single-spin-flip dynamics Sk → −Sk

W (C → Ck) =
1

τ0
min

[
1, e−β[U(Ck )−U(C)]

]
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Renormalization for the dynamics of the LR Spin-Glass
C. Monthus, J. Stat. Mech. P08009 (2014)

Renormalization of the transition rates : Full hierarchy of relaxation times

Closed RG for the generalized Metropolis dynamics, where each spin Sk has its
own characteristic time τk to attempt a spin-flip

W (C → Ck) =
1

τk
min

[
1, e−β[U(Ck )−U(C)]

]
• First RG step τSR1

2i
= τ0e

2β|J0(2i−1,2i)|

• Second RG step τSR2
4i

= e2β|J(R1)
1 (4i−2,4i))|

τ
SR1
4i−2

+τ
SR1
4i

2

• Last RG step τSRN
2N

= e2β|J(R(N−1))
N−1 (2N−1,2N ))|

τ
S
R(N−1)

2N−1

+τ
S
R(N−1)

2N

2

Result for the dynamical exponent ψ

• The last renormalized coupling |J(R(N−1))
N−1 | yields the usual bound ψ ≥ θ

• Gaussian couplings µ = 2 : ψ2(σ) = θ2(σ) = 1− σ
• Lévy couplings 1 < µ < 2 : ψµ(σ) = 1

µ > θµ(σ) = 2
µ − σ
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Conclusion : the Long-Ranged Spin-Glass Chain
as a simple example of the droplet scaling theory

Statics at zero temperature → droplet exponent θ

• Explicit renormalization of the couplings at zero-temperature
• Explicit expression for the droplet exponent θ
• Consequences for the statistics over samples of the ground state energy
( θ governs the leading correction to extensivity of the averaged value).

Dynamics near zero-temperature → barrier exponent ψ

• Explicit renormalization of the transition rates near zero-temperature.
• The convergence towards local equilibrium on larger and larger scales is
governed by a strong hierarchy of activated dynamical processes, with valleys
within valleys

Perspectives

• Extend the RG to finite-T to study the Spin-Glass/Paramagnet transition.
• Define an appropriate RG procedure for the Short-Ranged Spin-Glass in d > 1


