RENORMALIZATION

DISORDERED SYSTEMS

Cécile Monthus

cecile.monthus@cea.fr

Institut de Physique Théorique, CNRS and CEA Saclay, France

Prologue Introduction Long-ranged Spin-Glass RG for the ground-state RG for the dynamics Conclusion Prologue : Merci à Alain Comtet !

Professeur au DEA de Physique Théorique

- J'ai fait la connaissance d'Alain Comtet en Septembre 1991
- Stage de D.E.A. en Janvier 1992

Thèse (1992 - 1995) : "Etude de quelques fonctionnelles du mouvement Brownien et de certaines propriétés de la diffusion unidimensionnelle en milieu aléatoire"

- Propriétés d'enroulement du mouvement Brownien plan, par le formalisme de l'intégrale de chemin (Feynman-Kac)
- Oiffusion anormale en milieu aléatoire par l'étude de fonctionnelles exponentielles du mouvement Brownien
- **O** Propriétés de localisation pour un Hamiltonien quantique désordonné 1D
- \rightarrow Ces travaux m'ont permis d'apprendre les 'bases' sur :
- les probabilités, le mouvement Brownien et les processus stochastiques
- les systèmes désordonnés, à la fois classiques et quantiques

First example where disorder changes the physics : Anderson localization (1958)

- \bullet Perfect cristal with translation invariance \rightarrow delocalized wave functions
- Disorder breaking translation invariance
- \rightarrow localized wavefunction in $d\leq 2$ and localization transition in d>2

Some famous probabilistic arguments based on disorder fluctuations

- O concerning "Rare events" :
 - Lifshitz argument (1964)
 - \rightarrow essential singularity for the density of states near the spectrum edge
 - Griffiths phases (1969)
 - \rightarrow influence of rare ordered regions in the disordered phase.
- concerning "Typical events " :
 - Harris criterium (1974)
 - \rightarrow relevance of disorder at a pure critical point.
 - Imry-Ma argument (1975)
 - \rightarrow lower critical dimension for random field systems.

 \rightarrow Real Space RG better to describe these disorder spatial heterogeneities

Renormalization \rightarrow emergence of universal large scale properties

Renormalization in pure systems (without disorder)

- small number of relevant couplings
- focus on critical points (the ordered and disordered phases are 'clear')
- translation invariance : many RG procedures defined in Fourier space

Renormalization in the presence of quenched disorder

- one needs to renormalize probability distributions (space of ∞ dimensions) \rightarrow much more difficult to determine the fixed points
- before the phase transition towards the high-T disordered phase, one needs to understand the properties of the low-T frozen-phase, governed by the non-trivial zero-temperature fixed point
 Ex : spin-glass → what are the properties of the 'spin-glass phase' ?
- translation invariance is broken : real space RG procedures are more suited

First simple example : sum of independent random variables !

 \rightarrow Central Limit Theorem : exponents, stable laws, attraction bassins...

Droplet scaling theory of the spin-glass phase Mc Millan (1984); Bray and Moore (1986); Fisher and Huse (1986) ...

RG flow for the distribution of the renormalized couplings J_L at scale L: $P_L(J_L) \simeq \frac{1}{L^{\oplus}} \mathcal{P}^*\left(\frac{J_L}{L^{\theta}}\right)$

Physical meaning : free-energy cost of an interface (Ferromagnets $\theta = d - 1$)

 d = 2 : Exponent θ < 0 → disorder becomes weaker and weaker → no spin-glass phase at finite temperature

• d = 3: Exponent $\theta > 0 \rightarrow$ disorder becomes stronger and stronger

 \rightarrow spin-glass phase in a finite region [0, T_c [of temperature

Prologue Introduction Long-ranged Spin-Glass RG for the ground-state RG for the dynamics Conclusion Long-ranged Spin-Glass with power-law interaction

Real spin-glasses with RKKY interactions $J^{RKKY}(r) \simeq \pm \frac{1}{r^3}$

Long-ranged Spin-Glass with power-law interaction of exponent $\boldsymbol{\sigma}$

$$E(S_1,...,S_L) = -\sum_{1 \leq i < j \leq L} J_{ij}S_iS_j$$

Random Couplings $J_{ij} = \frac{\epsilon_{ij}}{|j-i|^{\sigma}}$ where the ϵ_{ij} are independent identical O(1) random variables of zero mean.

• Gaussian distribution

$$L_2(\epsilon) = \frac{1}{\sqrt{4\pi}} e^{-\frac{\epsilon^2}{4}}$$

• Lévy symmetric stable law $L_\mu(\epsilon)$ of index $1 < \mu \leq 2$

$$L_{\mu}(\epsilon) = \int_{-\infty}^{+\infty} \frac{dk}{2\pi} e^{-ik\epsilon - |k|^{\mu}}$$

Extensivity of the ground state energy for $\sigma > \frac{1}{\mu}$ (in particular $\sigma > \frac{1}{2}$ for the Gaussian case $\mu = 2$)

For Short-Ranged Spin-Glasses : except in one dimension $\theta^{SR}(d=1) = -1$, the droplet exponent is only known numerically in d > 1.

Scaling argument for the Gaussian LR case (Bray, Moore, Young 1986, Fisher, Huse 1988)

$$egin{aligned} & heta_{Gauss}^{LR}(\sigma) & = 1 - \sigma & ext{for } rac{1}{2} < \sigma < 2 \ & heta_{Gauss}^{LR}(\sigma) & = heta^{SR}(d=1) = -1 & ext{for } 2 \leq \sigma \end{aligned}$$

Scaling argument for the Lévy LR case

$$egin{aligned} & heta_{\mu}^{LR}(\sigma) & = rac{2}{\mu} - \sigma & ext{for} \ \ rac{1}{\mu} < \sigma < rac{2}{\mu} + 1 \ & heta_{\mu}^{LR}(\sigma) & = heta^{SR}(d=1) = -1 \ \ ext{for} \ \ \sigma > rac{2}{\mu} + 1 \end{aligned}$$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 트 _ ∽Q<</p>

Prologue Introduction Long-ranged Spin-Glass RG for the ground-state RG for the dynamics Conclusion Renormalization at zero temperature 000 000 000 000 000 C. Monthus, J. Stat. Mech. P06015 (2014) 010 000 000 000 000

Simplest decimation using blocks of size b = 2

Minimization of the internal energy of each block $E_{2n-1,2n}^{int} = -J_{2n-1,2n}S_{2n-1}S_{2n}$

 $S_{2n-1} = S_{2n} \mathrm{sign}(J_{2n-1,2n})$

Energy $E = -\sum_{n} |J_{2n-1,2n}| - \sum_{-\infty \le n < m \le +\infty} J_{2n,2m}^{(1)} S_{2n} S_{2n}$ with the renormalized couplings between the remaining even spins

$$J_{2n,2m}^{(1)} = J_{2n,2m} + \operatorname{sgn}(J_{2n-1,2n})\operatorname{sgn}(J_{2m-1,2m})J_{2n-1,2m-1} + \operatorname{sgn}(J_{2n-1,2n})J_{2n-1,2m} + \operatorname{sgn}(J_{2m-1,2m})J_{2n,2m-1}$$

 \rightarrow same Lévy stable law ${\it L}_{\mu}$, with the renormalized characteristic scale

$$\Delta^{(1)}(2r) = [2\Delta^{\mu}(2r) + \Delta^{\mu}(2r+1) + \Delta^{\mu}(2r-1)]^{\frac{1}{\mu}}$$

Iteration \rightarrow correct droplet exponent $\theta_{\mu}^{LR}(\sigma) = \frac{2}{\mu} - \sigma$ only if positive.

Prologue Introduction Long-ranged Spin-Glass RG for the ground-state RG for the dynamics Conclusion Renormalization at zero temperature

Improved procedure : Strong Disorder Decimation

The odd spin S_{2n-1} is associated to its left S_{2n-2} or to its right neighbor S_{2n} depending on the biggest absolute coupling between $J_{2n-2,2n-1}$ and $J_{2n-1,2n}$.

$$S_{2n-1} = \theta(|J_{2n-1,2n}| - |J_{2n-2,2n-1}|) \operatorname{sgn}(J_{2n-1,2n}) S_{2n} + \theta(|J_{2n-2,2n-1}| - |J_{2n-1,2n}|) \operatorname{sgn}(J_{2n-2,2n-1}) S_{2n-2}$$

• Exactness for the nearest-neighbor spin-glass chain $(\sigma = +\infty)$: $\theta_{\mu}^{SR}(\sigma = +\infty) = -1$ • Exactness for the Migdal-Kadanoff approximation (diamond fract

• Exactness for the Migdal-Kadanoff approximation (diamond fractal hierarchical lattice)

Conclusion for Short-Ranged SG :

the block decimation gives a too large upper bound $\theta_{block}^{SR}(d) = \frac{d-1}{2}$ \rightarrow necessary to introduce an appropriate generalization of the Strong Disorder decimation in d > 1

Averaged value

 $\overline{E^{GS}(L)} \simeq Le_0 + L^{\theta_{shift}}e_1 + \dots$

The first term $L^{d}e_{0}$ is the extensive contribution The second term $L^{\theta_{shift}}e_{1}$ representing the leading correction to extensivity is governed by the droplet exponent $\theta_{shift} = \theta$ (as in Short-Ranged SG).

Fluctuations around the averaged value

 $E^{GS}(L) - \overline{E^{GS}(L)} \simeq L^g u + \dots$

where *u* is an O(1) random variable of zero mean $\overline{u} = 0$ distributed with some distribution G(u).

• Gaussian couplings : $g = \frac{1}{2}$ and G(u) is Gaussian

(as in Short-Ranged Spin-Glasses : $g = \frac{d}{2}$ in any finite d: Wehr-Aizenman 1990) • Lévy couplings : $g = \frac{1}{\mu}$ and power-law tail in $G(u \to -\infty) \propto 1/(-u)^{1+\mu}$

Prologue Introduction Long-ranged Spin-Glass RG for the ground-state RG for the dynamics Conclusion Barrier Exponent ψ for the dynamics

Low-temperature dynamics starting from a random initial condition

• Interpretation in terms of a growing 'coherence length' l(t) : the smaller lengths l < l(t) are quasi-equilibrated the bigger lengths l > l(t) are completely out of equilibrium Equilibrium is reached only when $l(t_{eq}) = L$ = the system size. Dynamics is extremely slow because equilibration on larger length scales requires to overcome larger and larger barriers. The barriers grow as a power of the length I with some barrier exponent $\psi > 0$ $B(I) \equiv \ln t_{typ}(I) \sim I^{\psi}$ ACTIVATED SCALING with a universal exponent $\psi : I(t) \sim (\ln t)^{\frac{1}{\psi}}$ Example of the diffusion in a Brownian random potential (Sinai model) : $\psi = 1/2$ leading to logarithmically-slow motion $l(t) \sim (\ln t)^2$ completely different from the pure diffusion $l(t) \sim t^{\frac{1}{2}}$

SPIN-GLASSES : the activated dynamics is also completely different from the dynamics in pure ferromagnets $l(t) \propto t^{1/z}$ with the dynamical exponent z = 2 for non-conserved dynamics (domain walls diffuse and annihilate)

Prologue Introduction Long-ranged Spin-Glass RG for the ground-state RG for the dynamics Conclusion

Classical system where each configuration C has some energy U(C)

Stochastic dynamics described by a Master Equation

Evolution of the probability $P_t(\mathcal{C})$ to be in configuration \mathcal{C} at time t :

$$\frac{dP_{t}\left(\mathcal{C}\right)}{dt} = \sum_{\mathcal{C}'} P_{t}\left(\mathcal{C}'\right) W\left(\mathcal{C}' \to \mathcal{C}\right) - P_{t}\left(\mathcal{C}\right) W_{out}\left(\mathcal{C}\right)$$

W (C' → C) represents the transition rate per unit time from C' to C
W_{out} (C) ≡ ∑_{C'} W (C → C') represents the total exit rate out of C.

The Detailed Balance property $e^{-\beta U(\mathcal{C})}W(\mathcal{C} \to \mathcal{C}') = e^{-\beta U(\mathcal{C}')}W(\mathcal{C}' \to \mathcal{C})$

ensures the convergence towards Boltzmann equilibrium $P_{eq}(C) = \frac{e^{-\beta U(C)}}{Z}$ Example : Metropolis single-spin-flip dynamics $S_k \to -S_k$

$$W(\mathcal{C} \to \mathcal{C}_k) = rac{1}{ au_0} \min\left[1, e^{-\beta[U(\mathcal{C}_k) - U(\mathcal{C})]}\right]$$

Renormalization of the transition rates : Full hierarchy of relaxation times

Closed RG for the generalized Metropolis dynamics, where each spin S_k has its own characteristic time τ_k to attempt a spin-flip

$$W(\mathcal{C} \to \mathcal{C}_k) = \frac{1}{\tau_k} \min \left[1, e^{-\beta \left[U(\mathcal{C}_k) - U(\mathcal{C})\right]}\right]$$

• First RG step $\tau_{S_{2i}^{R1}} = \tau_0 e^{2\beta |J_0(2i-1,2i)|}$

• Second RG step $au_{S_{4i}^{R2}} = e^{2\beta |J_1^{(R1)}(4i-2,4i))|} \frac{ au_{S_{4i-2}^{R1}} + au_{S_{4i}^{R1}}}{2}$

• Last RG step
$$\tau_{S_{2N}^{RN}} = e^{2\beta |J_{N-1}^{(R(N-1))}(2^{N-1},2^N)||} \frac{\tau_{S_{2N-1}^{R(N-1)}} + \tau_{S_{2N}^{R(N-1)}}}{2}$$

Result for the dynamical exponent ψ

- The last renormalized coupling $|J_{N-1}^{(R(N-1))}|$ yields the usual bound $\psi \geq heta$
- Gaussian couplings $\mu = 2$: $\psi_2(\sigma) = \theta_2(\sigma) = 1 \sigma$
- Lévy couplings $1 < \mu < 2$: $\psi_{\mu}(\sigma) = \frac{1}{\mu} > \theta_{\mu}(\sigma) = \frac{2}{\mu} \sigma$

Statics at zero temperature \rightarrow droplet exponent θ

- Explicit renormalization of the couplings at zero-temperature
- Explicit expression for the droplet exponent $\boldsymbol{\theta}$
- Consequences for the statistics over samples of the ground state energy
- (θ governs the leading correction to extensivity of the averaged value).

Dynamics near zero-temperature ightarrow barrier exponent ψ

• Explicit renormalization of the transition rates near zero-temperature.

• The convergence towards local equilibrium on larger and larger scales is governed by a strong hierarchy of activated dynamical processes, with valleys within valleys

Perspectives

- Extend the RG to finite-T to study the Spin-Glass/Paramagnet transition.
- \bullet Define an appropriate RG procedure for the Short-Ranged Spin-Glass in d>1